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Abstract 

Background Dynamical mathematical models defined by a system of differential equations are typically not easily 
accessible to non-experts. However, forecasts based on these types of models can help gain insights into the mecha-
nisms driving the process and may outcompete simpler phenomenological growth models. Here we introduce 
a friendly toolbox, SpatialWavePredict, to characterize and forecast the spatial wave sub-epidemic model, which cap-
tures diverse wave dynamics by aggregating multiple asynchronous growth processes and has outperformed simpler 
phenomenological growth models in short-term forecasts of various infectious diseases outbreaks including SARS, 
Ebola, and the early waves of the COVID-19 pandemic in the US.

Results This tutorial-based primer introduces and illustrates a user-friendly MATLAB toolbox for fitting and fore-
casting time-series trajectories using an ensemble spatial wave sub-epidemic model based on ordinary differential 
equations. Scientists, policymakers, and students can use the toolbox to conduct real-time short-term forecasts. The 
five-parameter epidemic wave model in the toolbox aggregates linked overlapping sub-epidemics and captures 
a rich spectrum of epidemic wave dynamics, including oscillatory wave behavior and plateaus. An ensemble strat-
egy aims to improve forecasting performance by combining the resulting top-ranked models. The toolbox provides 
a tutorial for forecasting time-series trajectories, including the full uncertainty distribution derived through parametric 
bootstrapping, which is needed to construct prediction intervals and evaluate their accuracy. Functions are available 
to assess forecasting performance, estimation methods, error structures in the data, and forecasting horizons. The 
toolbox also includes functions to quantify forecasting performance using metrics that evaluate point and distribu-
tional forecasts, including the weighted interval score.

Conclusions We have developed the first comprehensive toolbox to characterize and forecast time-series data using 
an ensemble spatial wave sub-epidemic wave model. As an epidemic situation or contagion occurs, the tools pre-
sented in this tutorial can facilitate policymakers to guide the implementation of containment strategies and assess 
the impact of control interventions. We demonstrate the functionality of the toolbox with examples, including a tuto-
rial video, and is illustrated using daily data on the COVID-19 pandemic in the USA.
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Background
 Developing reliable methods for forecasting dynamic 
growth processes is critical for decision-making in prob-
lems ranging from predicting the weather, forecast-
ing the trajectory of an emerging epidemic, the growth 
or decline of economic variables, election outcomes, 
and sporting events [1]. While statistical methods such 
as ARIMA and exponential smoothing are robust and 
broadly competitive for forecasting time series [2–6], 
dynamical mathematical models defined by a system of 
differential equations are typically not easily accessible 
to non-experts. However, forecasts based on these types 
of models can help characterize the mechanisms driving 
the process [7]. They may offer higher forecasting perfor-
mance than purely statistical approaches based on statis-
tical evaluation criteria like mean absolute and squared 
errors [8–11]. Here we focus on dynamical models that 
can characterize growth processes that give rise to waves 
of variable shapes and sizes [12–14]. The complexity of 
this family of growth models ranges from single differen-
tial equation models with a few parameters, such as the 
3-parameter generalized-logistic growth model (GLM) 
[14], to systems of ordinary differential equations (ODEs) 
that capture diverse wave dynamics by aggregating mul-
tiple asynchronous growth processes [13]. The spatial 
wave sub-epidemic framework has outperformed simpler 
phenomenological growth models in forecasts of vari-
ous infectious diseases, including severe acute respira-
tory syndrome (SARS), Ebola, and the early waves of the 
coronavirus disease 2019 (COVID-19) pandemic in the 
United States (US) [13, 15].

This tutorial paper introduces a user-friendly MAT-
LAB toolbox to fit and forecast time-series trajectories 
using the spatial wave sub-epidemic dynamic growth 
model based on ordinary differential equations, which 
was initially developed to characterize and derive short-
term forecasts of epidemic trajectories [13, 16]. This 
mathematical framework characterizes time-series tra-
jectories by aggregating multiple asynchronous growth 
processes. Each growth process (i.e., sub-epidemic) 
is modeled using a simple phenomenological growth 
model such as the generalized logistic growth model 
(GLM). This framework supports a family of growth 
models that yield similar fits to the calibration data, but 
their corresponding forecasts could produce diverse 
trajectories. Hence, we also incorporate ensemble tech-
niques to combine the resulting models to boost fore-
casting performance [16, 17].

This toolbox is written for a diverse audience, includ-
ing students training in time-series forecasting. It allows 
the user to conduct parameter estimation and forecasting 
with quantified uncertainty and evaluate forecasting per-
formance using a set of standard metrics, including the 

coverage of the 95% prediction interval and the weighted 
interval score, which account for the uncertainty of the 
predictions. The toolbox allows scientists and policymak-
ers to generate short-term forecasts by relying on mini-
mal data of the process of interest, such as an unfolding 
epidemic or natural disaster.

The toolbox provides prediction intervals and allows 
the user to employ different estimation methods, 
assumptions of the error structure, and forecasting hori-
zons. For instance, the toolbox includes estimation meth-
ods such as the nonlinear least squares estimation and 
maximum likelihood estimation (MLE) with different 
assumptions about the error structure of the observed 
data, including Poisson, negative binomial, and nor-
mal distributions, as well as quantification of the uncer-
tainty based on a parametric bootstrapping approach. 
The model also provides flexibility to choose the under-
lying building block of the growth process. In addition, 
the toolbox includes functions to derive weighted and 
unweighted ensembles based on the resulting top-ranked 
models. The full functionality of the toolbox is illustrated 
using daily time series of COVID-19 cases in the US, and 
in the process, shows that this framework outcompetes 
simpler single growth models and simple time-series 
models (e.g., ARIMA, GAM, SLR) in calibration and 
forecasting performance.

We start by describing the format of the input time-
series data, followed by the methods employed for 
parameter estimation. Next, we describe the underly-
ing methodology, user parameters, and functions to 
calibrate, evaluate, and display the model fits. Finally, we 
introduce the functions to generate, display, and quantify 
the performance of model-based forecasts with specific 
examples in the context of the daily COVID-19 case data 
reported in the USA. A tutorial video that demonstrates 
the toolbox functionality is available at: https:// www. 
youtu be. com/ watch?v= qxuF_ tTzcR 8&t= 47s.

Implementation
In this section, we describe the methods implemented in 
this toolbox and provide a brief overview of the toolbox 
functions.

Installing the toolbox

• Download the MATLAB code located in the folder 
spatialWave_subepidemicFramework code from 
the GitHub repository: https:// github. com/ gchow ell/ 
spati al_ wave_ subep idemic_ frame work.

• Create an ‘input’ folder in your working directory 
where your input data will be stored.

• Create an ‘output’ folder in your working directory 
where the output files will be stored.

https://www.youtube.com/watch?v=qxuF_tTzcR8&t=47s
https://www.youtube.com/watch?v=qxuF_tTzcR8&t=47s
https://github.com/gchowell/spatial_wave_subepidemic_framework
https://github.com/gchowell/spatial_wave_subepidemic_framework
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• Open a MATLAB session.

Overview of the toolbox functions
The methodological workflow of the tutorial is organ-
ized as follows: (1) plotting model simulations, (2) fitting 
the models to data with quantified uncertainty, (3) plot-
ting the resulting model fits and calibration performance 
metrics, and (4) plotting model-based forecasts and the 
associated forecasting performance metrics. Table 1 and 
Supplementary Table  1 list the names of both user and 
internal functions associated with the toolbox, along with 
a brief description of their role. As described below, the 
user needs to specify the parameters related to model fit-
ting and forecasting in the default options_fit.m and 
options_forecast.m files.

Parameter estimation method
Let f (t,�)  denote the expected curve of the epidem-
ic’s trajectory. We can estimate model parameters 
� by fitting the model solution to the observed data 
via nonlinear least squares [18] or maximum likeli-
hood estimation with specific assumptions about the 
error structure in the data [19] by specifying param-
eter <method1> in the options.m file. For nonlin-
ear least squares (i.e., <method1>=0), this is achieved 
by searching for the set of parameters Θ that minimizes 
the sum of squared differences between the smoothed 
data ytj=yt1,yt2 . . . .ytnd

 and the model mean, corre-
sponding to f (t,�) . That is, � = (Cthr , r, p, q,K0) in the 
sub-epidemic wave model (given below) is estimated 
by �̂ = argmin

∑nd
j=1 (f

(
tj ,�

)
− ytj )

2 . We estimate the 
parameter Cthr through simple discretization of its range 

of plausible values. Our estimation procedure consists 
of two steps. First, for each Cthr , we search for the set of 
parameters (r, p, q,K0) that yield the best fit to the data. 
Then we choose Cthrand the corresponding estimates 
of other parameters leading to the overall best-fit to the 
data.

Nonlinear least squares estimation weighs each of 
the data points equally and does not explicitly require a 
specific distributional assumption for yt , except for the 
first moment E[yt ] = f (ti;Θ) . That is, the mean of the 
observed data at time t is equivalent to the expected 
count denoted by f (t,�) at time t [20]. This method 
yields asymptotically unbiased point estimates regardless 
of any misspecification of the variance-covariance error 
structure. Hence, the estimated model mean f (ti, �̂) 
yields the best fit to observed data yti in terms of squared 
L2 norm. We can solve the nonlinear least squares opti-
mization problem using the fmincon function in MAT-
LAB. Moreover, we also employ MATLAB’s MultiStart 
feature to specify the number of random initial guesses of 
the model parameters using the parameter <numstart-
points> in the options.m file in order to search thor-
oughly for a global minimum, check that the solution is 
unique, and the parameters are identifiable.

We can also estimate parameters via maximum likeli-
hood estimation (MLE) [19] and assume different error 
structures in the data (e.g., Poisson, negative binomial). 
The log-likelihood expressions derived for different error 
structures are specified below.

Poisson
For a Poisson error structure, the full log-likelihood of 
Poisson (i.e., <method1>=1) is given by:

Table 1 Description of the user functions available in the SpatialWavePredict toolbox

Function Role

options.m Specifies the parameters related to model fitting, including the characteristics of the time series data, 
the sub-epidemic model, parameter estimation method, error structure, smoothing, and calibration 
period. The structure of the options.m file is given in Supplementary Text 1.

options_forecast.m Specifies the parameters related to the forecast, including the forecasting period, the type of ensem-
ble weight for the ensemble models, and whether the forecasts will be evaluated. The structure 
of the options_forecast.m file is given in Supplementary Text 2.

plot_SW_subepidemic.m Plots simulations of the spatial wave sub-epidemic model.

Run_SW_subepidemicFramework.m Derives the top-ranking sub-epidemic wave models to data with quantified uncertainty.
plotRankings_SW_
subepidemicFramework.m

Plots the mean model fits of the top-ranking models, including their sub-epidemic profiles, 
and the associated quality of model fit metrics, including the AICc, the relative likelihood, and the evi-
dence ratio.

plotFit_SW_
subepidemicFramework.m

Displays the model fit and 95% prediction interval, as well as the empirical distribution of the param-
eters. It also saves output .csv files in the output folder with the model fit, the parameter estimates, 
including 95% CIs, and the calibration performance metrics.

plotForecast_SW_
subepidemicFramework.m

Displays the model-based forecast and the performance metrics of the forecast. Moreover, the data 
associated with the forecasts, the parameter estimates, as well as the calibration and forecasting 
performance metrics are saved as .csv files in the output folder.
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where µi = f (ti, θ) denotes the mean of yi at time ti . The 
number of parameters is just the number of parameters 
estimated in the dynamical model based on ordinary dif-
ferential equations.

Negative binomial
Let r > 0 denote the number of failures until the experi-
ment is stopped, p ∈ [0, 1] denote the success probability 
in each experiment. The number of successes y before the 
r-th failure occurs has a negative binomial distribution 
given by:

with mean = µ =
rp

(1−p) , variance = σ 2 =
rp

(1−p)2
> µ . 

For n observations y1, . . . , yn , the full log-likelihood is

which can be expressed with µ and σ2 by plugging-in 
p = 1− µ

σ2
 and r = µ2

σ 2−µ
.

There are different types of variances commonly 
used in a negative binomial distribution. If the vari-
ance scales linearly with the mean: σ 2 = µ+ αµ , (i.e., 
<method1> = 3 in options.m), then p = α

1+α
 and 

r = µ/α . Let µ = f (t, θ) be the mean curve to be esti-
mated from the differential equation. The full log-likeli-
hood (1.1) can be expressed as follows:

n∑

i=1

{
yiln(µi)− ln(yi!)− µi

}
,

f
(
y|r, p

)
=

(
r + y− 1

y

)
py(1− p)r =

1

y!

∏y−1

j=0

(
j + r

)
.py(1− p)r

(1.1)l(r, p) =
∑n

i=1

{{∑yi−1

j=0
ln(j + r)

}
+ yiln(pi)+ rln(1− pi)− ln(yi!)

}
,

(1.2)l(θ ,α) =
∑n

i=1

{{∑yi−1

j=0
ln(j + α−1f (ti, θ))

}
+ yiln(α)− (yi + α−1f (ti, θ))ln(1+ α)− ln(yi!)

}
.

If the variance scales quadratically with the mean, 
σ 2 = µ+ αµ2 (i.e., <method1>=4 in options.m), 
then p =

αµ
1+αµ

and r = 1/α . The full log-likelihood (1.1) 
can be expressed as follows:

The more general form of variance is σ 2 = µ+ αµd 
(i.e., <method1>=5 in options.m) with any 
−∞ < d < ∞ . Then the full log-likelihood (1.1) can be 
expressed as follows:

where µi = f (ti, θ).

The number of parameters is 1 plus the number of 
parameters in the dynamical model based on ordinary 
differential equations (ODE) for (1.2) ~ (1.3), and 2 plus 
the number of parameters in the dynamical model for 
(1.4) if d is also estimated via MLE. Assuming Poisson 
or negative binomial error structures in the data, we can 
estimate parameters using MLE by specifying param-
eters in the options.m file, such as <method1>=1 & 
<dist1>=1 for Poisson and <method1> & <dist1>=3, 
<method1>=4 & <dist1>=4, and <method1>=5 & 
<dist1> = 5 for the different negative binomial error 
structures described above.

Parametric bootstrapping
To quantify parameter uncertainty, we follow a para-
metric bootstrapping approach which allows the com-
putation of standard errors and related statistics in the 
absence of closed-form formulas [21]. We generate 
B bootstrap samples from the best-fit model f (t, Θ̂) , 
with an assumed error structure specified using param-
eter <dist1> in the options.m file to quantify the 
uncertainty of the parameter estimates and construct 

(1.3)l(θ ,α) =
∑n

i=1

{{∑yi−1

j=0
ln(j + α−1)

}
+ yiln

(
αf

(
ti, θ))− (yi + α−1)ln(1+ αf (ti, θ))− ln(yi!)

}
.

(1.4)l(θ ,α) =
∑n

i=1

[{∑yi−1

j=0
ln(j + α−1µi

2−d)

}
+ yiln

(
αµi

d−1
)
− (yi + α−1µi

2−d)ln(1+ αµi
d−1)− ln(yi!)

]
,
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confidence intervals. Typically, the error structure in the 
data is modeled using a probability model such as the 
Poisson or negative binomial distribution. Using nonlin-
ear least squares (< method1> = 0), besides a normally 
distributed error structure (<dist1> = 0), we can also 
assume a Poisson (<dist1> = 1) or a negative binomial 
distribution (<dist1> = 2) whereby the variance-to-
mean ratio is empirically estimated from the time series. 
To estimate this constant ratio, we group a fixed number 
of observations (e.g., 7 observations for daily data into 
a bin across time), calculate the mean and variance for 
each bin, and then estimate a constant variance-to-mean 
ratio by calculating the average of the variance-to-mean 
ratios over these bins.

Using the best-fit model f (t, Θ̂) , we generate B-times 
replicated simulated datasets of size nd , where the obser-
vation at time tj is sampled from the corresponding distri-
bution specified by <dist1>. Next, we refit the model to 
each of the B simulated datasets to re-estimate the 
parameters using the same estimation method for the 
bootstrap sample as for the original data. This allows us 
to quantify the uncertainty of the estimate using that 
method. The new parameter estimates for each realiza-
tion are denoted by �̂b , where b = 1,2, . . . ,B . Using the 
sets of re-estimated parameters ( ̂�b ), it is possible to 
characterize the empirical distribution of each estimate, 
calculate the variance, and construct confidence intervals 
for each parameter. The resulting uncertainty around the 
model fit can similarly be obtained from f

(
t, �̂1

)
,

f
(
t, �̂2

)
, . . . , f (t, �̂B) . We characterize the uncertainty 

using 300 bootstrap realizations (i.e., parameter 
<B> = 300 in the options.m file).

Model‑based forecasts with quantified uncertainty
Forecasting the model f

(
t, �̂

)
, h days ahead is based on 

the estimate f (t + h, �̂) . The uncertainty of the fore-
casted value can be obtained using the previously 
described parametric bootstrap method. Let

denote the forecasted value of the current state of the 
system propagated by a horizon of h time units, where 
�̂b denotes the estimation of parameter set � from the 
bth bootstrap sample. We can use these values to calcu-
late the bootstrap variance to measure the uncertainty of 
the forecasts and use the 2.5% and 97.5% percentiles to 
construct the 95% prediction intervals (95% PIs). We can 
set the forecasting horizon using the parameter <fore-
castingperiod1> in the options_forecast.m 

f
(
t + h, �̂1

)
, f
(
t + h, �̂2

)
, . . . , f (t + h, �̂B)

file. The structure of the options_forecast.m file is 
described in Supplementary Text 2.

For the COVID-19 case data employed for illustra-
tion purposes, we fit the models by the nonlinear least 
squares method assuming a normal error structure 
(i.e., <method1>=0 and <dist1>=0) (Fig. 1).

Sub‑epidemic wave model
We use a spatial wave model with up to 5 parameters that 
aggregate linked overlapping sub-epidemics [13]. This 
sub-epidemic framework can characterize diverse epi-
demic patterns, including the epidemic plateaus, where 
the epidemic stabilizes at a high level for an extended 
period and the epidemic waves have multiple peaks. The 
strength (e.g., weak vs. strong) of their overlap determines 
when the next sub-epidemic is triggered and is controlled 
by the onset threshold parameter, Cthr . The mathemati-
cal equation for the sub-epidemic building block is the 
3-parameter generalized-logistic growth model (GLM), 
which is specified by setting the parameter <flag1>=1 in 
the options.m file. This growth model has performed 
well in short-term forecasts of single outbreak trajecto-
ries for different infectious diseases, including COVID-
19 [22–24]. Alternative growth equations to model the 
sub-epidemic building block include the 3-parameter 
Richards model (<flag1>=4) and the 2-parameter logis-
tic growth model (<flag1>=2). The following differen-
tial equation gives the generalized-logistic growth model 
(GLM):

where C(t) denotes the cumulative curve at time t, and 
dC(t)
dt

 describes the epidemic’s incidence curve over time 
t. The positive parameter r denotes the growth rate per 
unit of time, K0 is the final outbreak size, and p ∈ [0,1] 
is the “scaling of growth” parameter which allows the 
model to capture early sub-exponential and exponential 
growth patterns. If p = 0 , this equation describes a con-
stant incidence over time, while p = 1 indicates that the 
early growth phase is exponential. Intermediate values of 
p(0 < p < 1) describe early sub-exponential (e.g., poly-
nomial) growth dynamics. The sub-epidemic wave model 
consists of a system of coupled differential equations:

Here, Ci(t) is the cumulative number of infections for 
sub-epidemic i , and Ki is the size of the ith sub-epidemic 
where i = 1, . . . , n . Starting from an initial sub-epidemic 
size K0 , the size of consecutive sub-epidemics Ki decline 

dC(t)

dt
= C ′(t) = rCp(t)

(
1−

C(t)

K0

)
,

dCi(t)

dt
= rAi−1(t)Ci(t)

p

(
1−

Ci(t)

Ki

)
.
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at the rate q following an exponential or power-law func-
tion as described below. Hence, a total of 5 parameters 
(r, p,Cthr , q,K 0) for i = 1, . . . , n are needed to charac-
terize a sub-epidemic wave composed of two or more 
sub-epidemics.

The onset timing of the subsequent (i + 1)th sub-epi-
demic is determined by the indicator variable Ai(t) . This 
results in a coupled system of sub-epidemics where the 
(i + 1)th  sub-epidemic is triggered when the cumulative 
curve for the ith sub-epidemic exceeds a total of Cthr . The 
sub-epidemics overlap because the ( i + 1)thsub-epidemic 
takes off before the ith sub-epidemic completes its course. 
That is,

The threshold parameters are defined so that 1 
≤ Cthr < K0  and A0(t) = 1 for the first sub-epidemic. 

Ai(t) =

{
1 Ci(t) > Cthr

0 Otherwise
, i = 1, 2, . . . , n− 1.

The maximum number of sub-epidemics considered in 
the epidemic wave trajectory is specified using parameter 
<npatches_fixed> in the options.m file. Here, we 
set <npatches_fixed>=3. The initial number of cases 
is given by C1(0) = I0 , where I0  is the initial number of 
cases in the observed data.

In this framework, the size of the subsequent ith sub-
epidemic ( Ki ) remains steady or declines due to the 
effects of behavior changes or interventions. We con-
sider both exponential and inverse decline functions to 
model the size of consecutive sub-epidemics described 
below.

Exponential decline of sub‑epidemic sizes
If consecutive sub-epidemics follow exponential 
decline, then Ki is given by:

Ki = K0e
−q(i−1),

Fig. 1 Contents of options.m file, the values of the parameters related to the parameter estimation method and parametric bootstrapping



Page 7 of 25Chowell et al. BMC Medical Research Methodology          (2024) 24:131  

where K0 is the size of the initial sub-epidemic 
(K 1 = K0) . If q = 0 , the model predicts an epidemic 
wave composed of sub-epidemics of the same size. 
When q > 0 , the epidemic wave is composed of a finite 
number of sub-epidemics given by ntot which is a func-
tion of Cthr , q, andK 0 as follows:

where the brackets ⌊∗⌋ denote the largest integer that is 
smaller than or equal to ∗ . The total size of the epidemic 
wave composed of ntot overlapping sub-epidemics has the 
following closed-form solution:

The exponential sub-epidemic decline function can be 
selected by setting the parameter <typedecline2>=1 
in the options.m file.

Power‑law decline of sub‑epidemic sizes
If consecutive sub-epidemics decline according to the 
inverse function, we have:

When q > 0 , the total number of sub-epidemics 
ntot comprising the epidemic wave is finite and given by:

The total size of an epidemic wave is given by the aggre-
gation of ntot overlapping sub-epidemics:

The power-law sub-epidemic decline function can be 
selected by setting the parameter <typedecline2> = 2 
in the options.m file. Selecting the type of decline 
function that yields the best fit to the data is also possible 
by setting the parameter,
<typedecline2>=[1 2].

Fixed sub‑epidemic onset
We can also consider sub-epidemic wave models with a 
fixed onset time at 0. In this case, all sub-epidemics start 
at time 0, and the threshold parameter Cthr drops from 
the model. We use parameter <onset_fixed> in the 
options.m file to specify whether the onset timing of 

ntot =

⌊
−
1

q
ln

(
Cthr

K0

)
+ 1

⌋
.

Ktot =
∑ntot

i=1
K0e

−q(i−1) =
K0(1− e−qntot )

1− e−q
.

Ki = K0

(
1

i

)q

.

ntot =

⌊(
Cthr

K0

)− 1
q

⌋
.

Ktot =
∑ntot

i=1
K0

(
1

i

)q

.

the sub-epidemics is fixed at time 0 (<onset_fixed>=1) 
or not (<onset_fixed>=0).

Top‑ranked sub‑epidemic models
To select the top-ranked sub-epidemic models, we ana-
lyze the Akaike information criterion ( AICc ) values of the 
set of best-fit sub-epidemic wave models with different 
values of Cthr . The AICc is given by [25, 26]:

where m is the number of model parameters, and nd is 
the number of data points. Specifically for normal distri-
bution, the AICc is

where SSE =
∑nd

j=1 (f
(
tj , �̂

)
− ytj )

2
 is the sum of 

squared errors, m is the number of model parameters 
including parameter Cthr . Parameter <topmodelsx> in 
the options.m file is used to specify the number of top-
ranked models that will be generated and used to derive 
ensemble models.

To illustrate the methodology, we set <onset_
fixed>=0, < typedecline2 > = 2 (power-law decline) 
and analyzed four top-ranking sub-epidemic models 
(<topmodelsx> = 4). The top-ranking models are used 
to construct three ensemble sub-epidemic models, which 
we refer to as: Ensemble(2), Ensemble(3), and Ensem-
ble(4) (Fig. 2).

Plotting simulations of the spatial wave sub‑epidemic model
Before fitting the growth model to the data, it is useful to 
check that the selected model yields simulations broadly 
consistent with the range of the time series data by gen-
erating model simulations with different parameter val-
ues. For example, if data show systematic differences that 
contrast with the model solutions, it may suggest that the 
model is not the best choice for the data at hand.

The function plot_SW_subepidemic.m can be 
used to plot model solutions where the user provides 
the type of growth model by passing parameter <flag1> 
(generalized-logistic growth model, Richards, Gompertz, 
etc.), the model parameter values, and the initial condi-
tions as passing input parameters to the function in the 
following order: <flag1>, r , p , a,K , q, n,Cthr ,<type-
decline1>, C(0) , and finally the duration of the 
simulation. For example, the following call plots a simu-
lation of the spatial wave sub-epidemic model using as 
building block the generalized logistic growth model 

AICc = −2log(likelihood)+ 2m+
2m(m+ 1)

nd −m− 1
,

AICc = ndlog(SSE)+ 2m+
2m(m+ 1)

nd −m− 1
,
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Fig. 2 Contents of options.m file, the values of the parameters related to the sub-epidemic wave model and the number of top-ranked 
sub-epidemic wave models

Fig. 3 Four representative profiles of the spatial wave sub-epidemic model where the sub-epidemic building block is modeled using 
the generalized logistic growth model and characterized by the following parameters: r = 0.18, p = 0.18, K = 1000, q = 0.24, n = 8 , 
and the Cthr value is varied with values: A 50, B 250, C 450, D 650. An exponential function is used to model the decline of sub-epidemic sizes 
(< typedecline1 >=1). The solid black line corresponds to the overall aggregated curve whereas the individual sub-epidemics are shown 
in different colors
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(< flag1 > = 1) and the following model parameter values: 
r = 0.18, p = 0.18,K = 1000, q = 0.24, n = 8,Cthr = 50  . 
The initial condition C(0) = 5 , and the total duration of 
the simulation is set at 200.
>> plot_SW_subepidemic (1,0.18,0.9,[],1

000,0.24,8,50,1,5,200)
Of note, in the above call, the value of parameter a is 

passed empty ([]) since the generalized logistic growth 
model does not use this parameter. This function will 
generate a figure (Fig. 3A) that shows the corresponding 
model solution dC(t)/dt . Additional representative sim-
ulations with other values of the Cthr are shown in Fig. 3.

In the next section, we describe four comprehensive 
performance metrics that can be used to assess both 
calibration and forecasting performance. Specifically, the 
mean absolute error (MAE) and the mean squared error 
(MSE) are used to assess the performance of point fore-
casts, while the coverage of the 95% prediction interval 

(95% PI) and the weighted interval score (WIS) evaluate 
the performance of distributional forecasts by accounting 
for uncertainty in model fit and predictions.

Performance metrics
To assess the performance of the models during the cali-
bration or forecasting periods, we used four performance 
metrics: the mean absolute error (MAE), the mean 
squared error (MSE), the coverage of the 95% prediction 
intervals (95% PI), and the weighted interval score (WIS) 
[27]. While it is possible to generate h-time units ahead 
forecasts of an evolving process, those forecasts look-
ing into the future can only be evaluated until sufficient 
data for the h-time units ahead has been collected. In 
the options_forecast.m file, the parameter <get-
performance> is a Boolean variable (0/1) to indicate 
whether the user wishes to compute the performance 
metrics of the forecasts when sufficient data is available.

The mean absolute error (MAE) is given by:

where thare the time points of the time series data [28], 
and N is the calibration or forecasting period length. 
Similarly, the mean squared error (MSE) is given by:

where thare the time points of the time series data [28], 
and N is the calibration or forecasting period length. The 

MAE =
1

N

∑N

h=1

∣∣∣f
(
th, Θ̂

)
− yth

∣∣∣,

MSE =
1

N

∑N

h=1
(f
(
th, Θ̂

)
− yth)

2,

coverage of the 95% prediction interval (PI) corresponds 
to the fraction of data points that fall within the 95% PI, 
calculated as

where Lthand Uth are the lower and upper bounds of the 
95% PIs, respectively, Ythare the data and 1 is an indicator 
variable that equals 1 if Yth is in the specified interval and 
0 otherwise.

The weighted interval score (WIS) [27, 29], which is a 
proper score recently embraced for quantifying model 
forecasting performance in epidemic forecasting stud-
ies [30–33], provides quantiles of predictive forecast dis-
tribution by combining a set of Interval Scores (IS) for 
probabilistic forecasts. An IS is a simple proper score 
that requires only a central (1− α)× 100% PI [27] and is 
described as

In this Eq. 1 refers to the indicator function, meaning that 
1
(
y < l

)
= 1 if y < l and  0 otherwise. The terms  l and u 

represent the α
2
 and 1− α

2
 quantiles of the forecast F. The IS 

consists of three distinct quantities:

1. The sharpness of F , given by the width u− l of the cen-
tral (1− α)× 100% PI.

2. A penalty term 2
α
×

(
l − y

)
× 1

(
y < l

)
 for the obser-

vations that fall below the lower end point l of the 
(1− α)× 100% PI. This penalty term is directly pro-
portional to the distance between y and the lower 
end l of the PI. The strength of the penalty depends 
on the level α.

3. An analogous penalty term 2
α
×

(
y− u

)
× 1

(
y > u

)
 

for the observations falling above the upper limit u of 
the PI.

To provide more detailed and accurate infor-
mation on the entire predictive distribution, 
we report several central PIs at different levels 
(1− α1) < (1− α2) < · · · < (1− αK ) along with the pre-
dictive median, 

∼
y , which can be seen as a central predic-

tion interval at level 1− α0 → 0 . This is referred to as the 
WIS, and it can be evaluated as follows:

where, wk =
αk
2

for k = 1,2, . . . .K  and w0 =
1
2
 . Hence, 

WIS can be interpreted as a measure of how close the 

95% PI coverage =
1

N

∑N

h=1
1{Yth > Lth ∩ Yth < Uth }

ISα
(
F , y

)
= (u− l)+

2

α
×

(
l − y

)
× 1

(
y < l

)
+

2

α
×

(
y− u

)
× 1

(
y > u

)
.

WISα0:K
(
F , y

)
=

1

K + 1
2

.

(
w0.

∣∣∣y−
∼
y
∣∣∣+

K∑

k=1

wk .ISαk
(
F , y

)
)
,
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entire distribution is to the observation in units on the 
scale of the observed data [31, 34].

Doubling times
Doubling times characterize the sequence of times at 
which the cumulative incidence doubles. We denote 
the times at which cumulative incidence doubles by tdj , 
such that 2C(tdj ) = C(tdj+1

) where td0 = 0,C
(
td0

)
= C0 , 

j = 1,2, 3, . . . , ng and ng  is the total number of times 
cumulative incidence doubles [35]. The actual sequence 
of “doubling times” is defined as follows:

For exponential growth, doubling times remain invari-
ant and are given by (ln2)/r , whereas the doubling times 
increase when the growth pattern follows sub-exponen-
tial growth [36]. We can characterize the doubling times 
and their uncertainty from the best-fit model 
f
(
t, �̂

)
  [37]. We can evaluate the uncertainty of the 

sequence of doubling times and the overall doubling time 
using the model parameter estimates derived from boot-
strapping 

(
�̂b

)
 , where b = 1,2, 3, . . . ,B . That is, dj

(
�̂b

)
 

provides a sequence of doubling times for a set of boot-
strap parameter estimates, �̂b , where b = 1,2, 3, . . . ,B . 
We can use these curves to derive 95% CIs for the 
sequence of doubling times and quantify the probability 
of observing a given number of doublings.

dj = ∆tdj = tdj − tdj−1
where j = 1,2, 3, . . . , ng .

Constructing ensemble forecasts from top‑ranking models
Ensemble models that combine the strength of multiple 
models may exhibit significantly enhanced predictive 
performance (e.g [11, 17, 38, 39]). An ensemble model 
derived from the top-ranking I models is denoted by 
the Ensemble(1), illustrated in Fig. 4. Thus, Ensemble(2) 
and Ensemble(3) refer to the ensemble models generated 
from the combination of the top-ranking 2 and 3 mod-
els, respectively. The ensemble models can be derived 
from the unweighted (equal weights across contribut-
ing individual models) or a weighted combination of the 
highest-ranking sub-epidemic models based on the qual-
ity of fit as deemed by the AICcifor the i-th model where 
AICc1 ≤ · · · ≤ AICcI and i = 1, …, I. In this case, we com-
pute the weight wifor the i-th model, i = 1, …, I, where ∑

wi = 1 as follows:

and hence wI ≤ . . .≤ w1.
The estimated mean curve of daily COVID-19 cases for 

the Ensemble(I) model is:

wi =

1
AICci

1
AICc1

+
1

AICc2
+ · · · +

1
AICcI

for all i = 1,2, . . . , I ,

fens(I)(t) =

I∑

i=1

wifi

(
t, �̂(i)

)
,

Fig. 4 Schematic diagram of the construction of the ensemble model from the weighted combination of the highest-ranking sub-epidemic 
models as deemed by the AICck for the k-th model where AICc1 ≤ · · · ≤ AICcK and k = 1, …, K. An ensemble derived from the top-ranking K  models 
is denoted by Ensemble(K)
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where given the training data, �̂(i)  denotes the set of 
estimated parameters, and fi

(
t, �̂

)(i)
  denotes the esti-

mated mean curve of daily COVID-19 cases, for the i-th 
model. Accordingly, we compute the weighted average 
and sample the bootstrap realizations of the forecasts for 
each model to construct the 95% CI or PI using the 2.5% 
and 97.5% quantiles [17]. Alternatively, we can set the 
ensemble weights based on different calibration perfor-
mance metrics for the top-ranked models. For instance, 
we can make the ensemble weights proportional to the 
relative likelihood ( l ) rather than the reciprocal of the 
AICc . Let AICmin denote the minimum AIC from the set 
of models. The relative likelihood of model i is given by 
li = e((AICmin−AICi)/2) [40]. We compute the weight wi for 
the i-th model where 

∑
wi = 1 as follows:

and hence wI ≤ . . .≤ w1.
In the options_forecast.m file, we can specify 

four types of ensemble weights using <weight_type1>. 
Specifically, unweighted (<weigth_type1>=-1), 
weighted according to the AICc (<weight_type1>=0), 
weighted based on the relative likelihood (weight_
type1=1), weighted based on the reciprocal of the WIS 
metric of the calibration period (<weight_type1>=2).

In the options_forecast.m file, we can specify the 
parameters related to the epidemic forecasts, including 
the forecasting horizon and the type of ensemble weights 
(Fig. 5).

wi =
li

l1 + l2 + · · · + lI
foralli = 1,2, . . . , I ,

Results and discussion
The dataset
The time series data file is a text file with the extension 
*.txt in the input folder. The data file can contain one or 
more incidence time series (one per column). Each col-
umn corresponds to the incidence curve over time for 
each epidemic corresponding to a different area/group. 
For instance, each column could contain time series 
data corresponding to different U.S. states or countries 
worldwide. In the options.m file, a specific data col-
umn can be accessed for inference using the param-
eter <outbreakx>. If the time series file contains 
cumulative incidence count data, the name of the file 
containing the time series data starts with “cumulative” 
according to the following format:

cumulative-< cadtemporal>-<caddisease>-
<datatype>-<cadregion>-<caddate1>.txt.

where <cadtemporal> is a string parameter that 
indicates the temporal resolution of the data (e.g., daily, 
weekly, yearly). Parameter <caddisease> is a string 
used to indicate the name of the disease related to the 
time series data, <datatype> is a string parameter 
indicating the nature of the data (e.g., cases, deaths, and 
hospitalizations), whereas <cadregion> is a string 
parameter indicating the geographic region of the time 
series contained in the file (New York, USA, World, 
Asia, Africa). Finally, <caddate1> is a string to indi-
cate the date for the most recent observation in the 
data file with the format: mm-dd-yyyy.

To illustrate the methodology presented in this tuto-
rial paper, we used daily COVID-19 cases reported in 

Fig. 5 Contents of options_forecast.m file, that specify the parameters related to the epidemic forecasts including the forecasting 
horizon and the type of ensemble weights (e.g., unweighted, weighted based on AICc , weighted based on the relative likelihood of the models, 
and weighted based on the WIS of the calibration period)
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the USA from the publicly available data tracking sys-
tem of the Johns Hopkins Center for Systems Science 
and Engineering (CSSE) [41]. The data is also publicly 
available in the GitHub repository [42]. An example of 
a data file that we will use in this tutorial is provided in 
Fig. 6.

If the time series file contains incidence data, the 
name of the data file does not start with the word 
‘cumulative’ and follows the format:
< c a d t e m p o r a l > - < c a d d i s e a s e > -

<datatype>-<cadregion>-<caddate1>.txt
For example: daily-coronavirus-cases-

USA-05-11-2020.txt
In the options.m file, the parameter <datevec-

first1> is a 3-value vector that specifies the date cor-
responding to the first data point in time series data 
in the format: [yyyy mm dd]. Similarly, the param-
eter <datevecend1> is a 3-value vector that specifies 
the date of the most recent data file in the format: [yyyy 
mm dd]. The file.

cumulative-<cadtemporal>-<caddisease>-
<datatype>-<cadregion>-<datevecend1>.
txt

in the input folder with the date <datevecend1> con-
tains the most recent time series data and is needed 
to assess forecast performance. Finally, the param-
eter <DT> is an integer indicating the temporal resolu-
tion of the time series data (e.g., <DT> = 1 for daily data; 
<DT> = 7 for weekly data) (Fig. 7).

Data adjustments
Data smoothing
To reduce the noise in the original data due to artificial 
reasons such as the weekend effects, we can smooth out 
the time series data using the moving average of the time 
series whereby <smoothfactor1> is a parameter in 
the options.m file that specifies the span of the mov-
ing average (e.g., <smoothfactor1> = 1 implies no 
smoothing applied to the data). Let

ytj=yt1,yt2 , . . . , ytnd
where j = 1,2, . . . , nd

Fig. 6 Example data file named cumulative-daily-coronavirus-cases-USA-05-11-2020.txt located in the input folder. 
A partial view in Excel of the contents of the data file is shown
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denote the smoothed time series of the epidemic tra-
jectory based on the moving average. Here, tjare the time 
points for the time series data, nd is the number of obser-
vations, and each ytj ,
j = 1, 2, . . . , nd , correspond to the smoothed time 

series. We recommend that the user set the average to 
multiples of seven to reduce the weekend effects in the 
reported data.

For the daily COVID-19 case data employed for illus-
tration purposes, we set <smoothfactor1> = 7 and 
smooth out the daily series using a 7-day moving average 
to reduce the noise in the original data due to artificial 
reasons such as the weekend effects.

Calibration period
To fit the models to the most recent observations in a 
time series file, we can specify the length of the calibra-
tion period whereby <calibrationperiod1> indi-
cates the number of recent data points that will be 
used to calibrate the models. If <calibrationpe-
riod1> exceeds the length of the time series in the data 
file, the calibration period is set to the maximum length 
of the available data.

For illustration purposes, we used a 90-day calibration 
period (i.e., <calibrationperiod1> = 90) (Fig. 8).

Fitting the sub‑epidemic wave models to data 
with quantified uncertainty
To fit the sub-epidemic wave models to the data with 
quantified uncertainty, we need to run the function 

Fig. 7 Contents of options.m file, and the values of the parameters related to the data including the temporal resolution of the time series data
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Run_SW_subepidemicFramework.m. This func-
tion uses the input parameters provided by the user in 
the options.m file. However, the function can also 
receive <outbreakx> and <caddate1> as passing 
input parameters while the remaining inputs are obtained 
from the options.m file.

For example, to fit the ensemble sub-epidemic mod-
els to the daily curve of COVID-19 cases in the USA 
as of the week of ‘05-11-2020’ (data file path: input/
cumulative-daily-coronavirus-cases-
USA-05-11-2020.txt), we can run the function from 
MATLAB’s command line window as follows:
>> Run_SW_subepidemicFramework (52,‘05- 

11-2020’)
This function will generate several output MATLAB 

files in the output folder. For instance, the following out-
put file contains the fits of the top-ranking models:
ABC-original-npatchesfixed-4-on-

setfixed-0-typedecline-2-smoothing-
1-daily-coronavirus-cases-USA-state-
52-05-11-2020-flag1-1-method-0-dist-
0-calibrationperiod-90.mat

Please note that the names of the output files contain 
the values of the parameters for reference.

The following output files contain the uncertainty char-
acteristics associated with each of the top-ranking models:

a) modifiedLogisticPatch-original-
npatchesfixed-4-onsetfixed-0-ty-
pedecline-2-smoothing-1-daily-
c o r o n a v i r u s - c a s e s - U S A - s t a t e -
52-05-11-2020-flag1-1-method-0-dist-
0-calibrationperiod-90-rank‑1.mat

b) modifiedLogisticPatch-original-
npatchesfixed-4-onsetfixed-0-ty-
pedecline-2-smoothing-1-daily-
c o r o n a v i r u s - c a s e s - U S A - s t a t e -
52-05-11-2020-flag1-1-method-0-dist-
0-calibrationperiod-90-rank‑2.mat

c) modifiedLogisticPatch-original-
npatchesfixed-4-onsetfixed-0-ty-
pedecline-2-smoothing-1-daily-
c o r o n a v i r u s - c a s e s - U S A - s t a t e -
52-05-11-2020-flag1-1-method-0-dist-
0-calibrationperiod-90-rank‑3.mat

d) modifiedLogisticPatch-original-
npatchesfixed-4-onsetfixed-0-ty-
pedecline-2-smoothing-1-daily-
c o r o n a v i r u s - c a s e s - U S A - s t a t e -
52-05-11-2020-flag1-1-method-0-dist-
0-calibrationperiod-90-rank‑4.mat

These output internal files are needed to plot model 
fits, derive parameter estimates, generate short-term 
forecasts, and quantify the calibration and forecasting 
performance metrics.

Plot the mean model fits and quality of fit metrics 
for the top‑ranked models
After running the function Run_SW_subepidemic 
Framework.m with the desired input parameters, we  
can use the function plotRankings_SW_subepidemic 
Framework.m to plot the mean model fits of the top-ranking 
models including their sub-epidemic profiles and the associ-
ated quality of model fit metrics including the AICc , the rela-
tive likelihood, and the evidence ratio based on the inputs. 
However, this function can also receive <outbreakx> and 
<caddate1> as passing input parameters while the remain-
ing inputs are obtained from the options.m file. Running 
this function from MATLAB’s command line, we have:
>>plotRankings_SW_subepidemicFrame-

work(52,‘05-11-2020’)
Figures  9 and 10 illustrate the outputs obtained from 

this function call. Figure 9 shows the mean model fits of 
the top-ranked sub-epidemic models, which indicates 
that the 1st-ranked model consists of 3 sub-epidemics. 
In contrast, the 2nd, 3rd, and 4th -ranked sub-epidemic 

Fig. 8 Contents of options.m file, the values of the parameters related to smoothing and calibration period
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Fig. 9 Mean model fits of the top-ranked sub-epidemic models (< topmodelsx>=4 in options.m file) calibrated to the daily curve 
of COVID-19 cases in the USA from 27-Feb-2020 to 11-May-2020. The solid lines of blue, red, and green correspond to the individual sub-epidemic 
curves. The solid black line represents the overall aggregated epidemic curve. The legend in each panel indicates the number of sub-epidemics 
involved in each model and the value of the Cthrparameter

Fig. 10 Quality of model fit metrics for the top-ranked sub-epidemic models (<topmodelsx>=4 in options.m file) calibrated to the daily 
curve of COVID-19 cases in the USA from 27-Feb-2020 to 11-May-2020
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models consist of 2 sub-epidemics. It is important to note 
that there was severe underreporting of cases during the 
early phase of the epidemic. The corresponding goodness 
of fit statistics of the top-ranked models, including the 
AICc , the relative likelihood, and the evidence ratio, are 
shown in Fig. 10. It also saves the AICc values of the top-
ranked models in the following .csv file:
AICc-topRanked-onsetfixed-0-ty-

pedecline-2-flag1-1-method-0-dist-
0 - d a i l y - c o r o n a v i r u s - c a s e s - U S A -
area-52-05-11-2020.csv.

For comparison, a simpler growth model consisting of 
a single sub-epidemic (<npatches_fixed> = 1) per-
forms substantially worse ( AICc = 1530.4 ; Supplemen-
tary Fig. 1).

Plot the model fits, parameter estimates, 
and performance metrics of the top‑ranking 
models
Using the function plotFit_SW_subepidemic 
Framework.m, we can plot the fits of the top-ranking 
models, including their sub-epidemic profiles, parameter 
estimates, and residual plots based on the inputs indicated 
in the options.m file. However, this function can also 
receive <outbreakx> and <caddate1> as passing input 
parameters while the remaining inputs are obtained from 
the options.m file.

In addition, this function also plots the empirical dis-
tributions of the parameters associated with each of the 
top-ranking models and the calibration performance 
metrics (MSE, MAE, 95% P.I., and WIS). Finally, this 

Fig. 11 Fit of the 1st-ranked sub-epidemic wave model to the daily curve of COVID-19 cases in the USA from 27-Feb-2020 to 11-May-2020. 
The model captures the entire epidemic period well, including the broad peak dynamics, by integrating three asynchronous sub-epidemics. 
The best model fit (solid red line) and 95% prediction interval (dashed red lines) are shown. The cyan curves correspond to the associated 
uncertainty from individual bootstrapped curves, which are used to derive the 95% prediction intervals. The sub-epidemic mean profiles obtained 
from the parametric bootstrapping with 300 bootstrap realizations are shown in the center panels. The red, blue, and green curves represent 
the three sub-epidemic profiles, and the grey curves are the estimated aggregate epidemic trajectories. Black circles correspond to the data points. 
The empirical distributions of the parameters and the corresponding estimates are shown in the top panels. The residuals are also shown
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function also outputs .csv files in the output folder with 
the calibration performance metrics, the parameter esti-
mates associated with the top-ranking models, the corre-
sponding Monte Carlo standard errors of the parameters, 
and the estimated sequence of doubling times for each of 
the top-ranked models. Using the default parameter val-
ues indicated in the options.m file, the actual call to 
this function from MATLAB’s command line follows:

>> plotFit_SW_subepidemicFramework
Figures 11 and 12 illustrate the outputs from the above 

call to the function. The fits of the 1st and 2nd ranked 
sub-epidemic models, including the sub-epidemic pro-
files and residuals, to the daily curve of COVID-19 
cases are shown in Figs.  11 and 12. These models yield 
a similarly good fit to the data. The figures also include 
the empirical distribution of the parameter estimates. 
These parameter estimates are well identified as the con-
fidence intervals lie in a well-defined range of values [13]. 
The calibration performance metrics capturing the qual-
ity of fit of the top-ranked sub-epidemic models are also 

displayed in Fig.  13. For instance, this figure indicates 
that the coverage of the 95% PIs varied little between 
~ 93% and 95% for the top-ranked models. This function 
will store the following .csv files in the output folder:

1) Model parameter estimates:

parameters-topRanked-onsetfixed-
0-typedecline-2-flag1-1-method-
0-dist-0-daily-coronavirus-cases-
USA-area-52-05-11-2020.csv

2) Monte Carlo standard errors:

MCSES-topRanked-onsetfixed-0-type-
decline-2-flag1-1-method-0-dist-
0-daily-coronavirus-cases-USA-
area-52-05-11-2020.csv

Fig. 12 Fit of the 2nd-ranked sub-epidemic wave model to the daily curve of COVID-19 cases in the USA from 27-Feb-2020 to 11-May-2020. 
The model captures the entire epidemic period well, including the broad peak dynamics, by integrating three asynchronous sub-epidemics. 
The best model fit (solid red line) and 95% prediction interval (dashed red lines) are shown. The cyan curves correspond to the associated 
uncertainty from individual bootstrapped curves, which are used to derive the 95% prediction intervals. The sub-epidemic mean profiles obtained 
from the parametric bootstrapping with 300 bootstrap realizations are shown in the center panels. The red, blue, and green curves represent 
the two sub-epidemic profiles, and the grey curves are the estimated aggregate epidemic trajectories. Black circles correspond to the data points. 
The empirical distributions of the parameters and the corresponding estimates are shown in the top panels. The residuals are also shown
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3) Calibration performance metrics:

performance-calibration-topRanked-
onsetfixed-0-typedecline-2-flag1-
1-method-0-dist-0-daily-coronavi-
rus-cases-USA-area-52-05-11-2020.
csv

4) Doubling times for each of the top-ranked models:

doublingTimes-ranked(1)-onsetfixed-
0-typedecline-2-flag1-1-method-
0-dist-0-daily-coronavirus-cases-
USA-area-52-05-11-2020.csv
doublingTimes-ranked(2)-onsetfixed-
0-typedecline-2-flag1-1-method-
0-dist-0-daily-coronavirus-cases-
USA-area-52-05-11-2020.csv

doublingTimes-ranked(3)-onsetfixed-0-ty-
pedecline-2-flag1-1-method-0-dist-
0-daily-coronavirus-cases-USA-
area-52-05-11-2020.csv
doublingTimes-ranked(4)-onsetfixed-
0-typedecline-2-flag1-1-method-
0-dist-0-daily-coronavirus-cases-
USA-area-52-05-11-2020.csv

A relevant issue to investigate when using any math-
ematical model is that of structural or practical param-
eter identifiability [43]. Structural identifiability arises 
when one or more model parameters cannot be uniquely 
estimated using the model, even when the data is free 
of noise. That is, a lack of structural identifiability is due 
to issues in the model structure, such as the presence of 
parameter correlations [12]. On the other hand, practi-
cal identifiability occurs when one or more parameters 
cannot be reliably estimated using the available observed 
data, which could be associated with the number of 

Fig. 13 Calibration performance metrics for the top-ranking sub-epidemic wave models fit to the daily curve of COVID-19 cases in the USA 
from 27-Feb-2020 to 11-May-2020. These metrics are also saved in a .csv data file (‘performance-calibration-topRanked-onsetfixed
-0-typedecline-3-flag1-1-method-0-dist-0-horizon-30-daily-coronavirus-cases-USA-area-52-05-11-2020-
.csv’). For instance, these WIS metrics during the calibration period ranged from ~ 119.7 to ~ 124.8 across the four top-ranked models
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Fig. 14 30-day forecasts derived from the top-ranking sub-epidemic models fit to the daily curve of COVID-19 cases in the USA from 11-May-2020 
to 10-June-2020. The model fit (solid line) and 95% prediction interval (shaded area) are also shown. The vertical line indicates the start time 
of the forecast and separates the calibration and forecast periods. Circles correspond to the data points. Of note, the data associated with each 
top-ranked model forecast are also saved as .csv files in the output folder

Fig. 15 Sub-epidemic profiles of the 30-day forecasts derived from the top-ranking sub-epidemic models fit to the daily curve of COVID-19 cases 
in the USA from 11-May-2020 to 10-June-2020. The epidemic wave’s sub-epidemic mean curves obtained from the parametric bootstrapping 
with 300 bootstrap realizations are shown in red, blue, green, and magenta. The gray curves correspond to the overall epidemic trajectory 
obtained by aggregating the individual sub-epidemic curves. The vertical line indicates the start time of the forecast and separates the calibration 
and forecast periods
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observations available for model calibration and the 
spatial-temporal resolution of the data. Because the time 
series of incident cases in the observed epidemic wave is 
an aggregation of overlapping sub-epidemics, there could 
be instances when different sub-epidemic profiles may 
give rise to indistinguishable aggregated epidemic waves 
as noted elsewhere [44].

Generate the top‑ranked and ensemble sub‑epidemic 
model forecasts and the associated forecasting 
performance metrics
Using the function plotForecast_SW_subepidemic 
Framework.m, we can plot the short-term fore-
casts from the top-ranking sub-epidemic models and 
the ensemble models derived from the top-ranking 
sub-epidemic models based on the inputs indicated 
in the options.m and the options_forecast.m 
files. However, this function can also receive parame-
ters < outbreakx>, <caddate1>, or <forecasting 
period> as passing input parameters while the remain-
ing inputs are read from the options.m and  options_
forecast.m files. Moreover, the data associated with each 

top-ranked model and ensemble forecasts are saved as 
.csv files in the output folder.

In addition, this function also plots the forecasting per-
formance metrics (MSE, MAE, 95% P.I., WIS) for the top-
ranking models and the ensemble sub-epidemic wave 
models. Finally, this function also stores *.csv files in the 
output folder with the forecasting performance metrics 
associated with the top-ranking and ensemble models, 
and the estimated doubling times for each of the top-
ranked models. Using the default parameter values indi-
cated in the options.m, and options_forecast.m 
files, the call to this function from MATLAB’s command 
line follows:
>>plotForecast_subepidemicFramework
Figures 14 and 15 illustrate the outputs obtained from 

this function call. Figure  14 shows the 30-day forecasts 
derived from the top-ranking sub-epidemic models, 
whereas Fig.  15 shows the sub-epidemic profiles of the 
forecasts. These forecasts indicate that the 1st-ranked 
model outperformed the other top-ranked models. 
Moreover, the data associated with the top-ranked model 
forecasts are also saved as .csv files in the output folder. 

Fig. 16 30-day forecasting performance metrics derived from the top-ranking sub-epidemic models for the daily curve of COVID-19 cases 
in the USA from 11-May-2020 to 11-June-2020. The forecasting performance metrics are also saved in a .csv data file in the output folder (‘per
formance-forecasting-topRanked-onsetfixed-0-typedecline-2-flag1-1-method-0-dist-0-horizon-30-weight_type-1-daily-coronavirus-cases-
USA-area-52-05-11-2020.csv’)
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The forecasting performance metrics for the top-ranked 
models are displayed in Fig.  16, and these metrics are 
also saved in a .csv file in the output folder. In com-
parison, the forecast derived from the simpler growth 
model consisting of a single sub-epidemic (<npatches_
fixed>=1) was substantially worse, as shown in Supple-
mentary Fig.  2.

The corresponding 3 ensemble forecasts (Ensem-
ble(2), Ensemble(3), and Ensemble(4)) derived from the 
weighted combination of the top-ranked models based 
on their relative likelihood or Akaike weights (e.g., < 
weight_type1>=1 in the options_forecast.m 
file) are shown in Fig. 17. Also, the corresponding fore-
casting performance metrics for the ensemble models are 
shown in Fig. 18 and are saved in a .csv file in the output 
folder. The Ensemble(4) performed slightly better than 
the Ensemble(2) and Ensemble(3) models in terms of the 
WIS and coverage of the 95% prediction interval. This 
function will store the following .csv files in the output 
folder:

1) Forecasting performance metrics of the top-ranked 
models:

performance-forecasting-topRanked-
onsetfixed-0-typedecline-2-flag1-
1 - m e t h o d - 0 - d i s t - 0 - h o r i z o n -
30-daily-coronavirus-cases-USA-
area-52-05-11-2020.csv

2) Forecasting performance metrics of the ensemble models:

performance-forecasting-Ensem-
ble-onsetfixed-0-typedecline-
2-flag1-1-method-0-dist-0-horizon-
30-weight_type-1-daily-coronavirus-
cases-USA-area-52-05-11-2020.csv

3) Forecasts of the top-ranked models:

ranked(1)-onsetfixed-0-typedecline-
2-flag1-1-method-0-dist-0-horizon-
30-daily-coronavirus-cases-USA-
area-52-05-11-2020.csv
ranked(2)-onsetfixed-0-typedecline-
2-flag1-1-method-0-dist-0-horizon-

Fig. 17 30-day sub-epidemic ensemble model forecasts (Ensemble(2), Ensemble(3), Ensemble(4)) of COVID-19 cases in the USA from 11-May-2020 
to 11-June-2020. Circles correspond to the data points. The model fits (solid line), and 95% prediction intervals (shaded area) are shown. The vertical 
line indicates the start time of the forecast. Of note, the data associated with each ensemble model forecast are also saved as .csv files in the output 
folder
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30-daily-coronavirus-cases-USA-
area-52-05-11-2020.csv
ranked(3)-onsetfixed-0-typedecline-
2-flag1-1-method-0-dist-0-horizon-
30-daily-coronavirus-cases-USA-
area-52-05-11-2020.csv
ranked(4)-onsetfixed-0-typedecline-
2-flag1-1-method-0-dist-0-horizon-
30-daily-coronavirus-cases-USA-
area-52-05-11-2020.csv

4) Forecasts of the ensemble models:

Ensemble(2)-onsetfixed-0-ty-
pedecline-2-flag1-1-method-0-
dist-0-horizon-30-weight_type-
1-daily-coronavirus-cases-USA-
area-52-05-11-2020.csv
Ensemble(3)-onsetfixed-0-ty-
pedecline-2-flag1-1-method-0-

dist-0-horizon-30-weight_type-
1-daily-coronavirus-cases-USA-
area-52-05-11-2020.csv
Ensemble(4)-onsetfixed-0-ty-
pedecline-2-flag1-1-method-0-
dist-0-horizon-30-weight_type-
1-daily-coronavirus-cases-USA-
area-52-05-11-2020.csv

5) Sequence of doubling times of the top-ranked mod-
els:

doublingTimes-ranked(1)-onsetfixed-
0-typedecline-2-flag1-1-method-
0-dist-0-horizon-30-daily-corona-
virus-cases-USA-area-52-05-11-2020.
csv
doublingTimes-ranked(2)-onsetfixed-
0-typedecline-2-flag1-1-method-
0-dist-0-horizon-30-daily-corona-

Fig. 18 30-day forecasting performance metrics derived from the sub-epidemic ensemble models for the daily curve of COVID-19 cases in the USA 
from 11-May-2020 to 11-June-2020. The performance metrics are also saved in a .csv data file in the output folder (‘performance-forecasting-Ensem
ble-onsetfixed-0-typedecline-2-flag1-1-method-0-dist-0-horizon-30-weight_type-1-daily-coronavirus-cases-USA-area-52-05-11-2020.csv’)
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virus-cases-USA-area-52-05-11-2020.
csv
doublingTimes-ranked(3)-onsetfixed-0-ty-
pedecline-2-flag1-1-method-0-dist-
0-horizon-30-daily-coronavirus-
cases-USA-area-52-05-11-2020.csv
doublingTimes-ranked(4)doublingTimes-
-onsetfixed-0-typedecline-2-flag1-
1 - m e t h o d - 0 - d i s t - 0 - h o r i z o n -
30-daily-coronavirus-cases-USA-
area-52-05-11-2020.csv

6) Sequence of doubling times of the ensemble models:

doublingTimes-Ensemble(2)-onset-
fixed-0-typedecline-2-flag1-1-method-
0-dist-0-horizon-30-weight_type-
1-daily-coronavirus-cases-USA-
area-52-05-11-2020.csv
doublingTimes-Ensemble(3)-onset-
fixed-0-typedecline-2-flag1-1-method-
0-dist-0-horizon-30-weight_type-
1-daily-coronavirus-cases-USA-
area-52-05-11-2020.csv
doublingTimes-Ensemble(4)-onset-
fixed-0-typedecline-2-flag1-1-method-
0-dist-0-horizon-30-weight_type-
1-daily-coronavirus-cases-USA-
area-52-05-11-2020.csv

We can also compare the performance of unweighted 
ensemble models by setting the parameter <weight_
type1>=-1 in the options_forecast.m file while the 
other parameters are kept unchanged. Then we can 
compare the performance of the unweighted ensemble 

models (equal weights across top-ranked models) with 
the weighted ensemble models, where the weights are 
proportional to the relative likelihood of the mod-
els (<weight_type1>= 1). We can run the function 
plotForecast_subepidemicFramework.m to 
generate the new set of forecasts with the new models.

The forecasting performance metrics for the weighted 
and unweighted ensemble models and other statistical 
time-series models are displayed in Table 2. Overall, the 
unweighted ensemble models performed similarly as 
their weighted ensemble counterparts for this forecast 
and outperformed some popular statistical time-series 
models such as ARIMA (a brief description of the sta-
tistical models is given in Supplementary Text S3).

Conclusion
We have introduced a MATLAB toolbox to fit and fore-
cast time series using the spatial wave sub-epidemic 
model originally developed to generate short-term fore-
casts of epidemics [13] and illustrated its functional-
ity using time-series data of the COVID-19 pandemic 
in the US. In particular, the sub-epidemic model used 
in this tutorial has shown competitive performance in 
characterizing and forecasting epidemic trajectories 
of infectious diseases such as COVID-19, Ebola, and 
plague [13, 15]. The toolbox can be a helpful resource for 
policy makers and used as a part of the curriculum for 
students training in infectious disease modeling, math-
ematical biology, applied statistics and mathematics, and 
special courses in epidemic modeling and time-series 
forecasting.

This new open-source toolbox and associated tuto-
rial will be helpful to a broad community of applied 
scientists interested in characterizing and forecasting 
time-series data that results from the aggregation of 

Table 2 Forecasting performance metrics derived from the weighted and unweighted ensemble models, an auto-regressive 
integrated moving average model (ARIMA), a generalized additive model (GAM), and simple linear regression model (SLR) based on 
the daily curve of COVID-19 cases in the USA from 11-May-2020 to 11-June-2020. The weights of the weighted ensemble model are 
based on relative likelihood. Overall, both ensemble types performed similarly for this forecast, and outperformed the simple statistical 
models

Model Forecasting period MAE MSE Coverage 95% PI WIS

Weighted Ensemble(2) 30 4716.01 30200654.24 66.67 3156.50

Unweighted Ensemble(2) 30 4662.00 29686078.76 66.67 3169.62

Weighted Ensemble(3) 30 5229.91 36934107.63 60.00 3490.51

Unweighted Ensemble(3) 30 5262.52 37441993.33 60.00 3482.98

Weighted Ensemble(4) 30 5023.32 32564946.12 76.67 2926.13

Unweighted Ensemble(4) 30 4836.87 30807937.90 76.67 2942.91

ARIMA 30 7560.80 77139741.86 90.00 4118.39

GAM 30 8345.23 94188590.40 50.00 5466.92

SLR 30 23380.65 583817550.48 0.00 21739.18
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multiple asynchronous underlying growth processes. 
Moreover, prior publications have extensively validated 
the tools presented here [13, 15]. The models and meth-
ods included in the toolbox have improved short-term 
forecasting performance over simpler growth models 
such as the Richards and generalized-logistic growth 
models. Moreover, we have ensured publicly available, 
long-term, and stable hosting of the toolbox in a pub-
lic GitHub repository. Extensions to the toolbox could 
include additional components, such as new model fea-
tures, alternative estimation methods, and additional 
forecasting performance metrics.

Availability and requirements
Project name: Forecasting growth trajectories using 
the ensemble spatial wave sub-epidemic modeling 
framework.

Project home page: https:// github. com/ gchow ell/ spati 
al_ wave_ subep idemic_ frame work Operating system(s): 
Platform independent.

Programming language: MATLAB.
Other requirements: NA.
License: This program is free software: it can be redis-

tributed or modified under the GNU Public License as 
published by the Free Software Foundation, version 3 of 
the License.

Any restrictions to use by non-academics: None.
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