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Abstract 

Background  Clinical prediction models can help identify high-risk patients and facilitate timely interventions. How-
ever, developing such models for rare diseases presents challenges due to the scarcity of affected patients for devel-
oping and calibrating models. Methods that pool information from multiple sources can help with these challenges.

Methods  We compared three approaches for developing clinical prediction models for population screening based 
on an example of discriminating a rare form of diabetes (Maturity-Onset Diabetes of the Young - MODY) in insulin-
treated patients from the more common Type 1 diabetes (T1D). Two datasets were used: a case-control dataset (278 
T1D, 177 MODY) and a population-representative dataset (1418 patients, 96 MODY tested with biomarker testing, 7 
MODY positive). To build a population-level prediction model, we compared three methods for recalibrating models 
developed in case-control data. These were prevalence adjustment (“offset”), shrinkage recalibration in the popula-
tion-level dataset (“recalibration”), and a refitting of the model to the population-level dataset (“re-estimation”). We 
then developed a Bayesian hierarchical mixture model combining shrinkage recalibration with additional informative 
biomarker information only available in the population-representative dataset. We developed a method for dealing 
with missing biomarker and outcome information using prior information from the literature and other data sources 
to ensure the clinical validity of predictions for certain biomarker combinations.

Results  The offset, re-estimation, and recalibration methods showed good calibration in the population-represent-
ative dataset. The offset and recalibration methods displayed the lowest predictive uncertainty due to borrowing 
information from the fitted case-control model. We demonstrate the potential of a mixture model for incorporat-
ing informative biomarkers, which significantly enhanced the model’s predictive accuracy, reduced uncertainty, 
and showed higher stability in all ranges of predictive outcome probabilities.
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Background
Clinical prediction models can be useful in rare diseases 
to aid earlier diagnosis and more appropriate manage-
ment. However, developing these models can be chal-
lenging as suitable data sources for model development 
may be difficult to acquire. The prevalence of a rare dis-
ease in a population-of-interest can be informed by pop-
ulation cohorts [1], but low numbers of cases in these 
datasets limit the ability to identify risk factors and pro-
duce robust predictive models for disease risk in the gen-
eral population [2]. Case-control studies [3] enrich the 
study population with more disease cases than a random 
sample from the population, facilitating more robust 
estimates of associations between patient features and 
disease risk using measures such as odds ratios. Further-
more, the rise of rare disease registries [4] makes recruit-
ing larger case numbers for these studies easier. However, 
from a clinical perspective, disease risk probabilities are 
more natural metrics than odds ratios for diagnosis or 
screening purposes, but estimated risk probabilities from 
case-control data will be overestimated as they are not 
based on random samples from the general population 
[5, 6]. A key challenge is, therefore, how to produce well-
calibrated estimates of individual disease risk probabili-
ties for rare diseases in the general population, utilising 
information from different data sources.

Various methods have been developed that borrow 
information from one population and recalibrate their 
outputs to be valid in another population [7–13]. These 
approaches include simple methods such as adjustments 
of the likelihood ratio based on the sensitivity and speci-
ficity of the test at various thresholds [14] or offset updat-
ing to adjust the overall model probabilities according to 
a more appropriate population prevalence [10, 11]. How-
ever, these approaches are limited and would not account 
for differences in patient characteristics that may occur 
in different datasets, which could be a particular problem 
in case-control studies when enriching for a particular 
disease or when only collecting specific controls, which 
would ignore more “grey-area” patients that may be seen 
in a population setting. More complex techniques are 
available, such as shrinkage methods to adjust the inter-
cept and model coefficients [7, 12], or previous studies 

could be used to inform the prior belief of model param-
eters in Bayesian modelling [15]. Although more sophis-
ticated, these approaches would need data from multiple 
sources that may not be available for rare diseases. In 
addition, datasets may not always contain the same infor-
mation for rare diseases, and specific testing or features 
may only be available to a subset of patients. More flex-
ible approaches are needed that would allow modelling in 
these situations.

We use a specific motivating example of developing a 
prediction model for a rare form of diabetes called Matu-
rity-Onset Diabetes of the Young (MODY) that can be 
used to inform referral decisions for genetic screening 
for the condition. In this study, we 1) evaluate a range of 
approaches for appropriately recalibrating model prob-
abilities in prediction models for rare diseases utilising 
different data sources (including case-control data, prev-
alence estimates, and population datasets) and 2) develop 
a Bayesian hierarchical mixture modelling approach 
which can combine a clinical features risk model with 
additional informative biomarker test information, utilis-
ing prior information from other data sources to account 
for missing data and ensure that the recalibrated prob-
abilities are clinically plausible given specific test results. 
This latter approach also allows for predictions for new 
individuals who do not have biomarker test results (since 
these are not currently routinely collected for MODY), 
which greatly facilitates using such a prediction model 
in clinical practice. We also show how the model can 
help inform on the utility of additional biomarker testing 
before making a final screening decision for MODY.

Motivating example
Our motivating disease system in this manuscript is a 
rare young-onset genetic form of diabetes called Matu-
rity-Onset Diabetes of the Young (MODY) [16], which is 
estimated to account for 1–2% of all diabetes cases [17, 
18]. MODY is challenging to identify and is estimated to 
be misdiagnosed in up to 77% of cases [19]. Diagnostic 
genetic testing is expensive; however, it is crucial to prop-
erly diagnose as these patients do not require treatment 
with insulin injections [20], unlike the most common 
young-onset form of diabetes, type 1 diabetes (T1D).

Conclusion  We have compared several approaches that could be used to develop prediction models for rare 
diseases. Our findings highlight the recalibration mixture model as the optimal strategy if a population-level dataset 
is available. This approach offers the flexibility to incorporate additional predictors and informed prior probabilities, 
contributing to enhanced prediction accuracy for rare diseases. It also allows predictions without these additional 
tests, providing additional information on whether a patient should undergo further biomarker testing before genetic 
testing.

Keywords  MODY, Bayesian modelling, Rare diseases, Prior elicitation, Recalibration
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Statistical models that use patient characteristics 
to predict the probability of having MODY can aid 
decisions regarding which patients to refer for diag-
nostic MODY testing. One such set of models is rou-
tinely used in clinical practice via an online calculator 
[14] (found at: https://​www.​diabe​tesge​nes.​org/​exeter-​
diabe​tes-​app/​ModyC​alcul​ator) and has been shown to 
improve positive test rates of new MODY cases [19]. 
These prediction models for MODY were developed 
using case-control data and recalibrated to population 
prevalences using conversion tables derived from the 
sensitivities and specificities at different probability 
thresholds [14]. There are several consequences of this 
approach for prevalence adjustment: i) the recalibrated 
probabilities end up being grouped; ii) individuals can-
not have a recalibrated probability that is lower than 
the estimated prevalence in the general population; 
and iii) the recalibrated probabilities can be sensitive 
to the choice of grouping used. Addressing these limi-
tations would be important, but the most appropriate 
approach for adjusting for the prevalence is unclear.

In addition, since the original model development, 
biomarker screening tests (C-peptide and islet autoan-
tibodies [21, 22]) have become routinely available 
clinically, and the results of these tests could signifi-
cantly alter the probability of MODY. C-peptide is a 
measure of endogenous insulin secretion, and islet 
autoantibodies are markers of the autoimmune pro-
cess in T1D. MODY is characterised by non-insulin 
dependence, so these patients produce significant 
amounts of their own endogenous insulin (have posi-
tive C-peptide), and they do not have the autoimmune 
process associated with T1D (negative islet autoanti-
bodies), whereas being C-peptide negative (i.e. insu-
lin deficient) or having positive islet autoantibodies 
is characteristic of T1D. Finding approaches to build 
these test results into the recalibration would have 
considerable advantages.

Methods
Setting
The diagnosis of MODY requires expensive genetic test-
ing. Currently, patients are referred for diagnostic genetic 
testing on an ad-hoc basis when the clinician considers 
a MODY diagnosis. In line with guidelines (ISPAD [23] 
and NHS genomic testing criteria [24]), criteria for refer-
ring can include:

–	 Clinical presentation and patient features (including 
age at diagnosis, BMI, treatment, measures of glucose 
control (HbA1c) and family history of diabetes);

–	 Results of biomarker testing (C-peptide and islet 
autoantibodies);

–	 The use of prediction models in the form of the MODY 
calculator (can be found at: https://​www.​diabe​tesge​nes.​
org/​exeter-​diabe​tes-​app/​ModyC​alcul​ator).

Study population
For model development and recalibration, we used data 
from two sources comprising patients with confirmed 
MODY and insulin-treated patients with T1D, the pre-
dominant alternative diagnosis in young-onset patients:

Case‑control dataset (Fig. 1a)
This dataset was used to develop the original MODY pre-
diction model [14]. All participants were diagnosed with 
diabetes between the ages of 1 and 35. T1D was defined 
as occurring in patients treated with insulin within 
6 months of diagnosis [14]. The dataset includes 278 
patients with T1D and 177 probands with a genetic diag-
nosis of MODY obtained from referrals to the Molecular 
Genetics Laboratory at the Royal Devon and Exeter NHS 
Foundation Trust, UK. The dataset comprises the follow-
ing variables: sex, age-at-diagnosis, age-at-recruitment, 
BMI, parents affected with diabetes and HbA1c (%). No 
biomarker data are available.

Fig. 1  Structure of a) case-control and b) UNITED (population) datasets. MODY
+ corresponds to a positive test when genetically tested for MODY 

and MODY
− corresponds to a negative test when genetically tested for MODY. C+ = C-peptide positive, C- = C-peptide negative, A+ = Antibody 

positive, A- = Antibody negative

https://www.diabetesgenes.org/exeter-diabetes-app/ModyCalculator
https://www.diabetesgenes.org/exeter-diabetes-app/ModyCalculator
https://www.diabetesgenes.org/exeter-diabetes-app/ModyCalculator
https://www.diabetesgenes.org/exeter-diabetes-app/ModyCalculator
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Population‑representative dataset (UNITED – Fig. 1b)
The UNITED study [25] was a population-representative 
cohort that recruited 62% of all patients with diabetes 
diagnosed between the ages of 1 and 30 in two regions 
of the UK (Exeter and Tayside) (n=1418). Due to the 
expense of genetic testing, a screening strategy with 
C-peptide and islet autoantibody testing was used to nar-
row down the cohort eligible for MODY testing (Fig. 1b).

For this model, consistent with the original model [14], 
we analysed all patients insulin-treated within 6 months 
of diagnosis, corresponding to 1171 patients, of which 96 
were tested for MODY (given that they were C-peptide 
positive and antibody negative) and 7 MODY cases were 
diagnosed (Fig.  1b). The dataset is comprised of the fol-
lowing variables: sex, age-at-diagnosis, age-at-recruitment, 
BMI, parents affected with diabetes and HbA1c (%), with 
additional C-peptide and islet autoantibodies test results.

Approaches for recalibration
The analysis in this paper was split into three different 
scenarios to enable population-appropriate probabilities 
to be calculated with and without the additional bio-
marker information:

Scenario a) Clinical features model ignoring bio-
marker information. For this analysis, we used all 
patients in the population-representative data-
set (UNITED). This scenario assumes all those not 
MODY tested are MODY− in the population cohort, 
i.e. 7 MODY positive patients and 1,164 MODY 
negative (of which 1,075 were not tested for MODY 
but are assumed to be MODY negative for the analy-
sis since the biomarker results are inconsistent with 
MODY).
Scenario b) Clinical features model in only those pre-
screened to be at increased probability of MODY based 
on the biomarkers. This included 96 patients, of which 
7 are MODY positive and 89 MODY negative. This sce-
nario only analyses patients in the population cohort 
who had genetic testing (i.e. tested C-peptide positive 
and autoantibody negative), so it provides more appro-
priate model probabilities in patients with these test 
results indicating a higher risk of MODY, but simply 
rules out MODY (does not provide a probability) in 
those who are C-peptide negative or antibody positive.
Scenario c) Model fully incorporating both clinical 
features and biomarker information. We analysed all 
patients in the population cohort and included bio-
marker information. For this analysis, we included 
96 patients who had testing for MODY (7 MODY 
positive and 89 MODY negative) and 1,075 patients 
who did not have testing for MODY. The biomarker 

information of those not MODY tested was used to 
more appropriately adjust the model probabilities 
(151 C-peptide positive and autoantibody positive, 
924 C-peptide negative) (Fig. 1b).

We explored six approaches for producing predic-
tions using different degrees of data availability, which 
fall into three groups:

1.	 Approaches that only utilise case-control data and 
adjust to a known population prevalence: Original 
and Offset.

2.	 Approaches that utilise a case-control dataset and 
additional calibration dataset (e.g. the UNITED 
population dataset in this study): Re-estimation and 
Recalibration.

3.	 Approaches that utilise additional data on informa-
tive diagnostic tests and provide biologically plausible 
constraints: mixture model approaches (for both Re-
estimation and Recalibration). This mixture model 
splits individuals into two groups according to their 
diagnostic test information (a C-peptide negative or 
antibody positive group: C−

∪ A+ ; and a C-peptide 
positive and antibody negative group: C+

∩ A− ). We 
use an informative prior distribution to constrain the 
probability of having MODY in the C−

∪ A+ group 
and use one of the other recalibration methods in the 
C+

∩ A− group.

The Supplementary Materials Notation section contains 
a glossary of mathematical symbols used throughout the 
article. We fit these models using the package NIMBLE [26, 
27] (version 1.0.1) in the software R [28] (version 4.3.2).

1. Training dataset only approaches

Training data model  Let MC
j  be a binary variable 

denoting whether an individual j in the case-control data 
set has MODY or not, such that

We then model:

where the log odds are given by:

MC
j =

1 if individual j hasMODY
0 otherwise.

(1)MC
j |X

C
j ∼ Bernoulli

(
pCj

)

(2)log

(
pCj

1− pCj

)
= βC

0 + βC
1 X

C
j1 + · · · + βC

p X
C
jp
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with XC
jv (v = 1, . . . , p) a set of p covariates for individual 

j . We put independent vague Normal(µ = 0, sd = 10) 
priors on the regression parameters.

The posterior for this model then takes the form:

where θ =
(
βC
v ; v = 0, . . . , p

)
 , with π(·) denoting the rel-

evant probability (density) mass functions derived above 
for the model and joint prior distribution.

Original approach  This method was implemented by 
Shields et al. (2012) [14] during the development of the 
original MODY prediction model. The approach fitted a 
model to a case-control dataset using the patients’ charac-
teristics and used the relationship:

or

where M+ is the event that the patient has MODY, and 
R+ is whether a hypothetical “test” is positive (and simi-
larly for M− and R− ). In this case, R+ is derived by apply-
ing a threshold, p∗ , to the predicted probabilities pCj  
obtained from a training model (see eq. (2)) for a given 
individual j , such that an individual is classed as positive 
if pCj > p∗ and negative otherwise.

Therefore, for a given choice of p∗ , estimates of the 
sensitivity, P

(
R+

|M+
)
 , and specificity, P

(
R−

|M−
)
 , of 

these classifications at a range of thresholds were cal-
culated using the case-control data. P

(
M+

)
 is then 

chosen as an estimate of the prevalence of MODY in 
the general population, which in the original model 
was given by 0.7% [14], which assumed no knowledge 
of biomarker test results. In this paper, we adjusted 
slightly differently depending on scenario a) or scenario 
b). In scenario a), we estimated the pre-test probabil-
ity to be 0.6% (informed by the prevalence of MODY in 
the UNITED dataset). For scenario b), we estimated the 
pre-test probability to be 7.3% (informed by the preva-
lence of MODY in those who were C-peptide positive 
and antibody negative in UNITED).

π

(
θ |MC ,XC

)
∝ π

(
MC

|XC , θ
)
π(θ)

P
(
M+

|R+
)

P
(
M−|R+

) =
P
(
R+

|M+
)

P
(
R+|M−

) ×
P
(
M+

)

P
(
M−

)

post-recalibration odds =
sensitivity

1− specificity
× prior odds in population-of-interest,

For a new individual in the general population, with 
covariates X∗

i  say, then one can derive an estimate for pCi  
(based on eq. (2)) as

before using Table 1 to map their predicted pCi  from the 
case-control model to a recalibrated probability of having 
MODY in the general population.

Albert Offset approach  This approach was proposed by 
Albert (1982) [10] and similarly to the method above, lev-
erages the relationship:

where X is a set of explanatory variables. In words:

For the training data (C – case-control dataset), we use 
the same model for MC

j  and pCj  as before (see eqs. (1) and 

log

(
pCi

1− pCi

)
= βC

0 + βC
1 X

∗

i1 + · · · + βC
p X

∗

ip

P
(
M+

|X
)

P
(
M−|X

) =
P
(
X |M+

)

P
(
X |M−

) ×
P
(
M+

)

P
(
M−

) ,

posterior odds = likelihood ratio× prior odds.

Table 1  Probability conversion table for MODY using the 
Original method with an adjusted pre-test probability. (A) Model 
using clinical features only adjusting to population prevalence 
of MODY (0.6%), (B) model using clinical features but adjusting 
to population prevalence of MODY based on patients who are 
C-peptide positive and antibody negative (7.3%). Parentheses are 
used to signify that an endpoint value is not included. Bracket are 
used to signify that an endpoint value is included

(A) Original model adjusting 
probabilities for prevalence 
[scenario a)] (pre-test probability 
= 0.6%)

(B) Original model adjusting 
probabilities assuming patients 
have biomarker tests suggesting 
increased risk of MODY [scenario 
b)] (pre-test probability=7.3%)

Case-control 
model 
probability (%)

Post-
recalibration 
probability (%)

Case-control 
model 
probability (%)

Post-
recalibration 
probability (%)

(0, 10) 0.6 (0, 10) 7.3

[10, 20) 1.6 [10, 20) 17.9

[20, 30) 2.3 [20, 30) 23.2

[30, 40) 3.4 [30, 40) 31.6

[40, 50) 4.2 [40, 50) 36.6

[50, 60) 5.5 [50, 60) 43.1

[60, 70) 6.2 [60, 70) 46.5

[70, 80) 7.1 [70, 80) 49.9

[80, 90) 10.9 [80, 90) 61.6

[90, 100] 45.4 [90, 100] 91.6
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(2)), and then the idea is that if we know the disease odds 
in the training data, then we can re-write eq. (2) as:

hence the original βC
0 = ηC0 + log(pre-test odds training) . 

Therefore, under the assumption that the likelihood ratio 
for any given set of covariates is the same in the training 
and calibration datasets, then for a new individual i in 
the general population, with covariates X∗

i  , we can recali-
brate as:

This approach gives individual-level recalibration prob-
abilities that do not rely on thresholding. The Albert Off‑
set approach requires a training dataset for fitting the 
original model and an estimate of the disease odds in 
both the training data and the population-of-interest. For 
this cohort, as before, you could adapt the offset based on 
the prevalence of MODY of 0.6% based on scenario a) or 
7.3% based on scenario b). We also explore an example 
where the likelihood ratio assumption is not maintained 
between datasets for illustrative purposes. We put inde-
pendent vague Normal(µ = 0, sd = 10) priors on the 
regression parameters.

2. Population‑representative dataset approaches

Re‑estimation approach  This approach fits a new 
model directly to the population-representative dataset 
(UNITED), ignoring the case-control dataset entirely. 
Given sufficient cases and controls in a given dataset, this 
model fitted using, e.g. maximum likelihood, will give 
asymptotically unbiased estimates for the odds ratios and 
probabilities. However, for rare diseases, one would have 
to have very large sample sizes to get sufficient numbers 
of cases to develop an entirely new model. As a compari-
son, we use the model structure developed in the case-
control dataset and then refit the model to the popula-
tion-representative dataset (UNITED). Here, we denote 
the MODY status for individual i in the UNITED dataset 
as MU

i  , and model this as

where

log

(
pCj

1− pCj

)
= ηC0 + βC

1 X
C
j1 + · · · + βC

p X
C
jp + log

(
disease odds training

)
,

log(post-recalibration odds GP) = βC
0 +βC

1 X
∗

i1+· · ·+βC
p X

∗

ip−log(disease odds training)+log
(
disease odds general

)

(3)MU
i |XU

i , θ ∼ Bernoulli
(
pUi

)

with XU
iv  (v = 1, . . . , p) a set of p covariates for individual 

i . We place independent vague Normal(µ = 0, sd = 10) 
priors on the regression parameters.

The posterior for this model then takes the form:

where θ = (βU
v ; v = 1, . . . , p) , with π(·) denoting the rel-

evant probability (density) mass functions derived above 
for the model and joint prior distribution.

Recalibration approach  In the context of the models 
developed here, the Recalibration approach [7] uses a 
model fitted to the case-control dataset to generate pre-
dictions of the linear predictor for each individual in the 
population-representative data set (UNITED). In the 
training data, for individual j , MC

j  and pCj  are modelled as 
before (see eqs. (1) and (2)), and then for each individual 
i in the calibration dataset (UNITED), with predictors 
XU
i  , the linear predictors zi = β̂C0 + β̂C1X

U
i1 + · · · + β̂Cp X

U
ip  

are calculated, where β̂C
v  is a point estimate of the v th 

regression parameter from the case-control model. These 
zi terms are then used as covariates in a second (shrink-
age) model:

This approach [7] can have the effect of scaling the 
odds ratios and intercept terms where necessary, and 
a side-effect is that if no recalibration is required, then 
γ0 = 0 and γ1 = 1 . Again, these approaches could be built 
using scenarios a) and b), dependent on the assumptions 
we are willing to make with UNITED. The method used 
by Steyerberg et al. (2004) [7] uses the point predictions 
for zi based on the maximum likelihood estimates from 
the case-control data, which ignores the uncertainty in 
the estimations of zi . Instead, we develop a joint Bayes-
ian hierarchical model where we simultaneously fit both 
models and propagate the uncertainties directly from 
the case-control model to the recalibration model [29]. 

(4)log

(
pUi

1− pUi

)
= βU

0 + βU
1 XU

i1 + · · · + βU
p XU

ip ,

π
(
θ |MU ,XU

)
∝ π

(
MU

|XU , θ
)
π(θ)

(5)log

(
pUi

1− pUi

)
= γ0 + γ1zi
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We put independent vague Normal(µ = 0, sd = 10) 
prior distributions on the regression parameters, 
with a Normal(µ = 0, sd = 10) prior for γ0 and a 
Normal(µ = 1, sd = 10) prior for γ1.

The posterior for this joint model then takes the form:

where θ =
(
θU , θC

)
 corresponds to the full vec-

tor of parameters, with θU = (γ0, γ1) and 
θC =

(
βC
v ; v = 1, . . . , p

)
 , with π(·) denoting the relevant 

probability (density) mass functions derived above for the 
different component models and joint prior distribution.

3. Mixture model approach
One area of development in this manuscript is how to 
incorporate biomarker test information into the model 
when the biomarker tests can place very strong con-
straints on the post-recalibration probabilities depend-
ing on their specific values. For example, a simple way 
to include a binary test result would be to add another 
covariate into the linear predictor in one of the previ-
ous methods. In the analysis, the biomarker data only 
exists in the calibration data (UNITED) but not the train-
ing data (case-control), so this approach would only use 
information from the calibration data to estimate the 
parameters relating to the biomarkers. Since there are 
few cases in the calibration data, this would necessarily 
result in large standard errors for the estimated effects 
and could lead to biologically implausible estimates. For 
example, an individual who is C-peptide negative or anti-
body positive can be considered to have a very low prob-
ability of having MODY, justified through prior data and 
biological plausibility (C-peptide negativity means that 
an individual is producing negligible amounts of their 
own insulin, which defines T1D). In clinical practice, an 
individual with these biomarker results would be treated 
as having T1D, which is equivalent to assuming that the 
probability of having MODY given these results is exactly 
zero. However, this approach does not allow for the rare 
(but possible) event that an individual has a positive 
genetic MODY test but is antibody positive or C-peptide 
negative (which would ideally also allow for imperfect 
sensitivities and specificities of the biomarker tests).

Using the mixture model approach in scenario c), it is 
possible to incorporate a non-zero prior probability of 
having MODY in these cases, where we use independent 
data sets to inform the prior distribution for this proba-
bility. We note that the mixture model allows for different 
prior constraints to be used for different subsets of the 
data: here the prior probability of having MODY is very 

π

(
θ ,MU

,X
U
,M

C
,X

C

)
∝ π

(
M

U
|X

U
, θ
)
π

(
M

C
|X

C
, θC

)
π(θ)

low for C-peptide negative or antibody positive individu-
als [21, 22], but is not similarly constrained for C-peptide 
positive and antibody negative individuals. Similar ideas 
could be used for other diseases where the prior informa-
tion may not be as strong.

For the UNITED data, we let

with

and

We then set:

Letting XU
i  be a vector of additional covariates for indi-

vidual i , we can model MU
i  as

where

We model pM+|C−∪A+ using a Beta(α = 2.2,β = 7361.3) 
prior probability distribution (see Supplementary 
Materials Prior elicitation section for a justification of 
this choice). We then model pM+|C+∩A−,Xi

 differently, 
depending on whether we use the Re-estimation or Recal‑
ibration approaches (see below).

Re‑estimation approach  For the Re-estimation approach 
we model

and to finalise, we put independent vague 
Normal (µ = 0, sd = 10) priors on the regression 
parameters.

Recalibration approach  For the Recalibration approach 
we also utilise the case-control data. If we let MC

j  be the 
MODY status for individual j in the case-control data-
set, with vector of covariates XC

j  , then MC
j  and pCj  are 

MU
i =

{
1 if individual i hasMODY
0 otherwise,

AU
i =

{
1 if individual i isA+

0 otherwise,

CU
i =

{
1 if individual i isC+

0 otherwise.

TU
i =

{
1 if individual i is [C−

∪ A+
]

0 otherwise.

(6)MU
i |XU

i ,TU
i ∼ Bernoulli

(
pM+|Ti ,Xi

)

(7)pM+|Ti ,Xi
=

{
pM+|C−∪A+ if TU

i = 1,

pM+|C+∩A−,Xi
if TU

i = 0.

(8)

log

(
PM+|C+∩A− ,Xi

1− PM+|C+∩A− ,Xi

)
= βU

0 + βU
1 XU

i1 + · · · + βU
p XU

ip
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modelled as before (see eqs. (1) and (2)). Then, for indi-
vidual i in the UNITED dataset (with C+

i ∩ A−

i  ), we 
model

where

Incorporating biomarker test results  To allow for pre-
dictions in the absence of biomarker test results (which 
are not routinely collected in clinical practice), we model

with X∗U comprised of the variables BMI, age-of-diag-
nosis, age-of-recruitment and parents affected with 
diabetes (here we use restricted cubic splines with 3 
knots to model the continuous variables). In this case 
the predicted probability of MODY for an individual 
with unknown test results will be a weighted average 
of the pM+|C−∪A+ and pM+|C+∩A−,Xi

 , weighted by the 
probability of being C−

∪ A+ based on suitable individ-
ual-level characteristics. We place independent vague 
Normal(µ = 0, sd = 10) prior distributions on the 
regression parameters, with a Normal(µ = 0, sd = 10) 
prior on γ0 and a Normal(µ = 1, sd = 10) prior on γ1.

For the Re-estimation mixture, the posterior then takes 
the form:

where θ =
(
θU , θT , pM+|C−∪A+

)
 corresponds to the full 

vector of parameters, with θU =
(
βU
v ; v = 1, . . . , p

)
 and 

θT = (β∗
v ; v = 1, . . . , r) with π(·) denoting the relevant 

probability (density) mass functions derived above for the 
different component models and joint prior distribution.

For the Recalibration mixture, the posterior then takes 
the form:

where θ = (θU , θT , pM+|C−∪A+ , θC) corresponds to 
the full vector of parameters, with θU = (γ0, γ1) , 
θC =

(
θCv ; v = 1, . . . , p

)
 and θT =

(
β∗
v ; v = 1, . . . , r

)
 , 

(9)log

(
pM+|C+∩A−,Xi

1− PM+|C+∩A−,Xi

)
= γ0 + γ1zi

(10)zi = βC
0 + βC

1 X
U
i1 + · · · + βC

p X
U
ip

(11)TU
i ∼ Bernoulli(qi)

(12)log

(
qi

1− qi

)
= β∗

0 + β∗

1X
∗U
i1 + · · · + β∗

pX
∗U
iq

π
(
θ |MU ,XU ,X∗U ,TU

)
∝ π

(
MU

|XU ,TU , θU , pM+|C−∪A+

)
π

(
TU ,X∗U , θT

)
π(θ),

π

(
θ |MU ,XU ,TU ,MC ,XC

)
∝ π

(
MU

|TU ,XU , θU , pM+|C−∪A+

)
π

(
TU

|X∗U , θT
)
π

(
MC

|XC , θC
)
π(θ)

with π(·) denoting the relevant probability (density) mass 
functions derived above for the different component 
models and joint prior distributions.

Assessment of model performance, calibration 
and stability analysis
In scenario a), we validate fitted probabilities for all 
patients in UNITED (setting those with missing MODY 
testing to MODY− ). In scenarios b) and c), we only vali-
date fitted probabilities on C−

∪ A+ patients as these 
were the only patients who had pre-screening based on 
biomarkers and had genetic testing of MODY genes. 
The area under the receiver operating characteristic 
(AUROC) curve was used as a measure of overall dis-
crimination performance. Calibration curves were plot-
ted to visualise how well the predicted probabilities were 
calibrated against the observed data. For the calibration 
curves, predicted probabilities were grouped by quintiles 
and plotted against the observed probability of positive 
individuals within each quintile. To assess convergence, 
we monitored the available parameters for evidence of 
convergence and Gelman-Rubin R̂ values [30]. Further 
validation procedures are explained in the Supplemen-
tary Materials Stability analysis section.

Results
Comparing datasets
In the case-control dataset, 177 out of 455 patients had 
MODY, leading to an enriched proportion with MODY 
of 40%. In contrast, in the recalibration population 
(UNITED) cohort, 7 out of 1171 patients (0.6%) had 
MODY, much more consistent with the prevalence of 
MODY in the population. The characteristics of patients 
in the two datasets were broadly similar (sFig. 1).

Models and their recalibration from the 6 different 
approaches
All models in this study converged quickly, so we ran four 
chains of 500,000 iterations, with the first 300,000 dis-
carded for burn-in in each case (sFig. 2-4).

The first, recalibration approach, the Original approach 
achieved an R̂ = 1.0 for all parameters. As expected, 

the choice of prevalence used for recalibration affected 
the conversion probabilities. Table 1 shows the different 
post-recalibration probabilities of having MODY using 
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the different prevalences for both scenarios a) and b), 
with post-recalibration probabilities more appropriately 
higher in scenario b) to allow for the biomarker results 
in those who were C-peptide positive and antibody 
negative.

Table  2 describes the model parameter estimates for 
the Albert Offset and Re-estimation approaches in sce-
narios a) and b). The Albert Offset approach achieved 
an R̂ = 1.0 , and the Re-estimation approach achieved an 
R̂ = 1.0 for all parameters. Coefficients were quite differ-
ent in the various approaches.

The Recalibration approach achieved an R̂ = 1.0 for all 
parameters. In scenario a), estimates were γ0 = −4.39 
(95%CI -5.41;  -3.56) and γ1 = 0.96 (95%CI 0.49;  1.54) 
and in scenario b), the estimates were γ0 = −2.26 (95%CI 
-3.33; -1.37) and γ1 = 0.86 (95%CI 0.31; 1.57).

For scenario c), fully incorporating the biomarker 
information into the model, probabilities could be 
obtained using the Recalibration and Re-estimation mix-
ture approaches. The Recalibration mixture approach 
achieved an R̂ < 1.01 for all parameters, with an esti-
mated γ0 = −2.26 (95%CI -3.33;  -1.37) and γ1 = 0.86 
(95%CI 0.32; 1.58). The Re-estimation mixture approach 
achieved an R̂ < 1.01 . The model that estimates T  
achieved an AUROC of 0.76 (95%CI 0.75;  0.77) in both 
mixture approaches, with model parameters described in 
sTable 1.

Discrimination and calibration of the models developed 
using the 6 different approaches
All approaches led to good model discrimination, with 
the Re-estimation approaches having the highest AUROC 
(Table 3).

In scenario a), for the approaches that used only the 
case-control dataset and adjusted for a known preva-
lence, the Original approach overestimated the observed 
probability of MODY in the UNITED population and 

had large uncertainty at higher percentages. In contrast, 
the Albert Offset approach slightly underestimated the 
observed probability of MODY in the UNITED popula-
tion. Looking at the approaches that used the population-
representative dataset (UNITED), both the Re-estimation 
and Recalibration approaches slightly underestimated the 
observed probability of MODY with slightly more uncer-
tainty in the predictions from the Re-estimation approach 
(Fig. 2).

In scenario b), for the approaches that used the case-
control dataset alone, with adjustment for known preva-
lence, the Original approach overestimated the observed 
probability of MODY in the UNITED population. In 
contrast, the Albert Offset approach was able to calibrate 
well. Looking at the approaches that used an additional 
calibration dataset (UNITED), both the Re-estimation 

Table 2  Model parameter estimates for Albert Offset and Re-estimation approaches for scenarios a) and b). Scenario a) adjusts model 
probabilities based on the population prevalence. Scenario b) adjusts model probabilities for just those who were C-peptide positive 
and autoantibody negative (n=96). The numbers in the parentheses correspond to the 95% credible intervals

Model parameters Original Model Scenario a) Scenario b)

Albert Offset Re-estimation Albert Offset Re-estimation

Intercept 1.85 (-0.39; 4.14) -2.81 (-5.06; -0.52) -12.70 (-24.12; -4.24) -0.24 (-2.49; 2.05) -9.85 (-21.66; -0.84)

At least one parent affected 
with diabetes

3.22 (2.56; 3.93) 3.22 (2.56; 3.93) 3.60 (1.52; 6.42) 3.22 (2.56; 3.93) 4.14 (1.49; 7.65)

Age at recruitment (years) -0.09 (-0.11; -0.06) -0.09 (-0.11; -0.06) -0.02 (-0.11; 0.06) -0.09 (-0.11; -0.06) 0.04 (-0.07; 0.15)

HbA1c (%) -0.68 (-0.89; -0.48) -0.68 (-0.89; -0.48) -0.45 (-1.04; 0.07) -0.68 (-0.89; -0.48) -0.78 (-1.59; -0.15)

Age at diagnosis (years) 0.10 (0.06; 0.15) 0.10 (0.06; 0.15) 0.07 (-0.04; 0.19) 0.10 (0.06; 0.15) -0.10 (-0.30; -0.11)

Sex (baseline Male) 1.35 (0.67; 2.06) 1.35 (0.67; 2.06) 4.75 (1.33; 10.22) 1.35 (0.67; 2.06) 6.14 (1.92; 12.29)

Table 3  Area under the receiver operating characteristics 
(AUROC) for all approaches in both scenarios. In scenario 
a): ignoring biomarker information (n=1171); Scenario b): 
only analysing patients which tested C-peptide positive and 
autoantibody negative (n=96); Scenario c): analyse all patients, 
adjusting for biomarker results in the model (n=1,171, validated 
in n=96). CI: credible interval

Approach Mean CI: 2.5% CI: 97.5%

Scenario a) Original 0.93 0.90 0.94

Albert Offset 0.93 0.90 0.94

Re-estimation 0.94 0.90 0.96

Recalibration 0.93 0.92 0.94

Scenario b) Original 0.86 0.81 0.89

Albert Offset 0.86 0.82 0.89

Re-estimation 0.92 0.89 0.94

Recalibration 0.87 0.84 0.90

Scenario c) Re-estimation mixture 0.92 0.87 0.94

Recalibration mixture 0.87 0.84 0.90
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and Recalibration approaches calibrated well, but the Re-
estimation approach demonstrated more uncertainty in 
the probability predictions (Fig. 3). In scenario c), the Re-
estimation and Recalibration mixture approaches dem-
onstrated similar performance to the equivalent models 
that did not use a mixture model approach, with similar 
levels of uncertainty in probability predictions (Fig.  3). 
In this case, the Albert Offset method worked well, but it 
relies on the assumption that the likelihood ratio is the 
same in the two populations. For illustrative purposes, 
we also provide an example setting where the likelihood 
ratio is different between the training and calibration 
datasets (violating the assumption). In this latter exam-
ple, the  Albert Offset  approach fails to calibrate well. In 
contrast, the  Recalibration  approach can scale the odds 
ratios and calibrates well (sFig. 5), so this method would 
be preferred if a recalibration dataset is available.

Stability plots for the mixture models in scenario c)
The bootstrap stability test was made for both mixture 
approaches. Both mixture approaches were ran 50,000 

iterations with the first 30,000 discarded for burn-
in, with an average R̂ = 1.02 (95% 1.0;  2.1) for the Re-
estimation mixture approach and an average R̂ = 1.01 
(95% 1.0;  1.6) for the Recalibration mixture approach 
(the higher R̂ values occurred in bootstrapped datasets 
with less than 3 positive MODY cases, but this only 
occurred in 8/1000 datasets and made no difference to 
the plots in Fig.  4, and so we left these runs in). Both 
recalibration approaches showed some variability in the 
estimated probabilities, with the Re-estimation mixture 
approach demonstrating higher uncertainty across all 
estimated probability levels (Fig.  4). However, we can 
see that because the Recalibration mixture approach 
borrows weight from the case-control data, the esti-
mates were more stable than the Re-estimation mixture 
method. We also noted that by using the hierarchical 
modelling approach, the Recalibration mixture model 
uncertainty included the uncertainty in the case-control 
predictions. Thus, these uncertainty estimates are larger 
than a model where this additional predictive uncer-
tainty is ignored.

Fig. 2  Calibration of scenario a) in UNITED. Scenario a): assume all not MODY tested are MODY
−(based on strong clinical knowledge (n=1,171)
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Fig. 3  Calibration of scenario b) and c) in UNITED. Scenario b): only analyse patients which tested C-peptide positive and autoantibody negative 
(n=96) – Original, Albert Offset, Re-estimation and Recalibration approaches. In scenario c): analyse all patients (n=1,171, validated in n=96) – 
Re-estimation mixture and Recalibration mixture approaches

Fig. 4  Stability plots for Re-estimation mixture and Recalibration mixture approaches. Estimations of MODY probability from bootstrapped models 
are plotted against estimated MODY probabilities from the developed model
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Final recalibrated probabilities
The approach chosen for our final models was the Recali‑
bration mixture approach, which incorporated the most 
information with the lowest uncertainty in probability 
predictions. The mixture model ensures that those with 
biomarkers consistent with T1D (the C−

∪ A+ indi-
viduals) are predicted to have a very low probability of 
MODY, consistent with independent prior information. 
Fig.  5 shows the predicted probability of MODY in the 
remaining C+

∩ A− individuals. Considering only 0.6% 
of the cohort had MODY, the model produced a wide 
range of probabilities. Most non-MODY cases were pre-
dicted to have a low probability of MODY, with 97.2% 
(1,132/1,164) of individuals having an upper 95% CI 
probability of MODY under 10%. In contrast, 7 out of the 
7 MODY cases had an upper 95% CI probability >10%. 
This would mean that if using a >10% threshold to initiate 
MODY testing for the population, 39 patients would be 
tested, giving a positive predictive value of 17.9% (Fig. 5), 
equivalent to the Original approach.

Discussion
This paper explored recalibration methods for adapting 
a statistical model from case-control data to the general 
population for rare disease prediction.

We have shown that the calibration of disease risk 
probabilities can be improved via various methods, and 
in particular, our results show the added benefits of utilis-
ing a secondary (recalibration) dataset that corresponds 
to a random sample from the general population despite 
there being few cases in the latter. In addition, the recali-
bration data contains additional information on bio-
marker tests, which are highly informative about disease 
risk, but only for certain subsets of test results; because 
of this, some biomarker information is only available for 

subsets of individuals. Our Recalibration mixture model 
allows the inclusion of (incomplete) biomarker informa-
tion and informative prior information (derived from 
previous studies) about disease risk for specific subsets of 
test results to ensure clinically valid risk probabilities in 
those cases.

The Recalibration mixture model has several other 
advantages. It allows for predictions to be made in clini-
cal practice even if the biomarker information is not 
available. We can also propagate parameter uncertainties 
from the case-control model to the recalibrated popula-
tion predictions by utilising the Bayesian framework. 
This gives a more robust estimate of the underlying pre-
dictive uncertainty than classical models that ignore this 
uncertainty. Furthermore, the predictions for individu-
als without biomarker test information also propagate 
the uncertainties from the missing information. Finally, 
since this model is used to help inform which individuals 
should be screened for MODY using expensive genetic 
testing, for those individuals who have missing biomarker 
information, we show how the mixture model can also 
be used to inform clinicians about the added utility of 
performing a biomarker test before making a final deci-
sion of whether to send individuals for genetic testing. 
Although highlighted with a specific application, these 
ideas could be adapted to other rare diseases.

We compared several approaches for recalibrating 
probabilities when developing prediction models for rare 
diseases. We showed that the Original method tends to 
overestimate the probabilities in the general popula-
tion, but that the Albert Offset [10], Re-estimation and 
Recalibration [7] approaches achieve good calibration of 
MODY probability predictions in both the model of the 
overall population and also in the model examining only 
the subset who were C+

∩ A− (those genetically tested 

Fig. 5  Estimated probabilities of MODY from the Recalibration mixture model in C-peptide positive, antibody negative patients, split 
by whether patients tested positive for MODY or not. All patients with negative C-peptide or positive antibodies (n=1,075) had probabilities close 
to 0 and are not shown
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for MODY). The Albert Offset [10] and Recalibration [7] 
approaches achieved the smallest uncertainty around 
the observed probability of MODY. The Recalibration 
mixture model showed stability in our study and was the 
only approach that appropriately constrained the prob-
ability of MODY in C−

∪ A+ individuals to be consistent 
with the strong prior information available in this set-
ting. When developing prediction models for rare dis-
eases in practice, different approaches will be plausible 
in different scenarios based on the available data sources. 
Table 4 provides an overview of the advantages and dis-
advantages of all modelling approaches explored in the 
manuscript.

When only a training dataset (case-control dataset in 
our setting) is available, and the aim is to adjust prob-
abilities based on population prevalence, then the Albert 
Offset approach was the preferred method as it estimated 
the probability of MODY well in both our scenarios, with 
reasonable uncertainty in the predictions. In contrast, 
the Original approach [14] relies on thresholding prob-
abilities and overestimates the probability of MODY in 
both scenarios. The Albert Offset approach has also been 
compared to other recalibration methods in other stud-
ies. Chan et al. (2008) had similar findings and deemed 
the Albert Offset the best approach [11]. In contrast, 
Grill et al. (2016) described this approach as the worst-
performing one in their study [12]. These differences may 
relate to the Albert Offset approach’s strong assumption 
that the covariate distribution is the same in the train-
ing dataset as in the population for which the probabili-
ties are adjusted [10, 11], and as we showed in sFig. 5, the 
Albert Offset approach can perform poorly for datasets 
where the covariate distribution is different. When recal-
ibrating models for different settings, the likelihood ratio 
assumption could become harder to justify depending 
on the specific setting, and particular caution would be 
required in populations where the clinical characteristics 
of the patients differ substantially from the case-control 
dataset used for original model development. Establish-
ing whether the similarities between covariate distribu-
tions are sufficient for pre-assessing the performance of 
the Albert Offset method is of interest for future research.

When only a population-representative dataset is 
available, the Re-estimation approach would be neces-
sary. The  Re-estimation  approach calibrates well in the 
general population dataset for both scenarios but dem-
onstrates high uncertainty surrounding the model pre-
dictions. In contrast, Grill et al. (2016) describe the 
Re-estimation approach as having equivalent perfor-
mance to the Albert Offset, with both performing worse 
than all other approaches [12]. The high uncertainty in 
our analysis can be attributed to the fact that there are 
only 7 positive MODY cases in the general population 

dataset (prevalence of 0.6%) and that the distribution of 
predicted probabilities is skewed towards zero. This high-
lights the problem with fitting models for rare diseases 
to population data [31], where the low prevalence means 
very large sample sizes would be required to reduce the 
uncertainty around the predictions, and it would be 
important to assess the adequacy of the sample size prior 
to model fitting [32]. When both training and population-
representative datasets are available (as in our study), we 
showed that the  Recalibration  approach demonstrates 
good calibration in the population-representative dataset 
for both scenarios. This approach combines the informa-
tion captured from the training data with information 
from the calibration dataset [7, 33], producing relatively 
low uncertainty in the model predictions compared to 
other approaches explored in this paper.

We also explored a scenario where additional bio-
marker testing was available but performed only on a 
limited subset of patients. Screening using biomarkers 
is common in clinical practice and often used in rare 
diseases where universal testing is not cost-effective 
or could be invasive (e.g. screening for chromosomal 
defects in pregnancy [34]). We developed a Bayesian 
hierarchical mixture model to follow the referral pro-
cess involved in MODY testing and, therefore, utilise the 
additional biomarker tests for further refinement in the 
prediction of MODY probabilities. As a Bayesian model, 
we can incorporate additional information from other 
studies into the prior distributions for certain param-
eters, something previously explored by Boonstra et  al. 
[15] in a different setting where additional information 
is only present for a subset of individuals. This approach 
has a further advantage in that predictions can still be 
made for patients with missing additional biomarkers, 
which are modelled using patient characteristics. This 
is important for our setting in which instead of ignor-
ing the biomarker results altogether, the model has used 
this information to improve predictions so that even 
when biomarker information is missing, the MODY 
probabilities are a weighted sum across the latent bio-
marker test results, where the weights are informed by a 
model relating potential biomarker test outcomes condi-
tional on a set of clinical features. We also combined the 
mixture model with the  Re-estimation  and the Recali‑
bration approaches for just C+

∩ A− individuals. Both 
approaches showed uncertainty levels in the probabil-
ity predictions consistent with the previously observed 
uncertainty estimates. Furthermore, both approaches 
were tested for stability using bootstrapped versions of 
the population-representative dataset [35], demonstrat-
ing that the  Recalibration mixture  approach was more 
stable with the predicted probabilities of MODY than 
the Re-estimation mixture approach.



Page 15 of 17Cardoso et al. BMC Medical Research Methodology          (2024) 24:128 	

Other approaches for recalibration have been consid-
ered in previous work. Chan et al. (2008) [11] compared 
three methods to update pre-test probability with infor-
mation on a new test: the Albert (Albert Offset in our 
study) [10], Spiegelhalter and Knill-Jones (SKJ) [36] and 
Knottnerus [37] approaches. The SKJ represents an alter-
native to the Albert Offset approach, with similar perfor-
mance in their paper. The Knottnerus approach was more 
suited to cases with sequential biomarker testing, which 
was not appropriate for our work since we did not have 
data on some combinations of tests, instead we grouped 
biomarkers into a composite measure T  . The Knottnerus 
approach could be compared to the mixture model 
approaches (allowing for non-independence between 
both biomarkers), and examining these approaches 
when considering sequential testing of more than one 
biomarker could be considered in future work. Grill et 
al. (2016) compared several methods for incorporating 
new information into existing risk prediction models: 
logistic-new (equivalent to Re-estimation), LR-joint, LR-
offset (Albert Offset), and LR-shrink (equivalent to SKJ 
from reference [11, 36]). In contrast to our study, their 
original models were built in population data, and the 
new datasets with additional features were either cohort 
or case-control data [12]. In the context of rare diseases, 
case-control data is likely to provide the best dataset 
for initial model development since this gives the most 
power for estimating model parameters, and the popula-
tion-representative model can then borrow information 
from the case-control model. In cases where the addi-
tional data are only available in the case-control setting, 
and original models were built on population data, the 
joint model approach (Recalibration) could be adapted to 
this scenario.

The model we recommend for the available MODY 
data is  the Recalibration mixture  approach. A major 
strength of this procedure is that it allows predic-
tions for patients with missing biomarker testing, and 
this weighted prediction of MODY probability can be 
used to inform whether a patient should be referred for 
further testing [38]. This model allows for the incor-
poration of strong prior information regarding the 
probability of having MODY for C−

∪ A+ individuals, 
propagates uncertainties regarding the missing data in 
the UNITED study, and borrows weight from the case-
control model through the recalibration procedure [7], 
thus improving the stability of predictions [35]. This 
model provides sensible predictions for the probability 
of MODY for patients with/without additional testing 
for C-peptide and antibodies. Patients with missing 
MODY testing (i.e. C−

∪ A+ ) could have been set as a 
negative result test for all approaches due to the strong 

clinical knowledge of these tests being consistent with 
a T1D diagnosis. However, this may not be the case for 
other settings, where patients with missing outcomes 
could be believed to have a higher probability of the 
outcome, and therefore, assuming that the outcome is 
negative may be less justifiable.

There are some limitations to the Recalibration Mix‑
ture  approach. We currently use biomarker tests as 
binary (positive/negative) results; in practice, biomark-
ers may be on a continuous scale. As such, the model 
could be adapted to include the biomarker results as 
additional covariates, which could be numerically inte-
grated out if predicting to an individual that was miss-
ing this information in practice [38]. We are also limited 
by the small sample sizes in rare diseases [39], and even 
with our final model utilising two datasets, model pre-
dictions still have some uncertainty. However, we still 
saw good separation between MODY and T1D, and 
even accounting for the uncertainty, probability thresh-
olds could be defined that rule out clear non-MODY 
cases and can be used to determine positive test rates 
at different probabilities in practice. These thresholds 
would balance the amount of testing to be carried out 
against the potential for missing genuine MODY cases, 
depending on how conservative the choice of threshold 
is. The model has yet to be validated in a hold-out data-
set, but the stability plots using bootstrapped datasets 
provide some insight into the stability of model predic-
tions [35]. Although the 95% credible interval of boot-
strapped probabilities is relatively wide at higher values, 
the 50% credible interval is narrow for all probabilities 
around the equal line.

This paper provides a comparison of several recalibra-
tion approaches. The development of our recalibration 
approach uses established methodologies, and we have 
shown how it could apply to identifying patients with a 
high probability of MODY to allow more targeted diag-
nostic testing, but these ideas could be applied to other 
diseases. In practice, other settings could benefit from 
a similar Bayesian hierarchical model structure where 
informative biomarkers or additional testing informa-
tion are available but only in a subset of patients due 
to its invasive nature or high cost of testing. With this 
structure, the model can be used to consider whether 
additional testing should be carried out when the indi-
vidual already has a low probability (not on the cusp of 
referral), something explored previously in treatment 
selection for Type 2 diabetes [38]. Furthermore, this 
modelling structure could be particularly useful in other 
rare diseases with low sample sizes since it borrows 
weight from multiple datasets through recalibration, 
improving predictions.
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Conclusion
We have compared several approaches to developing pre-
diction models for rare diseases. We found the Recalibration 
mixture model approach to be the best approach, combining 
case-control and population-representative data sources. 
This approach allows the incorporation of additional data on 
biomarkers and appropriate prior probabilities.
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