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Abstract 

Background Mediation analysis is a powerful tool to identify factors mediating the causal pathway of exposure 
to health outcomes. Mediation analysis has been extended to study a large number of potential mediators in high-
dimensional data settings. The presence of confounding in observational studies is inevitable. Hence, it’s an essential 
part of high-dimensional mediation analysis (HDMA) to adjust for the potential confounders. Although the propensity 
score (PS) related method such as propensity score regression adjustment (PSR) and inverse probability weight-
ing (IPW) has been proposed to tackle this problem, the characteristics with extreme propensity score distribution 
of the PS-based method would result in the biased estimation.

Methods In this article, we integrated the overlapping weighting (OW) technique into HDMA workflow and pro-
posed a concise and powerful high-dimensional mediation analysis procedure consisting of OW confounding adjust-
ment, sure independence screening (SIS), de-biased Lasso penalization, and joint-significance testing underlying 
the mixture null distribution. We compared the proposed method with the existing method consisting of PS-based 
confounding adjustment, SIS, minimax concave penalty (MCP) variable selection, and classical joint-significance 
testing.

Results Simulation studies demonstrate the proposed procedure has the best performance in mediator selection 
and estimation. The proposed procedure yielded the highest true positive rate, acceptable false discovery proportion 
level, and lower mean square error. In the empirical study based on the GSE117859 dataset in the Gene Expression 
Omnibus database using the proposed method, we found that smoking history may lead to the estimated natural 
killer (NK) cell level reduction through the mediation effect of some methylation markers, mainly including methyla-
tion sites cg13917614 in CNP gene and cg16893868 in LILRA2 gene.

Conclusions The proposed method has higher power, sufficient false discovery rate control, and precise mediation 
effect estimation. Meanwhile, it is feasible to be implemented with the presence of confounders. Hence, our method 
is worth considering in HDMA studies.

Keywords High-dimensional mediation model, Propensity score, Overlap weighting, Joint significant test, Composite 
null hypothesis
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Background
The analysis of the mediating effect was first proposed 
by Baron and Kenny (1986) [1] and was broadly applied 
in many scientific fields, such as psychological, socio-
logical, and biomedical studies [2–4]. Mediation analysis 
has become a powerful tool to investigate the underly-
ing mechanism of environmental exposures on health 
outcomes and identify the factors mediating the effect of 
exposures on outcomes [5]. Currently, analytical meth-
ods including the single mediator model [6, 7], multiple-
mediators model [8], and high-dimensional mediation 
model [9] are proposed and available for researchers in 
many scientific fields.

With the development of advanced data collection 
techniques, high-dimensional data has become common 
in biomedical research. For example, in the epigenetic 
study, the Illumina Infinium HumanMethylation450 
BeadChip array platform allows to measure the DNA 
methylation levels of roughly 480 K probes [10] and 
generates high dimensional data. Focusing on practi-
cal research, smoking affects lung function, and some 
DNA methylation sites may mediate the effect of smok-
ing on lung function [11, 12]. To identify the significant 
mediators (CpG sites) between smoking and lung func-
tion, we can conduct mediation analysis in the collected 
high-dimensional data [9, 13, 14]. Obviously, this method 
can be used to identify the methylation sites mediat-
ing the association between environmental factors other 
than smoking and other health outcomes including some 
physical signs and diseases.

However, there are also some issues in high dimen-
sional mediation analysis (HDMA), such as the curse of 
dimensionality, the false positive rate inflation caused 
by multiplicity and the confounding existing in observa-
tional research. To overcome these issues, scholars have 
proposed a series of statistical methods. Zhang et al. [9]. 
proposed the HIMA model consisting of variable screen-
ing based on sure independence screening (SIS), variable 
selection techniques based on minimax concave pen-
alty (MCP) estimation and joint significance test. HIMA 
extends the multiple mediator framework to the high-
dimensional setting by incorporating variable screening 
and variable selection techniques into multiple mediation 
analysis. The following high-dimensional mediation anal-
ysis methods also employ the generic procedure [13–16], 
which reduces dimensionality from high to moderate or 
low scale and then conducts multiple mediation test. For 
example, the HIMA2 procedure proposed by Perera et al. 
[17], which employs the SIS method based on the indi-
rect effect of every single mediator and conducts debiased 
Lasso to obtain more accurate estimates, then utilizes the 
multiple-testing procedure proposed by James et al. [18] 
to control the false discovery rate. Moreover, to adjust 

the confounders of observational epigenetic studies, 
researchers tried to integrate propensity score (PS) into 
the high-dimensional mediation model by weighting or 
considering it as a covariate [14, 16], except for the classic 
regression adjustment.

Although many works have been made to tackle these 
problems, there are still some issues remaining in the 
dimensionality reduction and adjustment for confound-
ers. For high dimensional mediation analysis, the previ-
ous studies don’t take confounders into account, just 
consider them as covariates [15, 19], such as HDMA, 
HIMA, and HIMA2 [5, 9, 17]. As is known to all, the 
multivariable model cannot adequately account for con-
founding effects in the presence of a large number of 
confounders [20]. If we only control confounding dur-
ing the mediation test, but not in the dimension reduc-
tion stage, then a biased variable selection result may be 
obtained [14]. Thus, it is necessary to adjust confounders 
to improve the performance of variable selection.

To address this issue, researchers have adopted the 
PS-based method including PS regression adjustment 
(termed PSR) and classical PS weighting (also called 
inverse probability weighting, IPW) to adjust confound-
ing during both stages [14]. However, the adjustment 
for confounders using the IPW based on PS still faces 
the issue of extreme weights caused by extreme PS dis-
tribution [21, 22]. To address the issue of extreme PS 
distribution, Li et al. [23]. proposed the overlap weight-
ing (OW) method, which emphasizes individuals with 
the most overlap in their observed characteristics and is 
beneficial to provide a consistent estimator of the effect 
of exposure on outcome in the presence of extreme PS 
tails. OW belongs to the weighting confounding adjust-
ment method based on PS and is gaining more popu-
larity because of excellent statistical properties [24, 25]. 
However, the above OW method is only applied to tra-
ditional epidemic analysis, which needs to be extended 
to mediation analysis and high-dimensional data set-
ting. Besides, most of the existing methods all hold the 
independent assumption between potential mediators, 
which is hard to ensure in high dimensional epigenetic 
data analysis [5, 9, 13–15, 18].

In this article, we incorporated the OW method 
into HIMA [9] and HIMA2 [17] models, respectively. 
In order to develop the accuracy of the screening of 
potential mediators, we modified the framework of var-
iable screening in the original HIMA2 procedure. Even-
tually, we proposed the OW-based modified HIMA2 
(mHIMA2) procedure for HDMA. We evaluated the 
performance of the proposed procedure and the existing 
models through simulation studies. All the above evalu-
ations are based on the simulation study and real data 
application.
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The rest of the article is structured as follows. In the 
next section, we introduced the notions, assumptions, 
models, and the procedure of adjustment for confounders 
in the high-dimensional mediation analysis model. Then, 
we conducted the Monte Carlo simulation study to eval-
uate the performance of various methods of confounding 
adjustment and two different mediation test approaches. 
Additionally, we applied the proposed method to the 
dataset GSE117859 in the Gene Expression Omnibus 
(GEO) databases and identified some DNA methylation 
markers that mediate the effect of smoking on the esti-
mated natural killer (NK) cell level. Finally, we concluded 
the advantages and limitations of this study.

Methods
Model definitions
Our high-dimensional mediation model is shown in 
Fig.  1. Let X be the exposure variable, where X = 1 
represents the exposed group and X = 0 repre-
sents the controlled group. Denote the outcome as 
Y, here we mainly focus on continuous outcome. Let 
M = (M1,M2, · · · ,MP)

T be the set of the p-dimensional 
potential mediators, where p ≫ n , n is the sample size. 
Let C = C1,C2, · · · ,Cq

T be the q-dimension baseline 
confounders which influence the relation of exposure-
mediator, mediator-outcome, and exposure-outcome. For 
individual i , i = 1,2, · · · , n , we have the high-dimensional 
mediation models as follows:

(1)Mki = ak + αkX + φT
k Ci

+ eki, k ∈ [p],

(2)Yi = a+ γXi + βTMi + ηTCi + ǫi.

where α =
(
α1,α2, · · · ,αp

)T  is the coefficient vector  
relating the exposure to the mediators, β =

(
β1,β2, · · · ,βp

)T  
represents the effect of the mediators on the outcome, αkβk 
corresponds to the mediation effect of Mk according to 
the definition of coefficients product method, and [p] 
denotes the set of {1,2, · · · , p} . One can consider whether 
Mk is the statistically significant mediator or not by test-
ing the null hypothesis H0 : αkβk = 0 . φk and η are the 
effect of C on M and C on Y  , respectively. ak and a are 
the intercept term in the Eqs. 1 and 2, respectively. The same 
as above, ek and ǫ are each the corresponding error term. 
We will compare the different variable selection strategies 
and methods of adjusting confounders. 

Assumptions
To ensure the identification of path-specific mediat-
ing effects, some assumptions need to be held as below. 
These assumptions were proposed referring to necessary 
condition required for high-dimensional mediation anal-
ysis suggested in published studies [8, 15, 17, 19, 26, 27]:

A1: There is no causal association between mediators. 
This means the proposed model contains only parallel 
mediators.

A2: Sequential ignorability. That consists of four 
assumptions listed below:

(A2.1) There are no unmeasured confounders between 
the exposure and the outcome;

(A2.2) There are no unmeasured confounders between 
the mediators and the outcome;

(A2.3) There are no unmeasured confounders between 
the exposure and the mediators;

(A2.4) There is no exposure-induced confounding 
between the mediators and the outcome.

A3: Stable unit treatment value assumption (SUTVA) 
[28, 29] for both the mediators and the outcome. That is 
to say, there is no interference between individuals.

A4: Consistency for the mediators and the outcome. 
That is to say, there are no measurement errors in the 
mediators.

A5: Positivity assumption [30]. Every individual has 
some positive probability of being exposed to the factor 
of interest.

Proposed Procedure
We improved the HIMA procedure proposed by Zhang 
et al. (2016) [9] and the HIMA2 procedure proposed by 
Perera et al. (2022) [17] under the condition of adjusting 
confounders in observational data.

In this study, we developed two processes to conduct 
the confounding-controlled high-dimensional mediation 
analysis. The detailed procedure is described in the fol-
lowing text.

Fig. 1  Causal diagram. High-dimensional mediation model 
with confounders between exposure, mediator and outcome
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Step 1: PS‑based methods for adjusting confounders
Since there are always some baseline confounders in 
observational data, we integrate propensity score (PS) 
into mediators (and/or outcome) models to reduce the 
selection bias and acquire as accurate estimates of the 
mediation effect as possible. Due to the PS approaches 
allowing the inclusion of a large scale of confounders, PS 
is widely used in observational research.

PS is defined as the conditional probability that a study 
individual with baseline covariates C = (C1,C2, · · · ,Cl) 
would be exposed to certain study factors of interest [31]:

PS can be estimated by classic multivariable statistical 
methods such as logistic regression [32] or by machine 
learning methods such as random forest (RF) and gener-
alized boosted model (GBM) [33, 34]. In practice, logistic 
regression is the most commonly used. The PS of i th indi-
vidual πi = P(Xi = 1|C1i, · · · ,Cli) can be expressed as 
follows:

where θ = (θ1, θ2, · · · , θl)
T represents the effect of the 

confounders on the exposure. Then we can adopt some 
PS-based techniques to adjust confounders such as 
matching [35], stratification [36], regression [31], and 
weighting [37]. Here, we focus on PS regression (PSR) 
and PS weighting [14] (PSW, also called IPW short 
for inverse probability weighting) techniques to adjust 
potential confounders between exposure, mediators and 
outcome.

PSR approach incorporates PS as a covariate into the 
original regression model to adjust for the probability of 
being exposed to study factors and to reduce confounding 
[32]. That is similar to taking all confounders as covariates 
in a classical regression approach which usually uses the 
linear regression model for continuous outcomes and the 
logistic regression model for binary outcomes [38]. For the 
PSR approach, we can estimate the effect through the mod-
els below:

The PSW approach constructs the inverse probability 
weights by taking the reciprocal of PS. For binary expo-
sure, the weight of the exposed group X = 1 is given as 
1
PS , and that of the controlled group X = 0 as 1

1−PS . For i th 
individual:

PS = P(X = 1|C1, · · · ,Cl).

logit(πi = P(Xi = 1)) = θ0 + θ1C1i + · · · + θlCli,

(3)
Mki = ak + αkX + φ′

kπ i
+ eki, k ∈ [p],

Yi = a+ γXi + βTMi + PSi + ǫi.

ipwi =
1

P(Xi = 1|C)
=

Xi

πi
+

(1− Xi)

(1− πi)
.

Then, we can estimate the coefficients of X in pathways 
X → M and M → Y  by weighted estimation:

where αk ,ipw and γipw are the weighted estimation accord-
ing to the ipw weight vector. However, the IPW often 
faces extreme PSs issue which may lead to extreme 
weights and result in biased estimates and excessive vari-
ance [23, 24].

The overlap weighting (OW) approach was proposed to 
address the issue of extreme PSs [23]. The overlap weight 
is given as 1− PS for the group X = 1 and PS for the 
group X = 0 . Note that, individuals with PS of 0.5 make 
the largest contribution to the effect estimate, and indi-
viduals with PS close to 0 and 1 make the smallest con-
tribution. OW is likely to be beneficial in the presence of 
extreme tail weights [23, 39]. For individual i:

Then, the effect estimation of OW is similar to that of 
the PSW procedure:

In the same way, αk ,ow and γow are the weighted estima-
tion using ow weight vector.

Step 2: Confounding‑controlled SIS approach 
for dimensionality reduction
The SIS procedure is a general technique to reduce accu-
rately high dimensions to below sample size [40]. We 
adopt the SIS method to reduce dimension p from ultra-
high dimension to moderate scale d =

[
2n

log(n)

]
 [9, 15].

In this study, we considered two preliminary screen-
ing strategies as described in HIMA [9] and HIMA2 
[17], based on the effects of M on Y  ( βk ) and the indi-
rect effect |αkβk | respectively. Because the indirect effects 
can be both positive and negative effects, to address the 
influence of the signs of the estimated indirect effects, the 
HIMA2 approach uses the absolute values of the indirect 
effect to obtain the size of the effect estimate regardless 
of the direction. This approach ensures that mediators 
with large effect size can be selected.

Due to the lack of screening accuracy in SIS based on 
indirect effects in the presence of confounders, we con-
ducted the SIS screening based on the effects on the path 
M → Y  controlling confounding effects using the OW 
approach.

(4)
Mki = ak + αk ,ipwX + φT

k Ci
+ eki, k ∈ [p],

Yi = a+ γk ,ipwXi
+ βTMi + ηTCi + ǫi,

owi =

{
1− πi,Xi = 1
πi,Xi = 0

.

(5)
Mki = ak + αk ,owX + φT

k Ci
+ eki, k ∈ [p],

Yi = a+ γk ,owXi + βTMi + ηTCi + ǫi,
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In simulation, we found that it is hard to select 
the true mediators based on |αkβk | in the pres-
ence of confounding factors as applied in the origi-
nal HIMA2 approach. So, we modified the frame of 
the HIMA2 method and both adopt SIS based on 
the effects on the path M → Y  βk in the preliminary 
screening to select the subset of potential mediators 
MSIS =

{
Mk : Mk isamongthetopdlargesteffectof βk

}
.

Noticing that we need to adopt a two-step weight-
ing method [14] to estimate βk for the PSW and OW 
methods.

First, γk ,w can be obtained from the following 
sub-model:

where γ̂k ,w is the estimator of γk ,ow or γk ,ipw for each Mk . 
In addition, the residual êk can be derived:

Then βk can be estimated by regressing êk on Mk with-
out weighting. Through the above SIS procedure, we can 
identify the important mediators and achieve the goal of 
dimensionality reduction.

Step 3: Penalized estimation
According to the HIMA procedure, after the preliminary 
selection of candidate mediators, further variable selec-
tion can be accomplished by the penalized estimation 
method. Here, we adopt the MCP [41] rather than other 
penalty functions, since the MCP approach has the oracle 
property which can select the correct model with prob-
ability tending to 1 as n → ∞ [15, 41, 42].

For the d-dimensional subset MSIS , we employed the 
MCP-penalized estimation to further select significant 
mediators set MMCP = {Mk : βk �= 0,Mk ∈ MSIS} , MCP 
penalty function can be defined as below:

where � > 0 is the regularization parameter which can be 
selected by AIC or BIC, and δ > 0 is the tuning param-
eter which determines the concavity of MCP. The MCP 
procedure can be implemented through the R package 
ncvreg [43]. Through MCP penalty estimation, we filtered 
out the mediators with too weak effects by combining SIS 
and MCP procedures and then acquired the small num-
ber of mediators that needed to be tested. That will help 
to obtain more accurate effect estimates.

Following the original HIMA2 procedure, the penal-
ized estimation adopts the de-biased Lasso method to get 

Yi = a+ γ̂k ,wXi + βkMki + ǫki

êk = Y − γ̂k ,wX .

P�,δ(βk ) = �

[
|βk | −

|βk |
2

2�δ

]
I{0 ≤ |βk | < δ} + �

2δ
2
I{|β| ≥ δ�}

the estimator β̂k and standard error σ̂βk . The sub-model 
of the de-biased Lasso method can be described below:

where βSIS denote the effects of Mk ∈ MSIS on Y  . The cor-
responding P-values Pβk are given as:

where �(.) is the cumulative distribution function of 
standard normal distribution N (0,1) . The de-biased 
Lasso method can be implemented with the R package 
hdi.

Step 4: PS‑based multiple mediation test
After MCP-based penalized estimation, we use the 
Joint significance test [3, 44] (termed JS-uniform) to 
test the mediation effect of Mk ∈ MMCP . The Joint sig-
nificance test considers the Mk as a true mediator when 
αk and βk is significant simultaneously. Here, αk can 
be estimated through different confounding adjust-
ment methods as shown in Eqs.  1, 3, 4, and 5. βk can 
be obtained using the linear regression with consider-
ing all confounders as covariates or only including PS 
(summary of all confounders) as a covariate.

In other words, that is based on the P-values for testing 
the path-specific effects H0 : αk = 0 or H0 : βk = 0 . The 
raw P-value for the joint significance test [3] is defined 
below:
Praw,k = max

(
Praw,αk ,Praw,βk

)
, #where Praw,αk and 

Praw,βk are the P-values for testing H0 : αk = 0 and 
H0 : βk = 0 . Praw,αk and Praw,βk can be obtained from 
the mediator model (e.g. Equations 1, 3, 4, and 5) and 
outcome model (Eq. 2), respectively.

For the multiplicity (Type I error inflation) issue in 
multiple mediation testing, we adopted the Benjamini–
Hochberg (BH) method [45, 46] to acquire the adjusted 
p-values as below,

 where q is the number of potential mediators in the set 
MMCP , and rk is the location number of Praw,k when all 
the P-values Praw,k are sorted ascending.

However, the Joint significance test assumes Praw,k 
follows a uniform null distribution. Although Pαk and 
Pβk are each uniformly distributed, their maximum 
may not. Therefore, the Joint significance test results in 
a valid but overly conservative test with lower power 
[13, 17, 47].

Y = a+ γX + βT
SISMSIS + ηTC + ǫ

Pβk = 2
{
1−�

(∣∣∣β̂k
∣∣∣/σ̂βk

)}
,

PBH ,k = min
(
Praw,k ·

q
rk
, 1
)
,
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Hence, we adopt the PS-based joint significance with 
mixture null distribution method [18] (termed JS-mix-
ture) approach to conduct multiple mediation test after 
de-biased Lasso penalized estimation [17, 48] referring to 
the classical HIMA2 procedure. The PS-based JS-mixture 
approach adopts a 3-component mixture distribution as 
below:

The estimated pointwise FDR for testing mediation can 
be computed as:

where t ∈ [0,1] , V00(t),V01(t),V10(t) denoting the 
numbers of the three types of false positives and 
R(t) = V00(t)+ V01(t)+ V10(t)+ V11(t) . The 
V00(t),V01(t),V10(t) and F̂DR(t) can be obtained using 
the R package HDMT.

We set the significance level of 0.05 for all the tests. The 
detailed processes of the proposed method are summa-
rized in Fig. 2.

Simulation studies
Simulation design
In this section, we conducted the simulation studies 
to evaluate the performance of the proposed method. 
The implementation of the simulation was based on R 
(version 4.3.0, R Foundation for Statistical Computing, 
Vienna, Austria) and RStudio (version 2023.9.0.463, 
RStudio: Integrated Development Environment for R, 
Boston, MA). The setting of simulation parameters was 
based on the published studies [9, 14, 16]. The number 

H00,k : αk = 0 or βk=0,

H01,k : αk = 0 or βk �= 0,

H10,k : αk �= 0 or βk = 0.

F̂DR(t) = E
[
V00(t)+V01(t)+V10(t)

max(R(t),1)

]
,

of replications in simulation study was set to be 500 for 
each combination of parameter setting referring to the 
replication times settings in published methodogical 
studies [9, 14–17, 19, 49].

The model structure is shown in Fig.  1. We consider 
8 confounders C = (C1,C2, · · · ,C8) affecting the rela-
tionship of X , M , Y  , in which continuous confound-
ers C1 − C4 follow a multivariate normal distribution 
N (µ,�) with a mean vector µ = (0,0, 0,0)T and a covari-
ance matrix �:

The last four binary confounders C5 − C8 are indepen-
dently generated from the Binary distribution B(n, 0.3) , 
where n is the sample size.

Then exposure X can be generated from Binary distribu-
tion B(n,Pc) , where n is the sample size, Pc = 1/

(
1+ e

−
(
θT C

))
 , 

and θT = (θ1, θ2, · · · , θ8) = (0.2,0.2,0.3,0.3,0.2,0.2,0.3,0.3).
Mediators M and the outcome variable Y  are gener-

ated according to Eqs. 1 and 2, respectively. For simplic-
ity, we set all the effects of C on M to be the same. Let 
φk = (φk1, · · · ,φk8)

T = (0.2,0.2,0.3,0.3,0.2,0.2,0.3,0.3)T 
represent the effect of C on M. Let η = (η1, η2, · · · , η8)

T

= (0.2,0.2,0.3,0.3,0.2,0.2,0.3,0.3)T denote the effects of C 
on Y .

We set the first four potential mediators M1 −M4 
as the true significant mediators in this study. Let 
α =

(
α1,α2, · · · ,αp

)T
= (0.4,0.4,0.5,0.5,0.5,0.5,0, 0, · · · , 0)  ; 

β =

(
β1,β2, · · · ,βp

)T
= (0.4,0.5,0.5,0.6,0, 0,0.5,0.5,0, · · · , 0) . 

The elements of both α and β are equal to zero except 
for the first eight elements, and the first four are the sig-
nificant mediators. The mediation effect size of the true 
mediators M1 −M4 is αβ1−4 = (0.16,0.2,0.25,0.3).

Let γ = 0.5 ; a = 0.5 ; ak ∼ U(0, 1) , ǫ ∼ N (0, 1) . The 
error term ek are generated from N (0,1.2) and the cor-
relation between mediators mostly falls between 0.15 
and 0.35.

To evaluate the impacts of sample size and poten-
tial mediators dimension, we set two sample size levels 
n = 300, 500 , and two dimension levels p=1000,10000.

In addition, we take the correlation between media-
tors into account in the condition of p=1000 dimension. 
We simulate the strong correlation between mediators 
by generating the error terms ek from N (0,�e) , where 
�e =

(
ρ|k−k ′|

)
k ,k ′

 . It means the correlation between 

two mediators will decrease as the absolute difference in 
mediators’ subscript 

∣∣k − k ′
∣∣ increases. We set four cor-

relation levels ρ = 0, 0.25, 0.5,0.75 with dimension p

=1000 and sample size n = 300, 500 . In the simulation 

� =




1 0.3 0.3 0.3

0.3 1 0.3 0.3

0.3 0.3 1 0.3

0.3 0.3 0.3 1


.

Fig. 2 The overall workflow for high-dimensional mediation analysis 
under the adjusting for confounders condition
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setting ρ = 0, 0.25, 0.5,0.75 , the corresponding Pearson 
correlation coefficients between two adjacent mediators 
are around 0.4, 0.5, 0.7, and 0.8, respectively. We evalu-
ated the performance of the mHIMA2 and PS-based 
HIMA by conducting 500 replications of simulated data 
sets for each scenario [9, 14–17, 19, 49].

Simulation results
Simulation results are presented in Tables  1 and 2. Evalu-
ation of the performance of mediator selection of the 

proposed approach is shown in Table  1 by measuring the 
true positive rate (TPR) and false discovery proportion 
(FDP) of selection after the significance test for mediation 
effects. The mediators have higher TPR as the indirect effect 
increases (i.e., larger mediation effect, higher detection rate).

As presented in Table  1. Under most settings, the 
mHIMA2 mediation test approach has a higher TPR 
than PS-based HIMA while a higher FDP at the same 
time. Overall, the mHIMA2 is more powerful than the 

Table 1 TPR and FDP for the four true mediators (M1–M4)

a  MT methods denote two different mediation test approaches, including HIMA Zhang et al. and modified HIMA2 Perera et al. (termed mHIMA2)
b  CONF methods denote different confounding adjustment methods
*  RA denotes regression adjustment. PSR denotes propensity score regression adjustment. IPW denotes inverse probability weighting. OW denotes overlapping 
weighting

Settings MT
methodsa

CONF
methodsb*

TPR Overall TPR FDP

M1αβ=
0.16

M2αβ=
0.20

M3αβ=
0.25

M4αβ=
0.30

n = 300,
p = 1000

HIMA RA 0.2340 0.2740 0.4820 0.4880 0.3695 0.0027

PSR 0.1980 0.2260 0.4380 0.4340 0.3240 0.0031

IPW 0.2000 0.2060 0.3760 0.4120 0.2985 0.0050

OW 0.1860 0.2000 0.4140 0.4080 0.3020 0.0033

mHIMA2 RA 0.3298 0.3510 0.6004 0.5962 0.4693 0.0144

PSR 0.4754 0.5246 0.7295 0.7520 0.6204 0.0670

IPW 0.5071 0.5253 0.7333 0.7394 0.6263 0.0909

OW 0.5396 0.5375 0.7546 0.7789 0.6526 0.0905

n = 300,
p = 10,000

HIMA RA 0.2660 0.2680 0.4540 0.4940 0.3705 0.0185

PSR 0.2160 0.2280 0.4040 0.4460 0.3235 0.0046

IPW 0.2020 0.1820 0.3640 0.4080 0.2890 0.0120

OW 0.1960 0.2100 0.3840 0.4180 0.3020 0.0082

mHIMA2 RA 0.3550 0.3203 0.5649 0.5758 0.4540 0.0141

PSR 0.4714 0.4857 0.6776 0.6918 0.5816 0.0539

IPW 0.5051 0.5030 0.6707 0.7131 0.5980 0.0800

OW 0.5466 0.5344 0.7328 0.7672 0.6452 0.0834

n = 500,
p = 1000

HIMA RA 0.5440 0.5860 0.8380 0.8740 0.7105 0.0007

PSR 0.5140 0.5420 0.8160 0.8480 0.6800 0.0022

IPW 0.4540 0.4480 0.7280 0.7420 0.5930 0.0025

OW 0.4800 0.4880 0.7680 0.7880 0.6310 0.0024

mHIMA2 RA 0.6579 0.6984 0.8927 0.9170 0.7915 0.0076

PSR 0.8060 0.8180 0.9400 0.9540 0.8795 0.0487

IPW 0.8377 0.8297 0.9198 0.9599 0.8868 0.0679

OW 0.8620 0.8520 0.9480 0.9760 0.9095 0.0629

n = 500,
p = 10,000

HIMA RA 0.5440 0.5640 0.8460 0.8360 0.6975 0.0050

PSR 0.5160 0.5360 0.8220 0.8020 0.6690 0.0000

IPW 0.4140 0.4480 0.7280 0.7220 0.5780 0.0026

OW 0.4520 0.4900 0.7920 0.7720 0.6265 0.0016

mHIMA2 RA 0.6451 0.6326 0.8852 0.8664 0.7573 0.0109

PSR 0.8116 0.8196 0.9519 0.9479 0.8828 0.0657

IPW 0.8096 0.8236 0.9419 0.9339 0.8773 0.0774

OW 0.8417 0.8717 0.9760 0.9559 0.9113 0.0667
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PS-based HIMA and is less conservative in selecting sig-
nificant mediators.

As shown in Table  1, for the mHIMA2 mediation 
test approach, TPR is ranked as OW > IPW > PSR > RA, 
and FDP is not more than 0.1 and gradually decreases 
to close to 0.05 as the sample size increases. Among all 
models, the mHIMA2 mediation test approach with 
OW adjustment has the highest power and acceptable 
false positive level. When using the PS-based HIMA 
mediation test approach, TPR is ranked consistently as 

RA > PSR > OW > IPW, and all four models also keep FDP 
at an extremely low level.

Table  2 presents the estimation of mediation effects 
with the mean and mean square error (MSE). The esti-
mators approach the true values as the mediation effect 
increases. All models tend to be more accurate as n gets 
larger and p gets smaller. Overall, the mHIMA2 media-
tion test approach has a smaller MSE than the PS-based 
HIMA approach in most cases. RA adjustment has a 
higher MSE than other adjustment methods especially 

Table 2 Estimation results of mediation effects, expressed as Mean (MSE)

a  MT methods denote two different mediation test approaches, including HIMA and modified HIMA2 (termed mHIMA2).
b  CONF methods denote different confounding adjustment methods
*  RA denotes regression adjustment. PSR denotes propensity score regression adjustment. IPW denotes inverse probability weighting. OW denotes overlapping 
weighting

Settings MT  methodsa CONF
methodsb*

M1 αβ=
0.16 (MSE)

M2 αβ=
0.20 (MSE)

M3 αβ=
0.25 (MSE)

M4 αβ=
0.30 (MSE)

n = 300,
p = 1000

HIMA RA 0.1547 (0.0043) 0.1909 (0.0067) 0.2414 (0.0065) 0.2907 (0.0084)

PSR 0.1628 (0.0048) 0.1987 (0.0072) 0.2520 (0.0073) 0.3014 (0.0088)

IPW 0.1581 (0.0054) 0.1967 (0.0072) 0.2451 (0.0071) 0.2976 (0.0094)

OW 0.1573 (0.0044) 0.1947 (0.0069) 0.2454 (0.0065) 0.2955 (0.0083)

mHIMA2 RA 0.1488 (0.0041) 0.1813 (0.0062) 0.2320 (0.0062) 0.2764 (0.0081)

PSR 0.1487 (0.0042) 0.1850 (0.0064) 0.2337 (0.0063) 0.2837 (0.0083)

IPW 0.1524 (0.0052) 0.1897 (0.0068) 0.2367 (0.0069) 0.2884 (0.0094)

OW 0.1522 (0.0043) 0.1879 (0.0064) 0.2369 (0.0064) 0.2871 (0.0083)

n = 500,
p = 1000

HIMA RA 0.1596 (0.0024) 0.2016 (0.0038) 0.2458 (0.0040) 0.3040 (0.0046)

PSR 0.1684 (0.0027) 0.2110 (0.0044) 0.2563 (0.0044) 0.3158 (0.0053)

IPW 0.1607 (0.0026) 0.2024 (0.0041) 0.2470 (0.0045) 0.3051 (0.0052)

OW 0.1594 (0.0024) 0.2019 (0.0038) 0.2459 (0.0041) 0.3041 (0.0046)

mHIMA2 RA 0.1540 (0.0022) 0.1936 (0.0037) 0.2349 (0.0040) 0.2902 (0.0043)

PSR 0.1548 (0.0023) 0.1966 (0.0037) 0.2392 (0.0040) 0.2977 (0.0045)

IPW 0.1569 (0.0025) 0.1980 (0.0040) 0.2413 (0.0044) 0.2994 (0.0050)

OW 0.1556 (0.0023) 0.1976 (0.0038) 0.2402 (0.0040) 0.2986 (0.0045)

n = 300,
p = 10,000

HIMA RA 0.1217 (0.0045) 0.1514 (0.0061) 0.1873 (0.0088) 0.2278 (0.0119)

PSR 0.1472 (0.0044) 0.1823 (0.0050) 0.2256 (0.0064) 0.2750 (0.0087)

IPW 0.1569 (0.0048) 0.1935 (0.0058) 0.2363 (0.0066) 0.2887 (0.0086)

OW 0.1567 (0.0043) 0.1929 (0.0051) 0.2358 (0.0061) 0.2875 (0.0078)

mHIMA2 RA 0.1259 (0.0039) 0.1540 (0.0053) 0.1896 (0.0076) 0.2307 (0.0102)

PSR 0.1350 (0.0039) 0.1698 (0.0049) 0.2089 (0.0064) 0.2565 (0.0083)

IPW 0.1425 (0.0043) 0.1780 (0.0055) 0.2169 (0.0066) 0.2692 (0.0086)

OW 0.1425 (0.0039) 0.1780 (0.0049) 0.2170 (0.0062) 0.2670 (0.0080)

n = 500,
p = 10,000

HIMA RA 0.1502 (0.0022) 0.1911 (0.0037) 0.2364 (0.0040) 0.2836 (0.0055)

PSR 0.1596 (0.0024) 0.2016 (0.0037) 0.2497 (0.0038) 0.2984 (0.0050)

IPW 0.1577 (0.0023) 0.2008 (0.0038) 0.2502 (0.0037) 0.2985 (0.0052)

OW 0.1573 (0.0021) 0.2008 (0.0034) 0.2495 (0.0035) 0.2991 (0.0047)

mHIMA2 RA 0.1287 (0.0024) 0.1630 (0.0037) 0.2022 (0.0046) 0.2420 (0.0067)

PSR 0.1402 (0.0021) 0.1805 (0.0032) 0.2243 (0.0035) 0.2719 (0.0048)

IPW 0.1461 (0.0022) 0.1872 (0.0036) 0.2333 (0.0035) 0.2800 (0.0052)

OW 0.1456 (0.0020) 0.1871 (0.0031) 0.2324 (0.0033) 0.2808 (0.0047)
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when facing the large mediation effect, OW adjustment 
has the lower MSE among the four adjustment methods.

As shown in Table 2, similarly, the mHIMA2 approach 
with OW adjustment has the smallest MSE among all 
models. Moreover, similar results can be seen in the 
different strong correlation settings in Table  S1-S8 in 
the supplementary file. The mHIMA2 methods have 
lower MSE (i.e. more precise estimation) and apparently 
higher TPR. That means the de-biased Lasso technique 
in mHIMA2 methods performs better when handling 
the moderate correlation between mediators. However, 
the FDP of all models slightly increases as the correlation 
between mediators increases. When correlation among 
the mediators is strong (for example, r>0.7), all models 
suffer in terms of increased MSE.

Data application
Smoking is an important environmental factor affecting 
the immune system and blood cell composition [50, 51]. 
Previous studies have demonstrated smokers had lower 
natural killer (NK) cell counts and activity [50, 51]. Smok-
ing has also been found to be associated with DNA meth-
ylation levels [52]. Meanwhile, DNA methylation levels 
have also been found to be associated with associated with 
human NK cell activation [53, 54]. Therefore, DNA meth-
ylation may mediate the association between smoking 
and NK cell level. So we implemented the proposed high-
dimensional mediation analysis methods to identify the 
specific functional CpG sites that may mediate the rela-
tionship between smoking and the estimated NK cell level.

Here we apply our method to the GSE117859 dataset 
obtained from the Gene Expression Omnibus (GEO) 
database. The aim of the study in which GSE117859 
was originally measured is to explore the smoking-asso-
ciated DNA methylation features linked to AIDS out-
comes in the HIV-positive population [55]. The blood 
samples from the Veteran Aging Cohort Study (VACS) 
were collected in that study. The HumanMethylation450 

BeadChip platform was used to measure the DNA meth-
ylation levels.

In total 608 samplesand 485,577 probes were included 
in the dataset. Clinical information such as age, sex, race, 
smoking history, adherence of antiretroviral therapy 
(ART), estimated CD4 T cells, estimated CD8 T cells, 
and estimated NK cells were collected. The estimated 
CD4/CD8/NK were obtained using a methylation-based 
cell type deconvolution algorithm proposed by Housman 
et al. [56]. To some extent, the estimated CD4 and CD8 
levels can represent AIDS severity.

Smoking status was collected based on self-report. All 
included patients were classified into the smoker and the 
non-smoker groups according to their reported smoking 
history. After removing the individuals without available 
clinical information and DNAm sites with missing values, 
a total of 587 samples and 485,503 probes were included 
in the analysis.

We adjusted the potential confounders including age, 
race, adherence of antiretroviral therapy, estimated CD4 
T cells, and estimated CD8 T cells. Demographic and 
clinical variables included in our analysis are presented in 
Table 3.

The analysis results using the proposed mHIMA2 
method are presented in Table  4. Here, we mainly pre-
sented the CpGs mediators with a total effect proportion 
greater than 5%. Due to the limitation of text content, we 
didn’t present the whole summary results of the PS-based 
HIMA method, but that can be seen in Table  S9 in the 
supplementary file.

As shown in Table  4, we identified two methyla-
tion sites cg13917614 in CNP gene and cg16893868 in 
LILRA2 gene by most of mHIMA2 based methods. The 
similar result can be seen in Table S9 in the supplemen-
tary file. The existing studies have already demonstrated 
the site cg13917614 is associated with smoking [52, 57]. 
Although we don’t find direct evidence that the CNP 
gene is associated with immune function based on the 

Table 3 Baseline characteristics of the HIV-positive patients included in the analysis

a  ART  adherence of antiretroviral therapy

Variable Non-smoker (N = 236) Smoker (N = 351) Total (N = 587) P-value

Age 49.72 ± 8.86 49.13 ± 6.69 49.37 ± 7.63 0.391

Race White 197 (83.5%) 307 (87.5%) 504 (85.9%) 0.008

Black 21 (8.9%) 36 (10.3%) 57 (9.7%)

Others 18 (7.6%) 8 (2.3%) 26 (4.4%)

ART a Yes 185 (78.4%) 273 (77.8%) 458 (78%) 0.941

No 51 (21.6%) 78 (22.2%) 129 (22%)

CD4 0.05 ± 0.05 0.05 ± 0.05 0.05 ± 0.05 0.228

CD8 0.17 ± 0.08 0.18 ± 0.08 0.18 ± 0.08 0.368

NK 0.09 ± 0.06 0.07 ± 0.05 0.07 ± 0.06 < 0.001
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existing literature, relevant studies showed a link between 
CNP and inflammatory responses in which the mecha-
nism remains further study [58, 59].

The encoded protein of the LILRA2 gene can suppress 
innate immune response [60, 61]. The results reveal that 
smoking will promote the demethylation of cg16893868, 
leading to an increase in gene LILRA2 expression and 
ultimately reducing the estimated NK cell level. It has 
been found that the remaining CpG sites cg20460771, 
cg03164561, cg03605454, cg09529165, and cg01500140 
are all associated with smoking [11, 52, 62–64]. Further 
insights into the discovered CpG mediators in genome-
wide epigenetic studies will be meaningful.

Discussion
The causal relationship obtained in high-dimensional 
mediation analysis usually depends on no-confounding 
assumption. However, confounding is almost inevitable in 
observational studies owing to the lack of randomization 
of the baseline covariates in practice. Previous studies 
show the utilization of PS method such as PS-adjustment 
and IPW in high-dimensional mediation analysis, but 
those face the issue of extreme PS distribution.

In this article, we integrated OW approach into the 
high-dimensional mediation model, which can address 
extreme PS distribution and better adjust for confound-
ing. Finally, we developed a high-dimensional mediation 
analysis workflow consisting of OW confounding adjust-
ment, SIS, de-biased Lasso penalization for potential 
mediator screening, and the high-dimensional mediation 
test underlying the mixture null distribution of P-values.

Simulation results indicate that the mHIMA2 with OW 
approach presented in this study performs best among all 
the compared models with the highest TPR, acceptable 
FDP level, and the smallest MSE in mediating effect esti-
mation. In addition, the mHIMA2 embedded de-biased 
Lasso method performs better when moderate correla-
tions between mediators exist.

Simulation study also suggestedthe proposed method 
would perform better when the sample size was 
increased. This result suggests that when the proposed 
method is used for the analysis of mediating effects on 
real data, a sufficient sample size should also be ensured. 
Such a feature is also consistent with other existing meth-
ods [5, 9, 14, 17, 19, 49]. Furthermore, the dimensionality 
of potential mediators has little effect on the performance 
of the proposed method.

In most of the previous studies [5, 9, 13, 17], it didn’t 
take confounding adjustment into account in the SIS 
process. However, we adopted the PS-based method 
to adjust confounding, thus improving the accuracy of 
mediators screening. Moreover, it has been assumed that 
mediators are linearly independent of each other, but 
such an assumption is often not strictly valid in real data. 
The violation of the mediators’ independence assump-
tion often affects the accuracy of mediators selection and 
precision of mediating effect estimation. The proposed 
method can effectively deal with this issue which can tol-
erate the correlation between the mediators and ensure 
the robustness of mediators selection, multiple mediation 
testing, and mediating effect estimation.

Table 4 Summary of the selected CpGs mediators with a %TE > 5 by the mHIMA2 models

a Method denotes the combination of the mHIMA2 approach and different confounding adjustment methods. Such as mHIMA2-OW denotes the mHIMA2 method 
with overlapping weighting
b %TE total effect proportion

- No related genes were found

Methoda CpG Chrom Gene α̂ β̂ %TEb P-value

mHIMA2-RA cg20460771 1 PTAFR 0.0211 -0.0572 5.2398 0.0019

cg06040872 17 CCL18 0.0157 -0.1092 7.4323 0.0002

cg16893868 19 LILRA2 -0.0155 0.1015 6.8344 < 0.0001

mHIMA2-PSR cg13917614 17 CNP 0.0230 -0.1936 19.3678 0.0001

cg03164561 2 NMUR1 0.0149 -0.1146 7.4161 0.0015

cg03605454 4 RP11-526A4.1 0.0154 -0.1033 6.9094 0.0028

cg09529165 17 - 0.0198 -0.2038 17.5660 < 0.0001

cg01500140 19 LIM2 0.0157 -0.1393 9.5028 0.0013

cg16893868 19 LILRA2 -0.0155 0.1117 7.5217 0.0012

mHIMA2-IPW cg13917614 17 CNP 0.0230 -0.0717 7.1289 0.0001

cg16893868 19 LILRA2 -0.0157 0.0913 6.1962 0.0001

mHIMA2-OW cg13917614 17 CNP 0.0230 -0.0737 7.3785 0.0001

cg16893868 19 LILRA2 -0.0155 0.0916 6.1681 0.0001
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Similar to other two-step approaches, the error of the 
first model may be introduced and cumulated in the 
second step, because the first-step can not quarantee 
100% correctness. To avoid this, we set a relatively loose 
screening criterion with d = 2n/log(n) to select the top 
d largest effect mediators [15–17, 49] in the first step 
to control false negative while avoiding the increase of 
false positive error according to the application recom-
mendation of SIS approach. Though the errors cannot be 
totally avoid, this can reduce the error in the preliminary 
screening of mediators and prevent serious error cumu-
lation in the second step to some extend. As shown in 
the simulation, the proposed two-step model performed 
well. Besides, previous published studies also have dem-
onstrated the error cumulation issue in two-step models 
can be controlled well in the similar way as we did, and 
well not cause serious bias in the final results [14, 65–70].

Meanwhile, we applied the proposed method to the 
dataset GSE117859 obtained from the GEO databases 
and identified several significant DNAm mediators, 
including the sites cg13917614, cg16893868, cg20460771, 
cg03164561, cg03605454, cg09529165, and cg01500140. 
Among them, site cg16893868 in LILRA2 gene has 
been demonstrated to be associated with smoking and 
immune function [60, 61]. That indicates that the pro-
posed method can identify reliable mediators in empiri-
cal data analysis.

The presence of confounding in observation studies 
always is a major challenge to obtaining causal relation-
ships. Currently, most genetic studies are based on obser-
vational research without randomization of baseline 
characteristics. Particularly, the high-dimensional media-
tion analysis always faces some issues, such as the accu-
racy of the high-dimensional mediation selection and 
the low power of multiple mediation test [13, 14, 17, 18]. 
Although the utilization of PSR and IPW offers a solution 
of confounding adjustment in classical HDMA workflow, 
it still faces the issue of extreme PS distribution.

The proposed OW-based method can provide a more 
precise and stable mediating effect estimation. How-
ever, the misspecification of the outcome model and PS 
model can not be avoid in practice. Hence, the doubly 
robust methods may be desirable to be applied in HDMA 
workflow in future study. Even if the JS-mixture method 
was proposed to improve the power of multiple media-
tion testing, other more powerful test methods still are 
appealing in large-scale genome-wide epigenetic studies 
[13, 18]. Conducting further simulation and methodology 
studies to compare different powerful test methods may 
provide useful reference for future studies. It should also 
be noticed that the existence of unmeasured confound-
ing is out of the scope of this paper. Previews published 

studies have provided serval applicable methods to deal 
with this issue [49, 71].

Conclusion
Overall, the mHIMA2 with OW adjustment has suf-
ficient power in selecting potential true mediators and 
obtaining precise estimation for mediation effects. It can 
be recommended in practical high-dimensional media-
tion analysis, especially in epigenetic study.
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