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Abstract

Background Dynamical mathematical models defined by a system of differential equations are typically not easily
accessible to non-experts. However, forecasts based on these types of models can help gain insights into the mecha-
nisms driving the process and may outcompete simpler phenomenological growth models. Here we introduce

a friendly toolbox, SpatialWavePredict, to characterize and forecast the spatial wave sub-epidemic model, which cap-
tures diverse wave dynamics by aggregating multiple asynchronous growth processes and has outperformed simpler
phenomenological growth models in short-term forecasts of various infectious diseases outbreaks including SARS,
Ebola, and the early waves of the COVID-19 pandemic in the US.

Results This tutorial-based primer introduces and illustrates a user-friendly MATLAB toolbox for fitting and fore-
casting time-series trajectories using an ensemble spatial wave sub-epidemic model based on ordinary differential
equations. Scientists, policymakers, and students can use the toolbox to conduct real-time short-term forecasts. The
five-parameter epidemic wave model in the toolbox aggregates linked overlapping sub-epidemics and captures

a rich spectrum of epidemic wave dynamics, including oscillatory wave behavior and plateaus. An ensemble strat-
egy aims to improve forecasting performance by combining the resulting top-ranked models. The toolbox provides
a tutorial for forecasting time-series trajectories, including the full uncertainty distribution derived through parametric
bootstrapping, which is needed to construct prediction intervals and evaluate their accuracy. Functions are available
to assess forecasting performance, estimation methods, error structures in the data, and forecasting horizons. The
toolbox also includes functions to quantify forecasting performance using metrics that evaluate point and distribu-
tional forecasts, including the weighted interval score.

Conclusions We have developed the first comprehensive toolbox to characterize and forecast time-series data using
an ensemble spatial wave sub-epidemic wave model. As an epidemic situation or contagion occurs, the tools pre-
sented in this tutorial can facilitate policymakers to guide the implementation of containment strategies and assess
the impact of control interventions. We demonstrate the functionality of the toolbox with examples, including a tuto-
rial video, and is illustrated using daily data on the COVID-19 pandemic in the USA.
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Background

Developing reliable methods for forecasting dynamic
growth processes is critical for decision-making in prob-
lems ranging from predicting the weather, forecast-
ing the trajectory of an emerging epidemic, the growth
or decline of economic variables, election outcomes,
and sporting events [1]. While statistical methods such
as ARIMA and exponential smoothing are robust and
broadly competitive for forecasting time series [2-6],
dynamical mathematical models defined by a system of
differential equations are typically not easily accessible
to non-experts. However, forecasts based on these types
of models can help characterize the mechanisms driving
the process [7]. They may offer higher forecasting perfor-
mance than purely statistical approaches based on statis-
tical evaluation criteria like mean absolute and squared
errors [8—11]. Here we focus on dynamical models that
can characterize growth processes that give rise to waves
of variable shapes and sizes [12—-14]. The complexity of
this family of growth models ranges from single differen-
tial equation models with a few parameters, such as the
3-parameter generalized-logistic growth model (GLM)
[14], to systems of ordinary differential equations (ODEs)
that capture diverse wave dynamics by aggregating mul-
tiple asynchronous growth processes [13]. The spatial
wave sub-epidemic framework has outperformed simpler
phenomenological growth models in forecasts of vari-
ous infectious diseases, including severe acute respira-
tory syndrome (SARS), Ebola, and the early waves of the
coronavirus disease 2019 (COVID-19) pandemic in the
United States (US) [13, 15].

This tutorial paper introduces a user-friendly MAT-
LAB toolbox to fit and forecast time-series trajectories
using the spatial wave sub-epidemic dynamic growth
model based on ordinary differential equations, which
was initially developed to characterize and derive short-
term forecasts of epidemic trajectories [13, 16]. This
mathematical framework characterizes time-series tra-
jectories by aggregating multiple asynchronous growth
processes. Each growth process (i.e., sub-epidemic)
is modeled using a simple phenomenological growth
model such as the generalized logistic growth model
(GLM). This framework supports a family of growth
models that yield similar fits to the calibration data, but
their corresponding forecasts could produce diverse
trajectories. Hence, we also incorporate ensemble tech-
niques to combine the resulting models to boost fore-
casting performance [16, 17].

This toolbox is written for a diverse audience, includ-
ing students training in time-series forecasting. It allows
the user to conduct parameter estimation and forecasting
with quantified uncertainty and evaluate forecasting per-
formance using a set of standard metrics, including the
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coverage of the 95% prediction interval and the weighted
interval score, which account for the uncertainty of the
predictions. The toolbox allows scientists and policymak-
ers to generate short-term forecasts by relying on mini-
mal data of the process of interest, such as an unfolding
epidemic or natural disaster.

The toolbox provides prediction intervals and allows
the user to employ different estimation methods,
assumptions of the error structure, and forecasting hori-
zons. For instance, the toolbox includes estimation meth-
ods such as the nonlinear least squares estimation and
maximum likelihood estimation (MLE) with different
assumptions about the error structure of the observed
data, including Poisson, negative binomial, and nor-
mal distributions, as well as quantification of the uncer-
tainty based on a parametric bootstrapping approach.
The model also provides flexibility to choose the under-
lying building block of the growth process. In addition,
the toolbox includes functions to derive weighted and
unweighted ensembles based on the resulting top-ranked
models. The full functionality of the toolbox is illustrated
using daily time series of COVID-19 cases in the US, and
in the process, shows that this framework outcompetes
simpler single growth models and simple time-series
models (e.g., ARIMA, GAM, SLR) in calibration and
forecasting performance.

We start by describing the format of the input time-
series data, followed by the methods employed for
parameter estimation. Next, we describe the underly-
ing methodology, user parameters, and functions to
calibrate, evaluate, and display the model fits. Finally, we
introduce the functions to generate, display, and quantify
the performance of model-based forecasts with specific
examples in the context of the daily COVID-19 case data
reported in the USA. A tutorial video that demonstrates
the toolbox functionality is available at: https://www.
youtube.com/watch?v=qxuF_tTzcR8&t=47s.

Implementation

In this section, we describe the methods implemented in
this toolbox and provide a brief overview of the toolbox
functions.

Installing the toolbox

+ Download the MATLAB code located in the folder
spatialWave_subepidemicFramework code from
the GitHub repository: https://github.com/gchowell/
spatial_wave_subepidemic_framework.

+ Create an ‘input’ folder in your working directory
where your input data will be stored.

+ Create an ‘output’ folder in your working directory
where the output files will be stored.


https://www.youtube.com/watch?v=qxuF_tTzcR8&t=47s
https://www.youtube.com/watch?v=qxuF_tTzcR8&t=47s
https://github.com/gchowell/spatial_wave_subepidemic_framework
https://github.com/gchowell/spatial_wave_subepidemic_framework
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+ Open a MATLAB session.

Overview of the toolbox functions

The methodological workflow of the tutorial is organ-
ized as follows: (1) plotting model simulations, (2) fitting
the models to data with quantified uncertainty, (3) plot-
ting the resulting model fits and calibration performance
metrics, and (4) plotting model-based forecasts and the
associated forecasting performance metrics. Table 1 and
Supplementary Table 1 list the names of both user and
internal functions associated with the toolbox, along with
a brief description of their role. As described below, the
user needs to specify the parameters related to model fit-
ting and forecasting in the default options fit.m and
options forecast.m files.

Parameter estimation method

Let f(¢,®) denote the expected curve of the epidem-
ic’s trajectory. We can estimate model parameters
® by fitting the model solution to the observed data
via nonlinear least squares [18] or maximum likeli-
hood estimation with specific assumptions about the
error structure in the data [19] by specifying param-
eter<methodl>in the options.m file. For nonlin-
ear least squares (i.e., <method1>=0), this is achieved
by searching for the set of parameters © that minimizes
the sum of squared differences between the smoothed
data Vi=ItVty -+ - Vi, and the model mean, corre-
sponding to f(t, ®). That is, ® = (Cy,, 1, p, q, Ko) in the
sub-epidemic wave model (given below) is estimated
by © = argmin Z;Zl (4, 0) — )’t,)z‘ We estimate the
parameter Cy,, through simple discretization of its range
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of plausible values. Our estimation procedure consists
of two steps. First, for each Cy,,., we search for the set of
parameters (7, p, q, Ko) that yield the best fit to the data.
Then we choose Cy,and the corresponding estimates
of other parameters leading to the overall best-fit to the
data.

Nonlinear least squares estimation weighs each of
the data points equally and does not explicitly require a
specific distributional assumption for y;, except for the
first moment E[y;] = f(¢; ©). That is, the mean of the
observed data at time ¢ is equivalent to the expected
count denoted by f(¢,®)at time ¢ [20]. This method
yields asymptotically unbiased point estimates regardless
of any misspecification of the variance-covariance error
structure. Hence, the estimated model mean f(¢;, ®)
yields the best fit to observed data yin terms of squared
L2 norm. We can solve the nonlinear least squares opti-
mization problem using the fmincon function in MAT-
LAB. Moreover, we also employ MATLAB’s MultiStart
feature to specify the number of random initial guesses of
the model parameters using the parameter <numstart-
points>in the options.mfile in order to search thor-
oughly for a global minimum, check that the solution is
unique, and the parameters are identifiable.

We can also estimate parameters via maximum likeli-
hood estimation (MLE) [19] and assume different error
structures in the data (e.g., Poisson, negative binomial).
The log-likelihood expressions derived for different error
structures are specified below.

Poisson
For a Poisson error structure, the full log-likelihood of
Poisson (i.e., <method1>=1) is given by:

Table 1 Description of the user functions available in the SpatialWavePredict toolbox

Function Role

options.m

Specifies the parameters related to model fitting, including the characteristics of the time series data,

the sub-epidemic model, parameter estimation method, error structure, smoothing, and calibration
period. The structure of the options.mfile is given in Supplementary Text 1.

options forecast.m

Specifies the parameters related to the forecast, including the forecasting period, the type of ensem-

ble weight for the ensemble models, and whether the forecasts will be evaluated. The structure
ofthe options forecast.mfileis given in Supplementary Text 2.

plot SW subepidemic.m
Run_SW subepidemicFramework.m
plotRankings SW_
subepidemicFramework.m

dence ratio
plotFit SW
subepidemicFramework.m

Plots simulations of the spatial wave sub-epidemic model.
Derives the top-ranking sub-epidemic wave models to data with quantified uncertainty.

Plots the mean model fits of the top-ranking models, including their sub-epidemic profiles,
and the associated quality of model fit metrics, including the AICc, the relative likelihood, and the evi-

Displays the model fit and 95% prediction interval, as well as the empirical distribution of the param-
eters. It also saves output .csv files in the output folder with the model fit, the parameter estimates,

including 95% Cls, and the calibration performance metrics.

plotForecast SW_
subepidemicFramework.m

Displays the model-based forecast and the performance metrics of the forecast. Moreover, the data
associated with the forecasts, the parameter estimates, as well as the calibration and forecasting

performance metrics are saved as .csv files in the output folder.
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If the variance scales quadratically with the mean,
0% =p+au® (ie, <methodl>=4 in options.m),
then p = 1iguand r = 1/a. The full log-likelihood (1.1)
can be expressed as follows:

n yi—1. . _ _
1O, a) = Zi:l {{ijo In(j+« 1)} + yiln(af (£,0)) — (i + & Din(1 + af (£, 0)) — ln(yi!)}. (1.3)
where 11; = f(%;,60) denotes the mean of y;at time £;. The The more general form of variance is 02 = pu + au?
number of parameters is just the number of parameters (i.e, <methodl>=5 in options.m) with any

estimated in the dynamical model based on ordinary dif-
ferential equations.

j=0

i—1 X _ _ _ _ _ _
16, ) =Z; sz nG+a ' p? d)}+yiln<amd 1) — i+ DA+ aph — In(i) |,

—00 < d < oc. Then the full log-likelihood (1.1) can be
expressed as follows:

Negative binomial

Let r > 0 denote the number of failures until the experi-
ment is stopped, p € [0, 1] denote the success probability
in each experiment. The number of successes y before the
r-th failure occurs has a negative binomial distribution
given by:

fllrp) = (Hy 1>Py(1 —p) = % H,y;ol (+r)pPa-py

p 2__ _1p
(1-p) T (1-p)? = He

For n observations y1, . . ., ¥y, the full log-likelihood is

, variance = o

with mean = u =

I(r,p) = 27:1{{2;;;11n0 + r)} +yiln(py) + rin(L — p;) — ln(yi!)},

where u; = f(t;,0).

The number of parameters is 1 plus the number of
parameters in the dynamical model based on ordinary
differential equations (ODE) for (1.2) ~ (1.3), and 2 plus
the number of parameters in the dynamical model for
(1.4) if d is also estimated via MLE. Assuming Poisson
or negative binomial error structures in the data, we can
estimate parameters using MLE by specifying param-
eters in the options.m file, such as <methodl>=1 &
<distl>=1 for Poisson and <methodl>& <distl>=3,
<methodl>=4 & <distl>=4, and <methodl>=5 &
<distl>=5 for the different negative binomial error
structures described above.

(1.1)

which can be expreszsed with 1 and ¢® by plugging-in

- B __u
p=1-Zandr= ——

There are different types of variances commonly
used in a negative binomial distribution. If the vari-
ance scales linearly with the mean: 02 = u + au, (ie.,
<methodl>=3 in options.m), then p= 110: and
r = u/a. Let u = f(¢,0)be the mean curve to be esti-
mated from the differential equation. The full log-likeli-

hood (1.1) can be expressed as follows:

j=0

16,a) = Z; {{Zy"_l InG + a_lf(ti,é))} + yiln(a) — (i + " (t,0)In(1 + o) — ln(yi!)}.

Parametric bootstrapping

To quantify parameter uncertainty, we follow a para-
metric bootstrapping approach which allows the com-
putation of standard errors and related statistics in the
absence of closed-form formulas [21]. We generate
B bootstrap samples from the best-fit model f (t, O),
with an assumed error structure specified using param-
eter<distl>in the options.m file to quantify the
uncertainty of the parameter estimates and construct

(1.2)
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confidence intervals. Typically, the error structure in the
data is modeled using a probability model such as the
Poisson or negative binomial distribution. Using nonlin-
ear least squares (<methodl>=0), besides a normally
distributed error structure (<distl1>=0), we can also
assume a Poisson (<dist1>=1) or a negative binomial
distribution (<distl>=2) whereby the variance-to-
mean ratio is empirically estimated from the time series.
To estimate this constant ratio, we group a fixed number
of observations (e.g., 7 observations for daily data into
a bin across time), calculate the mean and variance for
each bin, and then estimate a constant variance-to-mean
ratio by calculating the average of the variance-to-mean
ratios over these bins.

Using the best-fit model f(z, 0), we generate B-times
replicated simulated datasets of size 4, where the obser-
vation at time £jis sampled from the corresponding distri-
bution specified by <dist1>. Next, we refit the model to
each of the B simulated datasets to re-estimate the
parameters using the same estimation method for the
bootstrap sample as for the original data. This allows us
to quantify the uncertainty of the estimate using that
method. The new parameter estimates for each realiza-
tion are denoted by ©, where b =12,...,B. Using the
sets of re-estimated parameters (®,), it is possible to
characterize the empirical distribution of each estimate,
calculate the variance, and construct confidence intervals
for each parameter. The resulting uncertainty around the
model fit can similarly be obtained from f (t, 01),

f(t, @2), oo f(t, @B). We characterize the uncertainty

using 300 bootstrap realizations
<B>=300 in the options.mfile).

(i.e., parameter

Model-based forecasts with quantified uncertainty
Forecasting the model f (t, ®), h days ahead is based on

the estimate f(¢t+ A, @)). The uncertainty of the fore-
casted value can be obtained using the previously
described parametric bootstrap method. Let

f(z+h,@1),f(t+h,@2),...,f(t+h,@B)

denote the forecasted value of the current state of the
system propagated by a horizon of / time units, where
(:);j denotes the estimation of parameter set ® from the
b, bootstrap sample. We can use these values to calcu-
late the bootstrap variance to measure the uncertainty of
the forecasts and use the 2.5% and 97.5% percentiles to
construct the 95% prediction intervals (95% PIs). We can
set the forecasting horizon using the parameter<fore-
castingperiodl>in the options forecast.m
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file. The structure of the options forecast.mfileis
described in Supplementary Text 2.

For the COVID-19 case data employed for illustra-
tion purposes, we fit the models by the nonlinear least
squares method assuming a normal error structure
(i.e., <methodl>=0 and <dist1>=0) (Fig. 1).

Sub-epidemic wave model

We use a spatial wave model with up to 5 parameters that
aggregate linked overlapping sub-epidemics [13]. This
sub-epidemic framework can characterize diverse epi-
demic patterns, including the epidemic plateaus, where
the epidemic stabilizes at a high level for an extended
period and the epidemic waves have multiple peaks. The
strength (e.g., weak vs. strong) of their overlap determines
when the next sub-epidemic is triggered and is controlled
by the onset threshold parameter, Cy,,. The mathemati-
cal equation for the sub-epidemic building block is the
3-parameter generalized-logistic growth model (GLM),
which is specified by setting the parameter <flagl>=1 in
the options.m file. This growth model has performed
well in short-term forecasts of single outbreak trajecto-
ries for different infectious diseases, including COVID-
19 [22-24]. Alternative growth equations to model the
sub-epidemic building block include the 3-parameter
Richards model (<flagl>=4) and the 2-parameter logis-
tic growth model (<flagl>=2). The following differen-
tial equation gives the generalized-logistic growth model
(GLM):

dC®) _ 1oy _ op _ o
- =CW=rC (t)(l o )

where C(¢) denotes the cumulative curve at time £, and
% describes the epidemic’s incidence curve over time
t. The positive parameter r denotes the growth rate per
unit of time, Kj is the final outbreak size, and p € [0,1]
is the “scaling of growth” parameter which allows the
model to capture early sub-exponential and exponential
growth patterns. If p = 0, this equation describes a con-
stant incidence over time, while p = 1 indicates that the
early growth phase is exponential. Intermediate values of
p(0 < p < 1) describe early sub-exponential (e.g., poly-
nomial) growth dynamics. The sub-epidemic wave model
consists of a system of coupled differential equations:

acity ool G®
7 =rAi1(OCi(t) (1 X, )

Here, C;(t) is the cumulative number of infections for
sub-epidemic i, and K; is the size of the iy, sub-epidemic
where i = 1, ..., n. Starting from an initial sub-epidemic
size Ky, the size of consecutive sub-epidemics K; decline
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< >
$§ <=============== Parameter estimation and bootstrapping=========>
% < >

methodl=0; % Type of estimation method. See below:

o

Nonlinear least squares
MLE Poisson=1,

MLE (Neg Binomial)=3
MLE (Neg Binomial)=4
MLE (Neg Binomial)=5

(LsQ) =0,

0P o o

oe

, with VAR=mean+alpha*mean;
, with VAR=mean+alpha*mean”2;
, with VAR=mean+t+alpha*mean”d;

distl=0; % Define distl which is the type of error structure. See below:

$distl1=0;
%distl=1;

o° o

Normal distribution to model error structure
Poisson error structure

(methodl1=0)

(methodl=0 OR methodl=1)

%distl=2; $ Neg. binomial error structure where var = factorl*mean where
% factorl is empirically estimated from the time series
% data (methodl=0)

%distl=3; $ MLE (Neg Binomial) with VAR=mean+alpha*mean (methodl=3)

%distl=4; $ MLE (Neg Binomial) with VAR=meant+alpha*mean”2 (methodl=4)

%distl=5; $ MLE (Neg Binomial)with VAR=meant+alpha*mean”d (methodl=5)

switch methodl
case 1
distl=1;
case 3
distl=3;
case 4
distl=4;
case 5
distl=5;
end

numstartpoints=10; % Number of initial guesses for optimization procedure

using MultiStart

B=300; % number of bootstrap realizations to characterize parameter

uncertainty

Fig. 1 Contents of options.m file, the values of the parameters related to the parameter estimation method and parametric bootstrapping

at the rate g following an exponential or power-law func-
tion as described below. Hence, a total of 5 parameters
(r,p, Cyrrq, K) for i =1,...,n are needed to charac-
terize a sub-epidemic wave composed of two or more
sub-epidemics.

The onset timing of the subsequent (i + 1), sub-epi-
demic is determined by the indicator variable A;(t). This
results in a coupled system of sub-epidemics where the
(i 4+ 1)4, sub-epidemic is triggered when the cumulative
curve for the iy, sub-epidemic exceeds a total of Cy,. The
sub-epidemics overlap because the (i + 1),sub-epidemic

takes off before the iy, sub-epidemic completes its course.
That is,

At { 1 Ci(t) > Cop

0 Otherwise '~ L2,..

,n—1.

The threshold parameters are defined so that 1
< Cyyr < Ko and Ap(t) =1 for the first sub-epidemic.

The maximum number of sub-epidemics considered in
the epidemic wave trajectory is specified using parameter
<npatches_ fixed> in the options.m file. Here, we
set <npatches fixed>=3. The initial number of cases
is given by C1(0) = Iy, where Iy is the initial number of
cases in the observed data.

In this framework, the size of the subsequent iy, sub-
epidemic (K;) remains steady or declines due to the
effects of behavior changes or interventions. We con-
sider both exponential and inverse decline functions to
model the size of consecutive sub-epidemics described
below.

Exponential decline of sub-epidemic sizes
If consecutive sub-epidemics follow
decline, then K; is given by:

exponential

K; = Koe 1071,
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where K, is the size of the initial sub-epidemic
(K1 =Kp). If g =0, the model predicts an epidemic
wave composed of sub-epidemics of the same size.
When g > 0, the epidemic wave is composed of a finite
number of sub-epidemics given by n,; which is a func-
tion of Cy,,, g, andK, as follows:

1 C
Hior = {—qln( [ézr> + IJ .

where the brackets | x| denote the largest integer that is
smaller than or equal to *. The total size of the epidemic
wave composed of 14, overlapping sub-epidemics has the
following closed-form solution:

K = S0 0 =

Ko(1 — e "ot
1—e1 '

The exponential sub-epidemic decline function can be
selected by setting the parameter <typedecline2>=1
in the options.mfile.

Power-law decline of sub-epidemic sizes
If consecutive sub-epidemics decline according to the
inverse function, we have:

1\4?
I(l' =I<() <> .
l

When q > 0, the total number of sub-epidemics
nzo comprising the epidemic wave is finite and given by:

_1
. = Cthr g
tot K (0 .

The total size of an epidemic wave is given by the aggre-
gation of n;,; overlapping sub-epidemics:

mo [ 1\?
Kot = Zi;;Ko(i) :

The power-law sub-epidemic decline function can be
selected by setting the parameter <typedecline2>=2
in the options.m file. Selecting the type of decline
function that yields the best fit to the data is also possible
by setting the parameter,

<typedecline2>=[1 2].

Fixed sub-epidemic onset

We can also consider sub-epidemic wave models with a
fixed onset time at 0. In this case, all sub-epidemics start
at time 0, and the threshold parameter C,, drops from
the model. We use parameter<onset fixed>in the
options.m file to specify whether the onset timing of
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the sub-epidemics is fixed at time 0 (Konset fixed>=1)
or not (Konset fixed>=0).

Top-ranked sub-epidemic models

To select the top-ranked sub-epidemic models, we ana-

lyze the Akaike information criterion (AIC,) values of the

set of best-fit sub-epidemic wave models with different

values of Cy,,. The AIC, is given by [25, 26]:

2 1

AIC, = —2log (likelihood) + 2m + 2mm+ 1)

ng—m-—1

where m is the number of model parameters, and n, is

the number of data points. Specifically for normal distri-

bution, the AIC, is

2m(m + 1)

AIC, = nylog(SSE) + 2m + )
ng—m-—1

where SSE = Z;Zl (f(tj, @) _J’t,)z is the sum of
squared errors, m is the number of model parameters
including parameter Cy,,. Parameter <topmodelsx> in
the options.mfile is used to specify the number of top-
ranked models that will be generated and used to derive
ensemble models.

To illustrate the methodology, we set<onset
fixed>=0, < typedecline?2>=2 (power-law decline)
and analyzed four top-ranking sub-epidemic models
(<topmodelsx>=4). The top-ranking models are used
to construct three ensemble sub-epidemic models, which

we refer to as: Ensemble(2), Ensemble(3), and Ensem-
ble(4) (Fig. 2).

Plotting simulations of the spatial wave sub-epidemic model

Before fitting the growth model to the data, it is useful to
check that the selected model yields simulations broadly
consistent with the range of the time series data by gen-
erating model simulations with different parameter val-
ues. For example, if data show systematic differences that
contrast with the model solutions, it may suggest that the
model is not the best choice for the data at hand.

The function plot SW subepidemic.m can be
used to plot model solutions where the user provides
the type of growth model by passing parameter <flagl>
(generalized-logistic growth model, Richards, Gompertz,
etc.), the model parameter values, and the initial condi-
tions as passing input parameters to the function in the
following order: <flagl>, r, p, a,K,q,n, Cy,,<type-
declinel>, C(0), and finally the duration of the
simulation. For example, the following call plots a simu-
lation of the spatial wave sub-epidemic model using as
building block the generalized logistic growth model
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o°

AN AN A

Spatial wave sub-epidemic model============>

oP o

npatches fixed=3; % maximum number of subepidemics considered in epidemic
wave model fit

topmodelsx=4; % number of best fitting models (based on AICc) that will be
generated to derive ensemble models
if npatches fixed==1 % if one sub-epidemic is employed, then there is
only one model

topmodelsx=1;
end

flagl=1l; % Type of growth model used to model a subepidemic

% 0 = GGM

$ 1 = GLM

% 2 = GRM

$ 3 =1M

% 4 = Richards

onset fixed=0; % flag to indicate if the onset timing of subepidemics
fixed at time 0 (onset fixed=1l) or not (onset fixed=0) .

typedecline2=2; % Type of functional declines that will be considered for
the sequential sub-epidemic sizes where l=exponential decline in
subepidemic size; 2=power-law decline in subepidemic size

Fig. 2 Contents of options.mfile the values of the parameters related to the sub-epidemic wave model and the number of top-ranked
sub-epidemic wave models

cthr=50 cthr=250
A B
40 30
2 220
G20 o
© T
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Time Time
cthr=45° Cthr=
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g 20 220
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Fig. 3 Four representative profiles of the spatial wave sub-epidemic model where the sub-epidemic building block is modeled using

the generalized logistic growth model and characterized by the following parameters:r = 0.18,p = 0.18,K = 1000,q = 0.24,n = 8,

and the Gy, value is varied with values: A 50, B 250, C 450, D 650. An exponential function is used to model the decline of sub-epidemic sizes
(<typedeclinel >=1).The solid black line corresponds to the overall aggregated curve whereas the individual sub-epidemics are shown
in different colors
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(<flagl >=1) and the following model parameter values:
r=0.18,p = 0.18, K = 1000,q = 0.24,n = 8,Cy;,, = 50 .
The initial condition C(0) = 5, and the total duration of
the simulation is set at 200.

>> plot SW subepidemic (1,0.18,0.9,[],1
000,0.24,8,50,1,5,200)

Of note, in the above call, the value of parameter a is
passed empty ([]) since the generalized logistic growth
model does not use this parameter. This function will
generate a figure (Fig. 3A) that shows the corresponding
model solution dC(t)/dt. Additional representative sim-
ulations with other values of the Cy,, are shown in Fig. 3.

In the next section, we describe four comprehensive
performance metrics that can be used to assess both
calibration and forecasting performance. Specifically, the
mean absolute error (MAE) and the mean squared error
(MSE) are used to assess the performance of point fore-
casts, while the coverage of the 95% prediction interval

Page 9 of 25

coverage of the 95% prediction interval (PI) corresponds
to the fraction of data points that fall within the 95% PI,
calculated as

N 1 N
95% Pl coverage = Zh:l WYy > Ly, N Yy, < Uy,)

where Ly and Uy, are the lower and upper bounds of the
95% Pls, respectively, Yy, are the data and 1 is an indicator
variable that equals 1 if Y},is in the specified interval and
0 otherwise.

The weighted interval score (WIS) [27, 29], which is a
proper score recently embraced for quantifying model
forecasting performance in epidemic forecasting stud-
ies [30-33], provides quantiles of predictive forecast dis-
tribution by combining a set of Interval Scores (IS) for
probabilistic forecasts. An IS is a simple proper score
that requires only a central (1 — «) x 100% PI [27] and is
described as

Bu(Fy) = Ge=D+ = x (1=9) x 1(y < D) + = x (y—u) x 1y > w).

(95% PI) and the weighted interval score (WIS) evaluate
the performance of distributional forecasts by accounting
for uncertainty in model fit and predictions.

Performance metrics

To assess the performance of the models during the cali-
bration or forecasting periods, we used four performance
metrics: the mean absolute error (MAE), the mean
squared error (MSE), the coverage of the 95% prediction
intervals (95% PI), and the weighted interval score (W1IS)
[27]. While it is possible to generate si-time units ahead
forecasts of an evolving process, those forecasts look-
ing into the future can only be evaluated until sufficient
data for the A-time units ahead has been collected. In
the options forecast.m file, the parameter <get-
performance>is a Boolean variable (0/1) to indicate
whether the user wishes to compute the performance
metrics of the forecasts when sufficient data is available.

The mean absolute error (MAE) is given by:

1 <N R
MAE = S V(th, @) —y,

where fjare the time points of the time series data [28],
and N is the calibration or forecasting period length.
Similarly, the mean squared error (MSE) is given by:

)

1 N ~ 9
MSE = ﬁzhzl(f(th’ @) _yth) )

where tjare the time points of the time series data [28],
and N is the calibration or forecasting period length. The

In this Eq. 1 refers to the indicator function, meaning that
1(y <!) =1if y < and 0 otherwise. The terms / and u
represent the 5 and 1 — 5 quantiles of the forecast F. The IS
consists of three distinct quantities:

1. The sharpness of F, given by the width u — [ of the cen-
tral (1 — ) x 100% PIL

2. A penalty term% x (I— y) x 1(y < I) for the obser-
vations that fall below the lower end point [ of the
(1 — ) x 100% PI. This penalty term is directly pro-
portional to the distance between y and the lower
end [ of the PI. The strength of the penalty depends
on the level a.

3. An analogous penalty term % X (y — u) X l(y > u)
for the observations falling above the upper limit # of
the PL

To provide more detailed and accurate infor-
mation on the entire predictive distribution,
we report several central PIs at different levels
1-a1) <@ _(32) < -+- < (1 — ag) along with the pre-
dictive median, ¥, which can be seen as a central predic-
tion interval at level 1 — g — 0. This is referred to as the
WIS, and it can be evaluated as follows:

K
1 ~
WiSeq (F,y) = T <w0.‘y— y‘ + > wedSe, (F y)>,
2 k=1

where, wy = o{Z—kfor k=12,....K and wy = % Hence,
WIS can be interpreted as a measure of how close the
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3rd Ranked Model

Kth Ranked Model

v

Fig. 4 Schematic diagram of the construction of the ensemble model from the weighted combination of the highest-ranking sub-epidemic

models as deemed by the AIC, for the k-th model where AIC,, < ---
is denoted by Ensemble(K)

entire distribution is to the observation in units on the
scale of the observed data [31, 34].

Doubling times

Doubling times characterize the sequence of times at
which the cumulative incidence doubles. We denote
the times at which cumulative incidence doubles by 4,
such that 2C(td/.) = C(td,-H) where z;, =0, C(fdo) = Co,
j=12,3,...,n; and ng is the total number of times
cumulative incidence doubles [35]. The actual sequence
of “doubling times” is defined as follows:

dj = Aty = tg, — tq,_ wherej =12,3,..., 1.

For exponential growth, doubling times remain invari-
ant and are given by (/n2)/r, whereas the doubling times
increase when the growth pattern follows sub-exponen-
tial growth [36]. We can characterize the doubling times
and their uncertainty from the best-fit model
f (t, @) [37]. We can evaluate the uncertainty of the

sequence of doubling times and the overall doubling time
using the model parameter estimates derived from boot-
strapping (@b), where b =1,2,3,...,B. That is, d; (@b)
provides a sequence of doubling times for a set of boot-
strap parameter estimates, ©,, where b=1,2,3,...,B.
We can use these curves to derive 95% Cls for the
sequence of doubling times and quantify the probability
of observing a given number of doublings.

< AlC,andk =1, ..., K An ensemble derived from the top-ranking K models

Constructing ensemble forecasts from top-ranking models
Ensemble models that combine the strength of multiple
models may exhibit significantly enhanced predictive
performance (e.g [11, 17, 38, 39]). An ensemble model
derived from the top-ranking I models is denoted by
the Ensemble(1), illustrated in Fig. 4. Thus, Ensemble(2)
and Ensemble(3) refer to the ensemble models generated
from the combination of the top-ranking 2 and 3 mod-
els, respectively. The ensemble models can be derived
from the unweighted (equal weights across contribut-
ing individual models) or a weighted combination of the
highest-ranking sub-epidemic models based on the qual-
ity of fit as deemed by the AIC_for the i-th model where
AIC, <---<AIC;andi=1,..., 1 In this case, we com-
pute the weight wifor the i-th model, i = 1, ..., I, where
> w; =1 as follows:

_1
aIc,,

wi = foralli=1,2,...,1,

1

1 1
AlC,, + alc,, +ot alc,,

and hencew; < ... < wy.
The estimated mean curve of daily COVID-19 cases for
the Ensemble(/) model is:

1

Jensny (1) = Z wifi (t, (:)(i)),

i=1
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% < >
% < Forecasting parameters ==============>

% < >
getperformance=1; % flag or indicator variable (1/0) to calculate
forecasting performance metrics or not

deletetempfiles=1; %flag or indicator variable (1/0) to indicate whether

we wan to delete Forecast..mat files after use

forecastingperiod=30; % forecast horizon (number of time units ahead)

% < >
& <=============== weighting scheme for ensemble model ===========>
% < >

weight typel=l; % -1= equally weighted from the top models, 0= weighted

ensemble based on AICc,
(Akaike weights),

()

calibration period (WISC).

1= weighted ensemble based on relative likelihood

% 2=weighted ensemble based on the weighted interval score of the

Fig.5 Contents of options forecast.mfile that specify the parameters related to the epidemic forecasts including the forecasting
horizon and the type of ensemble weights (e.g., unweighted, weighted based on AIC., weighted based on the relative likelihood of the models,

and weighted based on the WIS of the calibration period)

where given the training data, ©® denotes the set of
-\ (i
estimated parameters, and ﬁ(t, @) denotes the esti-

mated mean curve of daily COVID-19 cases, for the i-th
model. Accordingly, we compute the weighted average
and sample the bootstrap realizations of the forecasts for
each model to construct the 95% CI or PI using the 2.5%
and 97.5% quantiles [17]. Alternatively, we can set the
ensemble weights based on different calibration perfor-
mance metrics for the top-ranked models. For instance,
we can make the ensemble weights proportional to the
relative likelihood (/) rather than the reciprocal of the
AIC,. Let AIC,,;, denote the minimum AIC from the set
of models. The relative likelihood of model i is given by
I; = e(ACmin=AIC)/2) [40]. We compute the weight w; for
the i-th model where > w; = 1 as follows:

li

=—— foralli=1,2,...,1,
h+b+---+1

Wi
and hencew; < ... < wy.

In the options forecast.m file, we can specify
four types of ensemble weights using<weight typel>.
Specifically, unweighted (<weigth typel>=-1),
weighted according to the AIC,; (<kweight typel>=0),
weighted based on the relative likelihood (weight
typel=1), weighted based on the reciprocal of the WIS
metric of the calibration period (<weight typel>=2).

In the options forecast.m file, we can specify the
parameters related to the epidemic forecasts, including
the forecasting horizon and the type of ensemble weights
(Fig. 5).

Results and discussion
The dataset
The time series data file is a text file with the extension
*txt in the input folder. The data file can contain one or
more incidence time series (one per column). Each col-
umn corresponds to the incidence curve over time for
each epidemic corresponding to a different area/group.
For instance, each column could contain time series
data corresponding to different U.S. states or countries
worldwide. In the options.m file, a specific data col-
umn can be accessed for inference using the param-
eter<outbreakx>. If the time series file contains
cumulative incidence count data, the name of the file
containing the time series data starts with “cumulative”
according to the following format:

cumulative-< cadtemporal>-<caddisease>-
<datatype>-<cadregion>-<caddatel>.txt.

where <cadtemporal>is a string parameter that
indicates the temporal resolution of the data (e.g., daily,
weekly, yearly). Parameter <caddisease>is a string
used to indicate the name of the disease related to the
time series data, <datatype>is a string parameter
indicating the nature of the data (e.g., cases, deaths, and
hospitalizations), whereas <cadregion>is a string
parameter indicating the geographic region of the time
series contained in the file (New York, USA, World,
Asia, Africa). Finally, <caddatel>is a string to indi-
cate the date for the most recent observation in the
data file with the format: mm-dd-yyyy.

To illustrate the methodology presented in this tuto-
rial paper, we used daily COVID-19 cases reported in
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Fig. 6 Example data file named cumulative-daily-coronavirus-cases-USA-05-11-2020.

A partial view in Excel of the contents of the data file is shown

the USA from the publicly available data tracking sys-
tem of the Johns Hopkins Center for Systems Science
and Engineering (CSSE) [41]. The data is also publicly
available in the GitHub repository [42]. An example of
a data file that we will use in this tutorial is provided in
Fig. 6.

If the time series file contains incidence data, the
name of the data file does not start with the word
‘cumulative’ and follows the format:

<cadtemporal>-<caddisease>-
<datatype>-<cadregion>-<caddatel>.txt

For example: daily-coronavirus-cases-
USA-05-11-2020.txt

In the options.m file, the parameter<datevec-
first1>is a 3-value vector that specifies the date cor-
responding to the first data point in time series data
in the format: [yyyy mm dd]. Similarly, the param-
eter<datevecendl>is a 3-value vector that specifies
the date of the most recent data file in the format: [yyyy
mm dd]. The file.

txt located in the input folder.

cumulative-<cadtemporal>-<caddisease>-
<datatype>-<cadregion>-<datevecendl>.
txt

in the input folder with the date<datevecend1>con-
tains the most recent time series data and is needed
to assess forecast performance. Finally, the param-
eter<DT>is an integer indicating the temporal resolu-
tion of the time series data (e.g., <DT>=1 for daily data;
<DT> =7 for weekly data) (Fig. 7).

Data adjustments

Data smoothing

To reduce the noise in the original data due to artificial
reasons such as the weekend effects, we can smooth out
the time series data using the moving average of the time
series whereby<smoothfactorl>is a parameter in
the options.m file that specifies the span of the mov-
ing average (e.g., <smoothfactorl>=1 implies no
smoothing applied to the data). Let

Vg=Yt1.Vt2s -+ Vi, wherej =1,2,...,ny
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% < >
% < Datasets properties >
< >

oP o

Located in the input folder, the time series data file is a text file with the

extension *.txt. The data file can contain one or more incidence curves (one per

% column in the file). Each column corresponds to the number of new cases over time
for each epidemic corresponding to a different area/group.

% For instance, each column could correspond to different states in

% the U.S or countries in the world. In the options.m file, a specific data column
in the file can be accessed using the parameter <outbreakx> (see below) .

% if the time series file contains cumulative incidence count data, the name of the
time series data file starts with "cumulative" with the

% following format:

'cumulative-<cadtemporal>-<caddisease>-<datatype>-<cadregion>-<caddatel>.txt');
For example: 'cumulative-daily-coronavirus-deaths-USA-05-11-2020.txt"

% Otherwise, if the time series file contains incidence data, the name of the data

file follows the format:

o° o

<cadtemporal>-<caddisease>-<datatype>-<cadregion>-<caddatel>.txt'");
For example: 'daily-coronavirus-deaths-USA-05-11-2020.txt"'

cumulativel=1; % flag to indicate if the data file contains cumulative incidence
counts (cumulativel=1l) or not (cumulativel=0)

outbreakx=52; % identifier for the spatial area of interest

caddatel='05-11-2020"'; % data file time stamp in format: mm-dd-yyyy

cadregion='USA'; % string indicating the geographic region of the time series
contained in the file (Georgia, USA, World, Asia, Africa, etc.)

caddisease='coronavirus'; % string indicating the name of the disease related to

the time series data

datatype='cases'; % string indicating the nature of the data (cases, deaths,

hospitalizations, etc)

DT=1; % temporal resolution in days (l=daily data, 7=weekly data).

if DT==

cadtemporal='daily'; % string indicating the temporal resolution of the data

elseif DT==
cadtemporal="weekly';
end

datevecfirstl=[2020 02 27]; % date corresponding to the first data point in time
series data in format [year number month number day number]

datevecendl=[2021 05 31]; % date of the most recent data file in format
[year number month number day number]. This data file is accessed to assess

forecast performance.

Fig. 7 Contents of options.mfile, and the values of the parameters related to the data including the temporal resolution of the time series data

denote the smoothed time series of the epidemic tra-
jectory based on the moving average. Here, tjare the time
points for the time series data, #n, is the number of obser-
vations, and each Yt

j=12,...,n4 correspond to the smoothed time
series. We recommend that the user set the average to
multiples of seven to reduce the weekend effects in the
reported data.

For the daily COVID-19 case data employed for illus-
tration purposes, we set<smoothfactorl>=7 and
smooth out the daily series using a 7-day moving average
to reduce the noise in the original data due to artificial
reasons such as the weekend effects.

Calibration period
To fit the models to the most recent observations in a
time series file, we can specify the length of the calibra-
tion period whereby<calibrationperiodl>indi-
cates the number of recent data points that will be
used to calibrate the models. If<calibrationpe-
riodl>exceeds the length of the time series in the data
file, the calibration period is set to the maximum length
of the available data.

For illustration purposes, we used a 90-day calibration
period (i.e, <calibrationperiodl>=90) (Fig. 8).

Fitting the sub-epidemic wave models to data

with quantified uncertainty

To fit the sub-epidemic wave models to the data with
quantified uncertainty, we need to run the function
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g < >
% < Adjustments to data >
% < >

[}

smoothfactorl=7; % The span of the moving average smoothing of the case

series

)

(smoothfactorl=1 indicates no smoothing)

calibrationperiodl=90; % calibrates model using the most recent
<calibrationperiodl> data points where <calibrationperiod> does not excee
the length of the time series data otherwise it will use the maximum

length of the data

Fig. 8 Contents of options.mfile the values of the parameters related to smoothing and calibration period

Run_ SW subepidemicFramework.m. This func-
tion uses the input parameters provided by the user in
the options.m file. However, the function can also
receive<outbreakx>and <caddatel>as passing
input parameters while the remaining inputs are obtained
from the options.mfile.

For example, to fit the ensemble sub-epidemic mod-
els to the daily curve of COVID-19 cases in the USA
as of the week of ‘05-11-2020" (data file path: input/
cumulative-daily-coronavirus-cases-
USA-05-11-2020. txt), we can run the function from
MATLAB’s command line window as follows:

>>Run_SW subepidemicFramework(52, ‘05~
11-2020")

This function will generate several output MATLAB
files in the output folder. For instance, the following out-
put file contains the fits of the top-ranking models:

ABC-original-npatchesfixed-4-on-
setfixed-0-typedecline-2-smoothing-
l-daily-coronavirus-cases-USA-state-
52-05-11-2020-flagl-1-method-0-dist-
O-calibrationperiod-90.mat

Please note that the names of the output files contain
the values of the parameters for reference.

The following output files contain the uncertainty char-
acteristics associated with each of the top-ranking models:

a) modifiedLogisticPatch-original-
npatchesfixed-4-onsetfixed-0-ty-
pedecline-2-smoothing-1l-daily-
coronavirus-cases-USA-state-
52-05-11-2020-flagl-1-method-0-dist-
O-calibrationperiod-90-rank-1.mat

b) modifiedLogisticPatch-original-
npatchesfixed-4-onsetfixed-0-ty-
pedecline-2-smoothing-1-daily-
coronavirus-cases-USA-state-
52-05-11-2020-flagl-1-method-0-dist-
O-calibrationperiod-90-rank-2.mat

¢) modifiedLogisticPatch-original-
npatchesfixed-4-onsetfixed-0-ty-
pedecline-2-smoothing-1-daily-
coronavirus-cases-USA-state-
52-05-11-2020-flagl-1-method-0-dist-
O-calibrationperiod-90-rank-3.mat

d) modifiedLogisticPatch-original-
npatchesfixed-4-onsetfixed-0-ty-
pedecline-2-smoothing-1-daily-
coronavirus-cases-USA-state-
52-05-11-2020-flagl-1-method-0-dist-
O-calibrationperiod-90-rank-4.mat

These output internal files are needed to plot model
fits, derive parameter estimates, generate short-term
forecasts, and quantify the calibration and forecasting
performance metrics.

Plot the mean model fits and quality of fit metrics
for the top-ranked models
After running the function Run_ SW_ subepidemic
Framework.m with the desired input parameters, we
can use the function plotRankings SW_subepidemic
Framework.m to plot the mean model fits of the top-ranking
models including their sub-epidemic profiles and the associ-
ated quality of model fit metrics including the AIC,, the rela-
tive likelihood, and the evidence ratio based on the inputs.
However, this function can also receive<outbreakx>and
<caddatel>as passing input parameters while the remain-
ing inputs are obtained from the options.m file. Running
this function from MATLAB's command line, we have:
>>plotRankings_SW_subepidemicFrame-
work (52, '05-11-2020")

Figures 9 and 10 illustrate the outputs obtained from
this function call. Figure 9 shows the mean model fits of
the top-ranked sub-epidemic models, which indicates
that the 1st-ranked model consists of 3 sub-epidemics.
In contrast, the 2nd, 3rd, and 4th -ranked sub-epidemic
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Fig. 9 Mean model fits of the top-ranked sub-epidemic models (< topmodelsx>=4 in options.mfile) calibrated to the daily curve

of COVID-19 cases in the USA from 27-Feb-2020 to 11-May-2020. The solid lines of blue, red, and green correspond to the individual sub-epidemic
curves. The solid black line represents the overall aggregated epidemic curve. The legend in each panel indicates the number of sub-epidemics
involved in each model and the value of the Cyy parameter
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Fig. 11 Fit of the Tst-ranked sub-epidemic wave model to the daily curve of COVID-19 cases in the USA from 27-Feb-2020 to 11-May-2020.

The model captures the entire epidemic period well, including the broad peak dynamics, by integrating three asynchronous sub-epidemics.

The best model fit (solid red line) and 95% prediction interval (dashed red lines) are shown. The cyan curves correspond to the associated
uncertainty from individual bootstrapped curves, which are used to derive the 95% prediction intervals. The sub-epidemic mean profiles obtained
from the parametric bootstrapping with 300 bootstrap realizations are shown in the center panels. The red, blue, and green curves represent

the three sub-epidemic profiles, and the grey curves are the estimated aggregate epidemic trajectories. Black circles correspond to the data points.
The empirical distributions of the parameters and the corresponding estimates are shown in the top panels. The residuals are also shown

models consist of 2 sub-epidemics. It is important to note
that there was severe underreporting of cases during the
early phase of the epidemic. The corresponding goodness
of fit statistics of the top-ranked models, including the
AIC,, the relative likelihood, and the evidence ratio, are
shown in Fig. 10. It also saves the AIC, values of the top-
ranked models in the following .csv file:

AICc-topRanked-onsetfixed-0-ty-
pedecline-2-flagl-l-method-0-dist-
0O-daily-coronavirus-cases-USA-
area-52-05-11-2020.csv.

For comparison, a simpler growth model consisting of
a single sub-epidemic (<npatches fixed>=1) per-
forms substantially worse (AIC, = 1530.4; Supplemen-
tary Fig. 1).

Plot the model fits, parameter estimates,

and performance metrics of the top-ranking
models

Using the function plotFit SW subepidemic
Framework.m, we can plot the fits of the top-ranking
models, including their sub-epidemic profiles, parameter
estimates, and residual plots based on the inputs indicated
in the options.m file. However, this function can also
receive <outbreakx>and <caddatel>as passing input
parameters while the remaining inputs are obtained from
the options.mfile.

In addition, this function also plots the empirical dis-
tributions of the parameters associated with each of the
top-ranking models and the calibration performance
metrics (MSE, MAE, 95% PI., and WIS). Finally, this
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Fig. 12 Fit of the 2nd-ranked sub-epidemic wave model to the daily curve of COVID-19 cases in the USA from 27-Feb-2020 to 11-May-2020.

The model captures the entire epidemic period well, including the broad peak dynamics, by integrating three asynchronous sub-epidemics.

The best model fit (solid red line) and 95% prediction interval (dashed red lines) are shown. The cyan curves correspond to the associated
uncertainty from individual bootstrapped curves, which are used to derive the 95% prediction intervals. The sub-epidemic mean profiles obtained
from the parametric bootstrapping with 300 bootstrap realizations are shown in the center panels. The red, blue, and green curves represent

the two sub-epidemic profiles, and the grey curves are the estimated aggregate epidemic trajectories. Black circles correspond to the data points.
The empirical distributions of the parameters and the corresponding estimates are shown in the top panels. The residuals are also shown

function also outputs .csv files in the output folder with
the calibration performance metrics, the parameter esti-
mates associated with the top-ranking models, the corre-
sponding Monte Carlo standard errors of the parameters,
and the estimated sequence of doubling times for each of
the top-ranked models. Using the default parameter val-
ues indicated in the options.m file, the actual call to
this function from MATLAB’s command line follows:
>>plotFit_SW_subepidemicFramework
Figures 11 and 12 illustrate the outputs from the above
call to the function. The fits of the 1st and 2nd ranked
sub-epidemic models, including the sub-epidemic pro-
files and residuals, to the daily curve of COVID-19
cases are shown in Figs. 11 and 12. These models yield
a similarly good fit to the data. The figures also include
the empirical distribution of the parameter estimates.
These parameter estimates are well identified as the con-
fidence intervals lie in a well-defined range of values [13].
The calibration performance metrics capturing the qual-
ity of fit of the top-ranked sub-epidemic models are also

displayed in Fig. 13. For instance, this figure indicates
that the coverage of the 95% Pls varied little between
~93% and 95% for the top-ranked models. This function
will store the following .csv files in the output folder:

1) Model parameter estimates:

parameters-topRanked-onsetfixed-
O-typedecline-2-flagl-1l-method-
0-dist-0-daily-coronavirus-cases-
USA-area—-52-05-11-2020.csv

2) Monte Carlo standard errors:

MCSES-topRanked-onsetfixed-0-type-
decline-2-flagl-l-method-0-dist-
O-daily-coronavirus-cases-USA-
area-52-05-11-2020.csv
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Fig. 13 Calibration performance metrics for the top-ranking sub-epidemic wave models fit to the daily curve of COVID-19 cases in the USA

from 27-Feb-2020 to 11-May-2020. These metrics are also saved in a .csv data file (*performance-calibration-topRanked-onsetfixed
-0-typedecline-3-flagl-1-method-0-dist-0-horizon-30-daily-coronavirus-cases-USA-area-52-05-11-2020-
.csv’). For instance, these WIS metrics during the calibration period ranged from ~ 119.7 to ~ 124.8 across the four top-ranked models

3) Calibration performance metrics: doublingTimes-ranked (3) -onsetfixed-0-ty-
pedecline-2-flagl-1-method-0-dist-
0O-daily-coronavirus-cases-USA-
area-52-05-11-2020.csv
doublingTimes-ranked(4) -onsetfixed-
O-typedecline-2-flagl-l-method-
0-dist-0-daily-coronavirus-cases-
USA-area-52-05-11-2020.csv

performance-calibration-topRanked-
onsetfixed-0-typedecline-2-flagl-
l-method-0-dist-0-daily-coronavi-
rus-cases-USA-area-52-05-11-2020.
csv

A relevant issue to investigate when using any math-
ematical model is that of structural or practical param-
eter identifiability [43]. Structural identifiability arises

4) Doubling times for each of the top-ranked models:

doublingTimes-ranked (1) -onsetfixed- when one or more model parameters cannot be uniquely
0-typedecline-2-flagl-l-method- estimated using the model, even when the data is free
0-dist-0-daily-coronavirus-cases- of noise. That is, a lack of structural identifiability is due
USA-area-52-05-11-2020.csv to issues in the model structure, such as the presence of
doublingTimes-ranked (2) -onsetfixed- parameter correlations [12]. On the other hand, practi-
0-typedecline-2-flagl-l-method- cal identifiability occurs when one or more parameters
0-dist-0-daily-coronavirus-cases- cannot be reliably estimated using the available observed

USA-area-52-05-11-2020.csv data, which could be associated with the number of
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obtained by aggregating the individual sub-epidemic curves. The vertical line indicates the start time of the forecast and separates the calibration

Fig. 15 Sub-epidemic profiles of the 30-day forecasts derived from the top-ranking sub-epidemic models fit to the daily curve of COVID-19 cases
and forecast periods

in the USA from 11-May-2020 to 10-June-2020. The epidemic wave's sub-epidemic mean curves obtained from the parametric bootstrapping
with 300 bootstrap realizations are shown in red, blue, green, and magenta. The gray curves correspond to the overall epidemic trajectory
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observations available for model calibration and the
spatial-temporal resolution of the data. Because the time
series of incident cases in the observed epidemic wave is
an aggregation of overlapping sub-epidemics, there could
be instances when different sub-epidemic profiles may
give rise to indistinguishable aggregated epidemic waves
as noted elsewhere [44].

Generate the top-ranked and ensemble sub-epidemic
model forecasts and the associated forecasting
performance metrics
UsingthefunctionplotForecast SW subepidemic
Framework.m, we can plot the short-term fore-
casts from the top-ranking sub-epidemic models and
the ensemble models derived from the top-ranking
sub-epidemic models based on the inputs indicated
in the options.m and the options forecast.m
files. However, this function can also receive parame-
ters<outbreakx>, <caddatel>, or <forecasting
period>as passing input parameters while the remain-
ing inputs are read from the options.m and options_
forecast.m files. Moreover, the data associated with each
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top-ranked model and ensemble forecasts are saved as
.csv files in the output folder.

In addition, this function also plots the forecasting per-
formance metrics (MSE, MAE, 95% P.I., WIS) for the top-
ranking models and the ensemble sub-epidemic wave
models. Finally, this function also stores *.csv files in the
output folder with the forecasting performance metrics
associated with the top-ranking and ensemble models,
and the estimated doubling times for each of the top-
ranked models. Using the default parameter values indi-
cated in the options.m, and options forecast.m
files, the call to this function from MATLAB’s command
line follows:

>>plotForecast subepidemicFramework

Figures 14 and 15 illustrate the outputs obtained from
this function call. Figure 14 shows the 30-day forecasts
derived from the top-ranking sub-epidemic models,
whereas Fig. 15 shows the sub-epidemic profiles of the
forecasts. These forecasts indicate that the 1st-ranked
model outperformed the other top-ranked models.
Moreover, the data associated with the top-ranked model
forecasts are also saved as .csv files in the output folder.

MSE
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Fig. 16 30-day forecasting performance metrics derived from the top-ranking sub-epidemic models for the daily curve of COVID-19 cases
in the USA from 11-May-2020 to 11-June-2020. The forecasting performance metrics are also saved in a .csv data file in the output folder (‘per
formance-forecasting-topRanked-onsetfixed-0-typedecline-2-flag 1-1-method-0-dist-0-horizon-30-weight_type-1-daily-coronavirus-cases-

USA-area-52-05-11-2020.csv’)
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Fig. 17 30-day sub-epidemic ensemble model forecasts (Ensemble(2), Ensemble(3), Ensemble(4)) of COVID-19 cases in the USA from 11-May-2020
to 11-June-2020. Circles correspond to the data points. The model fits (solid line), and 95% prediction intervals (shaded area) are shown. The vertical
line indicates the start time of the forecast. Of note, the data associated with each ensemble model forecast are also saved as .csv files in the output

folder

The forecasting performance metrics for the top-ranked
models are displayed in Fig. 16, and these metrics are
also saved in a .csv file in the output folder. In com-
parison, the forecast derived from the simpler growth
model consisting of a single sub-epidemic (<npatches
fixed>=1) was substantially worse, as shown in Supple-
mentary Fig. 2.

The corresponding 3 ensemble forecasts (Ensem-
ble(2), Ensemble(3), and Ensemble(4)) derived from the
weighted combination of the top-ranked models based
on their relative likelihood or Akaike weights (e.g., <
weight typel>=1 in the options forecast.m
file) are shown in Fig. 17. Also, the corresponding fore-
casting performance metrics for the ensemble models are
shown in Fig. 18 and are saved in a .csv file in the output
folder. The Ensemble(4) performed slightly better than
the Ensemble(2) and Ensemble(3) models in terms of the
WIS and coverage of the 95% prediction interval. This
function will store the following .csv files in the output
folder:

1) Forecasting performance metrics of the top-ranked
models:

performance-forecasting-topRanked-
onsetfixed-0-typedecline-2-flagl-
l-method-0-dist-0-horizon-
30-daily-coronavirus-cases-USA-
area-52-05-11-2020.csv

2) Forecasting performance metrics of the ensemble models:

performance-forecasting-Ensem-
ble-onsetfixed-0-typedecline-
2-flagl-1-method-0-dist-0-horizon-
30-weight type-l-daily-coronavirus-
cases-USA-area-52-05-11-2020.csv

3) Forecasts of the top-ranked models:

ranked (1) -onsetfixed-0-typedecline-
2-flagl-1-method-0-dist-0-horizon-
30-daily-coronavirus-cases-USA-
area-52-05-11-2020.csv

ranked (2) -onsetfixed-0-typedecline-
2-flagl-l-method-0-dist-0-horizon-
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Fig. 18 30-day forecasting performance metrics derived from the sub-epidemic ensemble models for the daily curve of COVID-19 cases in the USA
from 11-May-2020 to 11-June-2020. The performance metrics are also saved in a .csv data file in the output folder (‘performance-forecasting-Ensem
ble-onsetfixed-0-typedecline-2-flag1-1-method-0-dist-0-horizon-30-weight_type-1-daily-coronavirus-cases-USA-area-52-05-11-2020.csv')

30-daily-coronavirus-cases-USA- dist-0-horizon-30-weight type-
area-52-05-11-2020.csv l-daily-coronavirus-cases-USA-
ranked (3) -onsetfixed-0-typedecline- area-52-05-11-2020.csv

2-flagl-l-method-0-dist-0-horizon- Ensemble (4)-onsetfixed-0-ty-
30-daily-coronavirus-cases-USA- pedecline-2-flagl-l-method-0-
area-52-05-11-2020.csv dist-0-horizon-30-weight type-
ranked (4) -onsetfixed-0-typedecline- l-daily-coronavirus-cases-USA-
2-flagl-l-method-0-dist-0-horizon- area-52-05-11-2020.csv

30-daily-coronavirus-cases-USA-

-52-05-11-2020.
ared esv 5) Sequence of doubling times of the top-ranked mod-

els:
4) Forecasts of the ensemble models:

doublingTimes-ranked(1l) -onsetfixed-

Ensemble (2)-onsetfixed-0-ty- O-typedecline-2-flagl-l-method-
pedecline-2-flagl-1l-method-0- 0-dist-0-horizon-30-daily-corona-
dist-0-horizon-30-weight type- virus-cases-USA-area-52-05-11-2020.
l-daily-coronavirus-cases-USA- csv

area-52-05-11-2020.csv doublingTimes-ranked(2) -onsetfixed-
Ensemble (3)-onsetfixed-0-ty- 0O-typedecline-2-flagl-l-method-

pedecline-2-flagl-1l-method-0- 0-dist-0-horizon-30-daily-corona-
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Table 2 Forecasting performance metrics derived from the weighted and unweighted ensemble models, an auto-regressive
integrated moving average model (ARIMA), a generalized additive model (GAM), and simple linear regression model (SLR) based on
the daily curve of COVID-19 cases in the USA from 11-May-2020 to 11-June-2020. The weights of the weighted ensemble model are
based on relative likelihood. Overall, both ensemble types performed similarly for this forecast, and outperformed the simple statistical

models

Model Forecasting period MAE MSE Coverage 95% PI WIS
Weighted Ensemble(2) 30 4716.01 30200654.24 66.67 3156.50
Unweighted Ensemble(2) 30 4662.00 29686078.76 66.67 3169.62
Weighted Ensemble(3) 30 522991 36934107.63 60.00 3490.51
Unweighted Ensemble(3) 30 5262.52 37441993.33 60.00 3482.98
Weighted Ensemble(4) 30 502332 32564946.12 76.67 2926.13
Unweighted Ensemble(4) 30 4836.87 30807937.90 76.67 294291
ARIMA 30 7560.80 77139741.86 90.00 411839
GAM 30 8345.23 94188590.40 50.00 5466.92
SLR 30 23380.65 58381755048 0.00 21739.18

virus-cases-USA-area-52-05-11-2020.
csv
doublingTimes-ranked (3) —onsetfixed-0-ty-
pedecline-2-flagl-l-method-0-dist-
O-horizon-30-daily-coronavirus-
cases-USA-area-52-05-11-2020.csv
doublingTimes-ranked (4) doublingTimes-
-onsetfixed-0-typedecline-2-flagl-
l-method-0-dist-0-horizon-
30-daily-coronavirus-cases-USA-
area-52-05-11-2020.csv

6) Sequence of doubling times of the ensemble models:

doublingTimes-Ensemble (2) -onset-
fixed-0-typedecline-2-flagl-1-method-
0O-dist-0-horizon-30-weight type-
l-daily-coronavirus-cases-USA-
area-52-05-11-2020.csv

doublingTimes-Ensemble (3) -onset-
fixed-0-typedecline-2-flagl-1-method-
0O-dist-0-horizon-30-weight type-
l-daily-coronavirus-cases-USA-
area-52-05-11-2020.csv

doublingTimes-Ensemble (4) -onset-
fixed-0-typedecline-2-flagl-1-method-
0O-dist-0-horizon-30-weight type-
l-daily-coronavirus-cases-USA-
area-52-05-11-2020.csv

We can also compare the performance of unweighted
ensemble models by setting the parameter <weight
typel>=-1 in the options_forecast.m file while the
other parameters are kept unchanged. Then we can
compare the performance of the unweighted ensemble

models (equal weights across top-ranked models) with
the weighted ensemble models, where the weights are
proportional to the relative likelihood of the mod-
els (<kweight typel>=1). We can run the function
plotForecast subepidemicFramework.m to
generate the new set of forecasts with the new models.
The forecasting performance metrics for the weighted
and unweighted ensemble models and other statistical
time-series models are displayed in Table 2. Overall, the
unweighted ensemble models performed similarly as
their weighted ensemble counterparts for this forecast
and outperformed some popular statistical time-series
models such as ARIMA (a brief description of the sta-
tistical models is given in Supplementary Text S3).

Conclusion

We have introduced a MATLAB toolbox to fit and fore-
cast time series using the spatial wave sub-epidemic
model originally developed to generate short-term fore-
casts of epidemics [13] and illustrated its functional-
ity using time-series data of the COVID-19 pandemic
in the US. In particular, the sub-epidemic model used
in this tutorial has shown competitive performance in
characterizing and forecasting epidemic trajectories
of infectious diseases such as COVID-19, Ebola, and
plague [13, 15]. The toolbox can be a helpful resource for
policy makers and used as a part of the curriculum for
students training in infectious disease modeling, math-
ematical biology, applied statistics and mathematics, and
special courses in epidemic modeling and time-series
forecasting.

This new open-source toolbox and associated tuto-
rial will be helpful to a broad community of applied
scientists interested in characterizing and forecasting
time-series data that results from the aggregation of



Chowell et al. BMC Medical Research Methodology (2024) 24:131

multiple asynchronous underlying growth processes.
Moreover, prior publications have extensively validated
the tools presented here [13, 15]. The models and meth-
ods included in the toolbox have improved short-term
forecasting performance over simpler growth models
such as the Richards and generalized-logistic growth
models. Moreover, we have ensured publicly available,
long-term, and stable hosting of the toolbox in a pub-
lic GitHub repository. Extensions to the toolbox could
include additional components, such as new model fea-
tures, alternative estimation methods, and additional
forecasting performance metrics.

Availability and requirements

Project name: Forecasting growth trajectories using
the ensemble spatial wave sub-epidemic modeling
framework.

Project home page: https://github.com/gchowell/spati
al_wave_subepidemic_framework Operating system(s):
Platform independent.

Programming language: MATLAB.

Other requirements: NA.

License: This program is free software: it can be redis-
tributed or modified under the GNU Public License as
published by the Free Software Foundation, version 3 of
the License.

Any restrictions to use by non-academics: None.

Abbreviations
AlC Akaike Information Criterion

ARIMA  Auto Regressive Integrated Moving Average
CSSE Center for System Science and Engineering
cl Confidence Interval

GLM Generalized Logistic growth Model

IS Interval Score

MAE Mean Absolute Error

MLE Maximum Likelihood

MSE Mean Squared Error

ODE Ordinary Differential Equations
Pl Prediction Interval

USA United States of America

WIS Weighted Interval Score
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