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Abstract 

Accelerometers, devices that measure body movements, have become valuable tools for studying the fragmentation 
of rest-activity patterns, a core circadian rhythm dimension, using metrics such as inter-daily stability (IS), intradaily 
variability (IV), transition probability (TP), and self-similarity parameter (named α ). However, their use remains mainly 
empirical. Therefore, we investigated the mathematical properties and interpretability of rest-activity fragmentation 
metrics by providing mathematical proofs for the ranges of IS and IV, proposing maximum likelihood and Bayesian 
estimators for TP, introducing the activity balance index (ABI) metric, a transformation of α , and describing distribu-
tions of these metrics in real-life setting. Analysis of accelerometer data from 2,859 individuals (age=60-83 years, 
21.1% women) from the Whitehall II cohort (UK) shows modest correlations between the metrics, except for ABI 
and α . Sociodemographic (age, sex, education, employment status) and clinical (body mass index (BMI), and number 
of morbidities) factors were associated with these metrics, with differences observed according to metrics. For exam-
ple, a difference of 5 units in BMI was associated with all metrics (differences ranging between -0.261 (95% CI -0.302, 
-0.220) to 0.228 (0.18, 0.268) for standardised TP rest to activity during the awake period and TP activity to rest dur-
ing the awake period, respectively). These results reinforce the value of these rest-activity fragmentation metrics 
in epidemiological and clinical studies to examine their role for health. This paper expands on a set of methods 
that have previously demonstrated empirical value, improves the theoretical foundation for these methods, and eval-
uates their empirical use in a large dataset.
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Introduction
A large number of human behaviours and physiologi-
cal functions follow a circadian rhythmicity, such as for 
examples sleep/wake cycles, body temperature, and 
hormonal levels [1]. Circadian regulation of these pro-
cesses is critical to maintaining homeostasis; prolonged 
disruptions are detrimental to health [2, 3], highlighting 
the importance of precise, scalable measures of human 
circadian rhythm (CR). Accelerometers, devices that 
record acceleration of the part of the body to which they 
are attached, have emerged as valuable tools to measure 
dimensions of CR based on movements in free-living 
conditions [4, 5].

An important dimension of CR is the fragmenta-
tion of rest-activity patterns over several consecutive 
days [6, 7]. Over time several metrics have been pro-
posed to quantity the rest-activity fragmentation using 
accelerometry data. The first and now commonly used 
metrics are inter-daily stability (IS) and intradaily vari-
ability (IV). IS provides information on how constant 
the rest-activity pattern is between days and IV quanti-
fies the fragmentation of activity pattern between con-
secutive hours over the observation period [6, 8]. Later 
the transition probability (TP) has been proposed to 
measure the likelihood of transitioning from a state of 
rest to a state of activity, or vice versa [7, 9]. Overall, 
the metrics described above are increasingly used in 
the context of fragmentation of rest-activity patterns 
but they can be used in different contexts involving 
series of dichotomous states, apart for IS and IV that 
are more specific to organisation of activity during a 
period of time. In parallel, the detrended fluctuation 
analysis (DFA) [10] initially used in genomics has been 
used to identify hidden patterns where activity fluctu-
ations are used as proxy for rest-activity fragmentation 
[11, 12]. In DFA, the self-similarity parameter, also 
known as the scaling exponent or α , is a key metric for 
description of time series, such as stationary and non-
stationary time series, random noise and fractal noise, 
among others [13].

Although metrics of rest-activity fragmentation are 
increasingly used in the literature, mathematical prop-
erties of these metrics and their interpretation have 
not been entirely described. First, although the range 
of IS in [0,  1] and IV in [0,  2] has been suggested by 
van Someren et  al. (1999) [14], no proper mathemati-
cal proof is available, limiting confidence in interpret-
ability, particularly for extreme values. Second, Lim 
et al. (2011) [7] and Di et al. (2017) [9] have proposed 
different estimations of TP, both based on heuristic 
estimators, limiting their mathematical properties as 
compared to estimators based on maximum likelihood 
(ML) or Bayesian inference. In addition, the properties 

of these two estimators have not been compared. Third, 
interpretation of DFA-derived metrics is not straight-
forward. Finally, to our knowledge, only one study 
has shown the correlation between IS, IV, TP (based 
on Lim et  al. (2011) definition [7]) and DFA within a 
unique sample, older adults living in residential facili-
ties, limiting generalisability of findings [7].

In order to overcome limitations of the current evi-
dence on rest-activity fragmentation metrics, the pre-
sent study aims to 1) provide mathematical proof of 
the range of IS and IV, 2) propose a ML estimator, the 
gold standard of estimation, and a Bayesian estimator, 
with good properties, for TP, and 3) propose a new 
metric, that is a transformation of DFA-derived self-
similarity parameter, named activity balance index 
(ABI), that reflects how balanced is the activity over 
several days, and 4) describe these metrics using data 
from the population-based Whitehall II accelerometer 
sub-study.

Materials and methods
Preliminary definitions
Rest-activity fragmentation metrics are calculated 
based on different time series derived from raw accel-
eration signals (Table  1). These time series differ as 
a function of units (eg minute or hour) and outcomes 
considered (acceleration, dichotomous state (rest/activ-
ity), or proportion of the epoch in a state). Here are 
some preliminary definitions of these time series.

Definition 1  For each individual, a discrete stochastic 
process representing the intensity of movement over a 
time period [0, T] is defined as {Xt}t∈T , with Xt ∈ [0, δx] , 
δx < ∞ , and t corresponds to an epoch. The observed 
time series is a vector represented as x = (x1, . . . , xT )

′ . 
In the case of accelerometry data, xt corresponds to the 
acceleration recorded at the tth epoch and δx is the maxi-
mum measurable record for xt.

Definition 2  For each individual, a second stochas-
tic process representing the active (a) and rest (r) states 
is defined as {Yt}t∈T , with Yt ∈ {r, a} , where Yt = a if 

Table 1  Key information of each time series

Time series x = (x1, . . . ,xT )
′ y = (y1, . . . , yT )

′ z = (z1, . . . ,zP)
′

Unit 1 min 1 min 1 hour

Total length T=10080 T=10080 P=168

Outcome acceleration rest/activity proportion

Threshold none 40 mg 40 mg
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Xt > δy , and δy is the threshold which separates active 
and rest based on the amount of acceleration per epoch. 
The observed time series is a vector represented as 
y = (y1, . . . , yT )

′.

Definition 3  For each individual, a third stochas-
tic process representing the proportion of active states 
per hour is defined as {Zp}p∈P , with Zp ∈ [0, 1] , where 
Zp = δ

−1
z

δz
t=1 I(yt+δz(p−1) = a) , I(·) is an indicator 

function equal to one if the condition is true and zero 
otherwise, δz is the number of epochs which build 1 hour 
(eg if one epoch corresponds to 1 minute then δz = 60 ), p 
corresponds to a period of 1 hour, and P is the total num-
ber of hours during the period [0, T]. The observed time 
series is a vector represented as z = (z1, . . . , zP)

′.

Data
The Whitehall II study is an ongoing prospective 
cohort study established in 1985-1988 among 10308 
British civil servants with clinical examinations every 
four-five years since inception. A written informed 
consent for participation was obtained at each con-
tact. Research ethics approval was obtained from the 
University College London ethics committee (latest 
reference number 85/0938). An accelerometer meas-
ure was added to the 2012-2013 wave of data collec-
tion (age range 60 to 83 years) for participants seen at 
the London clinic and those living in the south-eastern 
regions of England who underwent clinical examina-
tion at home. Participants were requested to wear a 
tri-axial accelerometer (GENEActiv Original; Activ-
insights Ltd, Kimbolton, UK) on their non-dominant 
arm for nine consecutive 24-hour days. Accelerom-
eter data, sampled at 85.7Hz and expressed relative to 
gravity ( 1g = 9.81m/s2 ), were processed using GGIR 
v2.9-0 [15]. The Euclidean norm minus one (ENMO) 
of raw acceleration was calculated and corrected for 
calibration error and non-wear time. These accelera-
tion values were averaged over 60-second epochs and 

we used a 40 mg cut-point to differentiate between rest 
and active periods as previously done in studies using 
wrist-worn raw acceleration devices [16, 17]. This cut-
point was proposed in a study to differentiate between 
inactive periods and activities of light or moderate-to-
vigorous intensities where adult participants under-
took series of activities in a laboratory and mimic 
postures and behaviours from free-living conditions 
[18]. This cut-point is in agreement with a more recent 
study among older adults that showed good classifica-
tion accuracy based on oxygen consumption during 
nine laboratory-based activities of daily living [19].

Waking periods (ie, periods between waking and sleep 
onset) for each day were identified using an algorithm 
for sleep detection based on wrist movement along with 
self-reported sleep onset and waking time using a sleep 
diary. This algorithm has been previously described 
and evaluated against polysomnography data [20]. Data 
from waking onset on day 2 to same time on day 8 were 
retained, resulting in seven days of data. Non-wear time 
was detected using an algorithm that has been previ-
ously described [21], and for the present study 2859 par-
ticipants who wore the accelerometer over the full seven 
consecutive days were included in analyses.

For each individual, three time series were considered: 
the time series corresponding to the 1-minute epoch 
acceleration over seven days xt , t = 1, . . . , 10080 (the 
number of minutes over seven days), see Definition 1; the 
time series corresponding to the 1-minute epoch active 
state over seven days, yt , t = 1, . . . , 10080 , see Defini-
tion 2; and the time series corresponding to 1-hour pro-
portion of active state over seven days, zp , p = 1, . . . , 168 
(the number of hours over seven days), see Definition 3. 
A summary of the three considered time series is avail-
able in Table 1, and an illustration is displayed in Fig. 1. 
For illustrative purposes, ten participant profiles were 
selected to highlight differences in metrics observed in 
real-life situations (six of them are displayed in Figs.  4, 
5, 6, 7, 8, and 9 and four in the Supplementary material 

Fig. 1  Example of three time series from the same individual



Page 4 of 15Danilevicz et al. BMC Medical Research Methodology          (2024) 24:132 

(figures S2-S5)). They were chosen based on their lowest 
or highest value in the metrics.

Measures of socio-demographic (age, sex, education) 
and health-related (body mass index (BMI), prevalent 
morbidities) factors were collected along with the accel-
erometer data in 2012-2013. Education was categorised 
as zero if the individual has less than secondary school 
education and one otherwise. BMI was based on meas-
ured weight and height (kg/m2 ), and the number of 
prevalent morbidities was assessed using clinical exami-
nations in the study and linkage to electronic health 
records and includes coronary heart disease, stroke, heart 
failure.

A total of 4,880 individuals were invited to participate 
to the Whitehall accelerometer sub-study. Out of these, 
4,282 agreed to wear the accelerometer and had no con-
traindications (allergy to plastic or travelling abroad). 
Among them, 2,859 individuals had complete data with-
out any non-wear period for a continuous period of 
seven days corresponding to a total of 10,080 one-minute 
epochs. The mean age of the participants was 69.2 years, 
with a standard deviation (SD) of 5.7 years. A total of 602 
were women (21.1%), 1170 (40.9%) had less than second-
ary school education level, 495 (17.3%) were currently 
employed, and 1140 (39.9%) had at least one morbidity. 
The mean body mass index (BMI) in the study sample 
was 26.7 (SD=4.3) kg/m2.

Inter‑daily stability and intradaily variability
Properties of IS and IV
IS measures how constant the rest-activity pattern is 
between days [8]. Considering that we measure H hours 
over D days, we have a total number of hours P = H × D 
over a full observation period. For IS, it is useful to organ-
ize the vector z from Definition 3 in a matrix form as

where zd,h is an element for the dth line and hth column, 
where d = 1, . . . ,D and h = 1, . . . ,H . IS is computed as

where z̄h = 1
D

∑D
d=1 zd,h is the hour mean over the D 

days of measurement, and z̄ = 1
P

∑P
p=1 zp is the general 

mean over the full observed period.
IV represents the fragmentation of the rest-activity 

pattern over a long period, it measures the variability 

ż =







z1,1 · · · z1,H
...

...
zD,1 · · · zD,H






,

IS(z) =
P
∑H

h=1(z̄h − z̄)2

H
∑P

p=1(zp − z̄)2
=

D
∑H

h=1(z̄h − z̄)2
∑H

h=1

∑D
d=1(zd,h − z̄)2

,

between consecutive hours (Fig. 1c) [8]. IV is calculated 
as

Some mild conditions should be established to derive 
the properties of IS and IV metrics. They are: 

	(A1)	 Zp follows an autoregressive model of order 1 
(AR(1) model) as 

 where µ is the mean of the stochastic process, φ 
is a fixed but unknown parameter with |φ| < 1 , ǫp 
is a Gaussian noise.

	(A2)	 0 ≤ φ < 1 and P → ∞.

The assumption (A1) is required to define the IV range, 
because we need to determine the relationship between 
Zp and Zp−1 , and the AR(1) model is a very simple and 
flexible model, which can fit several different real situa-
tions. Although, we assume a stationary process, see unit 
root conditions in Dickey and Fuller (1979) [22]. The 
assumption (A2) is imposed to guarantee a positive auto-
correlation 0 ≤ φ , and a long period of observation, P, of 
the time series.

Theorem  1  Given a stochastic process {Zp}p∈P , 
IS(z) ∈ [0, 1].

Theorem  2  Given a stochastic process {Zp}p∈P and 
under assumption (A1), IV(z) ∈ [0,∞).

Theorem 3  Given a stochastic process {Zp}p∈P and under 
assumptions (A1) and (A2), limP→∞(IV(z)) ∈ [0, 2].

The proofs of these theorems are provided in the Sup-
plementary material (Section 1).

Interpretation of IS and IV
In the demonstration of Theorem  1 (Supplementary 
material - Section  1), we showed that a higher value of 
IS reflects a rest-active pattern that is more constant 
between days, see (Table 2).

In the demonstration of Theorem  2 (Supplementary 
material - Section 1), we showed that 1) if φ goes to one 
(perfect autocorrelation), then IV goes to zero, reflecting 
a low rest-activity fragmentation between hours; 2) if φ 
goes to zero (uncorrelated random noise), then IV goes 
to two, representing a high rest-activity fragmentation 

(1)IV(z) =
P
∑P

p=2(zp − zp−1)
2

(P − 1)
∑P

p=1(zp − z̄)2
.

Zp = µ+ φZp−1 + ǫp,
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between hours; 3) in some specific cases, IV can be 
greater than two, this can occur when the sample size 
P is too small, or φ < 0 which may be seen in ultradian 
rhythm, which means that the rhythm cycle lasts less 
than a day [14], or in the case of use of high frequency 
data [23]. These statements agree with the previous 
claims given by van Someren et  al. (1999) about IS and 
IV [14]. Some authors use IV based on the x time series 
[24–26]. In that case, the present properties do not hold 

anymore as the assumptions (A1) and (A2) are verified 
exclusively for z.

Transition probability
Properties of TP
The TP in dichotomous stochastic processes represents 
the probability of a state change given a period of time 
spent in a specific state. A formal characterization of TP 
of changes in rest/activity state is given in Definition 4.

Table 2  Range, interpretability, strengths and limitations of rest-activity fragmentation metrics

Inter-daily stability (IS)

    • Measure: how constant is rest-activity pattern between days.

    • Range: [0, 1]

    • Interpretation: higher values represent more constant rest-activity pattern.

    • Strengths: it uses smooth data (over hours of the day) and is less sensitive to extreme values.

    • Limitations: it depends on differentiation between rest/activity states for which no standards exist.

Intradaily variability (IV)

    • Measure: the variability in activity hour by hour throughout the days.

    • Range: [0,∞)

    • Interpretation: higher values represent more fragmented rhythm, values higher than two means ultradian rhythm or small sample size.

    • Strengths: it uses smooth data (over hours of the day) making it less sensitive to extreme values.

    • Limitations: it depends on differentiation between rest/activity states for which no standards exist.

Transition probability (TP)

    • Measure: the TP from rest to activity (or activity to rest).

    • Range: (0, 1]

    • Interpretation:

        – TPra,w : higher values correspond to higher TP from rest to activity when in a rest period during the day, denoting a more fragmented rest/
sedentary behaviour during the day.

        – TPra,s : higher values correspond to higher TP from rest to activity when in an rest period during the night, denoting a more fragmented rest 
during the night.

        – TPar ,w : higher values correspond to higher TP from activity to rest when in an active period during the day, denoting a more fragmented 
activity pattern during the day.

        – TPar ,s : higher values correspond to higher TP from activity to rest when in an active period during the night, denoting a higher propensity 
to go back to rest when active during the night.

    • Strengths: it is based on dichotomous state (rest or activity) at the bout level, making it less sensitive to extreme values. It is defined separately 
during awake (day) and sleep (night) periods, allowing inference on the relevance of fragmentation of rest and activity separately for both peri-
ods.

    • Limitations: it depends on a cut-point to differentiate rest from activity states.

Self-similarity parameter ( α)

    • Measure: the self-similarity of acceleration signal over the observation period.

    • Range: (0, 2)

    • Interpretation: values in the range (0, 1) means stationary motion behaviour. Values in the range (1, 2) means nonstationary motion behaviour. 
There are critical points as: 0.5 means random noise, 1 fractal noise and 1.5 random walk.

    • Strengths: it considers the full activity distribution and is not dependent on the choice of a cut-point to differentiate rest from activity states.

    • Limitations: it is sensitive to extreme values that could be observed in the data. The interpretation requires mathematical knowledge.

Activity balance index (ABI)

    • Measure: how the activity is balanced over the observation period.

    • Range: (0, 1]

    • Interpretation: higher values represent more balanced movement behaviour.

    • Strengths: it considers the full activity distribution and is not dependent on the choice of a cut-point to differentiate rest from activity states. It 
is easy to interpret.

    • Limitations: it is sensitive to extreme values that could be observed in the data.
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Definition 4  For each individual, given a stochastic 
process determined by Definition  2 the TP from r to a 
given an uninterrupted period of rest with length equal 
to s is

and the TP from a to r given an uninterrupted period of 
activity with length equal to s is

The two conditional probabilities from Definition  4 
are proposed by Lim et al. (2011) [7]. The specific cases 
of s = 1 returns two probabilities proposed by Di et  al. 
(2017) [9]. We aim to propose a ML estimator to TP 
because if the model assumptions are aligned, there is 
no better estimation than ML, being a gold standard. 
Although, if there is available knowledge, we can aggre-
gate this information and build a Bayesian estimator that 
is even more accurate than ML. Beforehand, some nota-
tions need to be introduced for readability.

Definition 5  r = (r1, . . . , rnr )
′ is a nr-vector that 

records the length of each consecutive bout of rest, 
where nr is the number of bouts of rest (nr ≤ T ) so that 
r1 is the length of the first bout of rest, r2 of the 2 nd bout 
of the rest, and rnr the length of the last bout of rest. 
Tr =

∑nr
i=1 ri is the total length of rest (in epochs unit), 

ri ∈ {1, . . . , Sr} , Sr is the duration of the longest bout of 
rest.

Definition 6  a = (a1, . . . , ana)
′ is a na-vector that 

records the length of each consecutive bout of activ-
ity, where na is the number of bouts of activity (na ≤ T ) . 
Ta =

∑na
i=1 ai = T − Tr is the total length of activity (in 

epochs unit), ai ∈ {1, . . . , Sa} , Sa is the duration of the 
longest bout of activity.

Here are two assumptions: 

	(B1)	 The stochastic process {Yt}t∈T is stationary.
	(B2)	 The stochastic process {Yt}t∈T has a finite mem-

ory equal to s ≥ 1.

Theorem  4  Given a stochastic process {Yt}t∈T , under 
assumptions (B1) and (B2), the ML estimators of πra(s) 
and πar(s) are π̂ra(s)ML =

∑nr
i=1 I(ri≥s)−I(yT=r)

∑nr
i=1(ri−s+1)I(ri≥s)−I(yT=r)

 and 

π̂ar(s)ML =
∑na

i=1
I(ai≥s)−I(yT=a)

∑na
i=1

(ai−s+1)I(ai≥s)−I(yT=a)
 , for s = 1, . . . , Sr − 1 , 

and s = 1, . . . , Sa − 1 , respectively.

πra(s) = P(Yt = a|Yt−1 = r, . . . ,Yt−s = r),

πar(s) = P(Yt = r|Yt−1 = a, . . . ,Yt−s = a).

Corollary 1  Given a stochastic process {Yt}t∈T  , 
under assumptions (B1) and (B2), the ML estimators 
of πra(1) and πar(1) are π̂ra(1)ML =

nr−I(yT=r)
Tr−I(yT=r) and 

π̂ar(1)ML =
na−I(yT=a)
Ta−I(yT=a).

Corollary 2  Given a stochastic process {Yt}t∈T , under 
assumptions (B1) and (B2), the Bayesian estimators of 
πra(1) and πar(1) are π̂ra(1)B =

nr−I(yT=r)+�

Tr−I(yT=r)+�
 and 

π̂ar(1)B =
na−I(yT=a)+�

Ta−I(yT=a)+�
 , for any hyperparameter � > 0.

The proof of Theorem  4 is provided in Supplemen-
tary material - Section  1 using as a main argument the 
properties of a Bernoulli stochastic process [27]. Also the 
proof of Corollary 1 is given in Supplementary material 
- Section 1. The proof of the Corollary 2 is a direct appli-
cation from Corollary 1 for a Binomial model. Then the 
Beta-Binomial posterior estimator is a well-known result 
([28], page 104).

Corollary  1 makes evident the intuitive relation 
between the number of transitions per total time in a 
specific state, which is a gain in terms of interpretability. 
In the Bayesian estimator introduced in Corollary  2, � , 
present both in the numerator and denominator, is a pre-
specified hyperparameter to the Beta prior distribution 
for the transition probability. This parameter allows the 
Bayesian estimator to always exist even if any of Tr or Ta 
is zero. If � = 1 , corresponding to the Uniform distribu-
tion prior, we assume that in a sequence of nights there 
is at least one epoch of activity and in a sequence of days 
there is at least one epoch of rest. Other values might be 
explored such as � = 0.5 corresponding to the Horseshoe 
prior [29], or � = 10−6 which returns a numerically insig-
nificant difference between ML and Bayesian estimators. 
Larger values than one for � may not be relevant in this 
context as they are likely to deviate too much from the 
ML estimators.

Remark 1  Even without any assumption about the sto-
chastic process in terms of memory and stationary, some 
nonparametric measures are avaliable as the reciprocal 
average duration (RAD) of rest, RADr , and the RAD of 
activity, RADa , which are defined as

This metric appears in previous work [30], but it was 
used to approximate the target probabilities πra(1) 
and πar(1) [9]. If yT = r , then RADa = π̂ar(1)ML 
and RADr > π̂ra(1)ML as Tr > nr ; if yT = a , then 
RADr = π̂ra(1)ML and RADa > π̂ar(1)ML as Ta > na.

(2)RADr =
nr

Tr
, RADa =

na

Ta
.
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Let us give a hypothetical example for a small sample 
size T = 15 as y = (a, a, a, r, r, a, r, a, a, a, r, r, a, r, r)′ 
to illustrate the difference between π̂ra(1)ML , π̂ra(1)B 
and RADr , as well as π̂ar(1)ML , π̂ar(1)B and RADa , with 
hyperparameter � = 0.5 . Here we have r = (2, 1, 2, 2)′ 
and a = (3, 1, 3, 1)′ , this corresponds to nr = 4 , 
nr − I(yT = r) = 3 , na = 4 , na − I(yT = a) = 4 , Tr = 7 , 
Tr − I(yT = r) = 6 , Ta = 8 , Ta − I(yT = a) = 8 . So we 
have three changes ( nr − I(yT = r) ) in six opportuni-
ties ( Tr − I(yT = r) ) ie 50% of transitions from r to a by 
the ML estimator, the RADr inflates this result to 57% by 
adding a transition for the last observation, but actually 
we don’t know what would happen in y16 . From a to r, 
RADa and ML estimators are the same, and Bayesian esti-
mator is also really close. For convenience, these values 
are available in Table 3.

The conditional probabilities πar(1) and πra(1) are 
more convenient to interpret than πar(s) and πra(s) . In 
the aim of summarizing TP, Lim et al. (2011) proposed 
a bounded average calculated by LOWESS smooth-
ing over a range of s values [7]. This method requires to 
determine the boundary of the s values for which there is 
not a straightforward method. In the application part of 
this paper, we chose s = 1 and partitioned the observed 
vector y in waking and sleep periods as described in 
Remark 2.

Remark 2  We propose a Bayesian estimator that com-
pared to ML or RAD, avoids to have values that can-
not be computed in case of no time spent in a state 
(denominator null). For an epidemiological motivation, 
we split these metrics by wake and sleep windows (that 
is the period between waking and sleep onset (wake), 
and between sleep and next waking for the day to start 
(sleep), respectively), as

the TP from rest to active period during the waking win-
dow, and the TP from rest to active period during the 
sleep window, respectively, and

TPra,w =
nr,w − I(yT = r)+ �

Tr,w − I(yT = r)+ �
, TPra,s =

nr,s − I(yT = r)+ �

Tr,s − I(yT = r)+ �
,

TPar,w =
na,w − I(yT = a)+ �

Ta,w − I(yT = a)+ �
, TPar,s =

na,s − I(yT = a)+ �

Ta,s − I(yT = a)+ �
,

the TP from active to rest period during the waking win-
dow, and the TP from active to rest period during the 
sleep window, respectively, where � ∈ (0, 1] , na,w is the 
number of bouts of activity during the awake time, na,s 
is the number of bouts of activity during the sleep time, 
nr,w is the number of bouts of rest during the awake time, 
nr,s is the number of bouts of rest during the sleep time, 
Tr,w is the total rest time during the awake time, Tr,s is 
the total rest time during the sleep time, Ta,w is the total 
activity time during the awake time, and Ta,s is the total 
activity time during the sleep time.

Interpretation of TP
When using a small � and a long period of observation, 
higher TPra,w corresponds to more transitions from rest 
to active periods during the awake window, reflecting a 
more fragmented pattern of rest, higher TPar,w corre-
sponds to more transitions from active to rest periods 
during the awake window, denoting a more fragmented 
pattern of activity. A similar interpretation applies to 
the metrics defined during the sleep window (Table  2). 
In case of one state not being observed during a window 
as for example no activity at all during the sleep win-
dow, the TP exists and transition from this unobserved 
state to the observed state is equal to 1. This means that 
in case this person moves to this unobserved state, it is 
highly likely that he or she will return to the observed 
state quickly.

Detrended fluctuation analysis
Introduction to DFA
The DFA is a powerful analytical tool for time series 
analysis initially proposed by Peng et al. (1994) to ana-
lyse long-term correlation of nucleotides [10]. More 
recently it has been used in the context of movement 
behaviour to quantity fractal fluctuations in activ-
ity over a range of time scales [12, 31]. In practise, it 
aims to evaluate to which extent the activity pattern (in 
terms of temporal and structural properties) is similar 
at different time scales. Estimating the self-similarity 
parameter allows differentiating stationary and nonsta-
tionary stochastic processes and identifying white, pink 
(fractal), or brown noise patterns. These key properties 

Table 3  Hypothetical example

Method RADr π̂ra(1)ML π̂ra(1)B RADa π̂ar(1)ML π̂ar(1)B

Numerator 4 3 3.5 4 4 4.5

Denominator 7 6 6.5 8 8 8.5

Estimation 0.57 0.50 0.54 0.50 0.50 0.53
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might be hidden in complex time series, but DFA is a 
way to reveal them.

Let us consider a bounded stochastic process {Xt}t∈T 
from Definition 1. Take the accumulated signal with zero 
mean as

where x̄ = T−1
∑T

t=1 xt . Divide c = (c1, . . . , cT )
′ in B 

nonoverlapping boxes of equal n-size as c1 = (c1, . . . , cn)
′ , 

c2 = (cn+1, . . . , c2n)
′ , until cB = (c(B−1)n+1, . . . , cBn)

′ . For 
each box, we fit a polynomial of order l, eg, the polyno-
mial for the jth box is fit using an ordinary least squares 
regression as

where t = (j − 1)n+ 1, . . . , jn . In the application sec-
tion of this paper, we restricted our analysis to l = 1 as 
in previous works [26, 32]. In the Supplementary mate-
rial (Section  3), we replicated the analysis using l = 2 
for comparison. A polynomial order higher than two 
is not expected to change the results [33]. Note that 
β = (β0, . . . ,βl)

′ is different to each jth box and each 
n-size, consequently ft(n) depends of t and n. To detrend 
the integrated time series, ie, remove the trend of ct , we 
take the difference of each pair ct and ft(n) . For a given 
n-size box, the root mean square fluctuation is

Repeat the operation for a broad range of n-size boxes, 
eg, Mesquita et  al. (2020) recommend taking a sample 
on the grid between 4 ≤ n ≤ T/4 [34, 35]. The Fig.  2 
displays the steps of DFA for two n-size boxes, the first 
with 60 minutes (Fig. 2c) and the second with 30 minutes 
(Fig. 2d).

Summary statistic for DFA and interpretation
Instead of displaying a function of F(n) for a grid of n, 
we can summarize this information by the self-similarity 

ct =

t
∑

i=1

(xi − x̄), t ≤ T ,

(3)ft(n) = β̂0 + β̂1t + · · · + β̂l t
l ,

(4)F(n) =

√

√

√

√

1

T

T
∑

t=1

(ct − ft(n))2.

parameter. The root mean square fluctuation in (4) is 
proportional to the n-size, F(n) ∝ nα , where α is called 
the scaling exponent or self-similarity parameter, which 
is estimated using

where ǫn follows an independent Gaussian error, µ is an 
intercept, and an ordinary least squares regression (OLS) 
is used to calculate α̂.

The interpretation of α is quite precise, but requires 
much mathematical jargon. Given a stochastic process as 
determined by Definition 1, the self-similarity parameter 
belongs to the range 0 < α < 1 for stationary stochastic 
processes, and 1 < α < 2 for nonstationary as proofed by 
Løvsletten (2017) [36]. Some critical values of the scal-
ing exponent are of distinct mathematical importance 
as α = 0.5 means that the stochastic processes is white 
noise, α = 1 is related to pink or fractal noise, α = 1.5 is 
the case of a random walk [32].

Activity balance index: a new DFA‑derived metric
Given previous empirical results, Hausdorff et al. (1996) 
hypothesized that many biological systems present a 
fractal nature, ie, α = 1 [37]. A further hypothesis that 
healthy people presents fractal noise for heart and walk-
ing rates has been elaborated by Peng et al. (2000) [38]. 
In the context of activity behaviour, we have introduced 
a novel metric named activity balance index (ABI), that 
measures how the activity over the observed period is 
balanced, higher values reflect a more balanced pattern 
of activity. It is a transformation of α̂ as

where α̂ ∈ (0, 2) . If α̂ goes to one, then |α̂ − 1| goes to zero 
and ABI(α̂) goes to one. On the other direction, as α̂ goes 
to two or zero, which are the extremes for α [36], |α̂ − 1| 
goes to one and ABI(α̂) goes to 0.0006. The ABI has two 
advantages: it penalizes the scattering of α̂ in both direc-
tions and spreads its values over a large range between 
(0.0006, 1] or (0, 1] for simplicity.

log(F(n)) = µ+ α log(n)+ ǫn, 4 ≤ n ≤ T/4,

(5)ABI(α̂) = exp

{

−|α̂ − 1|

exp(−2)

}

,

Fig. 2  Example of DFA procedure
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We introduced the ABI that focusses on the fractal 
noise nature of the signal to evaluate how the activity is 
balanced over the observation period. If fractal noise rep-
resents an optimum balance for activity behaviour, then 
healthy individuals would present higher values for their 
ABI metric than unhealthy people (Table 2). Both α̂ and 
ABI are influenced by the choice of the epoch lengths, 
larger epoch values will naturally tend to smooth acceler-
ation signal, implying lower chance of observing a fractal 
noise (that is α̂ and ABI closer to one).

Strengths and limitations of IS, IV, TP and DFA
The strengths and limitations of rest-activity fragmenta-
tion metrics are summarized in Table 2.

Remark 3  The metrics mentioned above rely on transi-
tions between rest and active states and do not capture 
other dimensions of the circadian rhythm. These metrics 
can be used in complement to other circadian rhythm 
variables that capture different aspects of the rhythm 
such as timing or amplitude.

Results
Figure 3 shows the distribution of IS, IV, TP, α̂ and ABI 
in the total sample. All empirical ranges are within the 
theoretical ones proposed in Table 2. For IV, two individ-
uals have a value that exceeds two, these outliers corre-
spond to two of the three individuals whose φ̂ value is not 
within the [0, 1] interval, suggesting a minority of cases 
with ultradian rhythm in the dataset.

Fig. 3  Boxplot of inter-daily stability (IS), intradaily variability (IV), estimated autocorrelation parameter of AR(1) model ( φ̂ ), transition probability 
(TP) from activity to rest during the awake period ( TPar ,w ), TP from activity to rest during the sleep period ( TPar ,s ), TP from rest to activity 
during the awake period ( TPra,w ), TP from rest to activity during the sleep period ( TPra,s ), estimated self-similarity ( ̂α ), and activity balance index (ABI)

Table 4  Mean (SD) of inter-daily stability (IS), intradaily variability (IV), transition probability (TP) from activity to rest during the awake 
period ( TPar ,w ), TP from activity to rest during the sleep ( TPar ,s ), TP from rest to activity during the awake ( TPra,w ), TP from rest to activity 
during the sleep ( TPra,s ), estimated self-similarity parameter ( ̂α ), and activity balance index (ABI) in the total population (N=2857), by sex 
and age groups

All p-values come from an ANOVA test

all men women age < 70 age ≥ 70

N 2859 2257 602 1717 1142

mean (SD) mean (SD) mean (SD) p-value mean (SD) mean (SD) p-value

IS 0.533 (0.116) 0.529 (0.116) 0.546 (0.116) 0.001 0.534 (0.114) 0.531 (0.119) 0.442

IV 0.983 (0.251) 0.987 (0.254) 0.970 (0.241) 0.120 0.946 (0.237) 1.039 (0.261) < .001

TPar ,w 0.285 (0.076) 0.285 (0.075) 0.286 (0.080) 0.931 0.273 (0.067) 0.305 (0.084) < .001

TPar ,s 0.765 (0.194) 0.780 (0.193) 0.711 (0.189) < .001 0.762 (0.194) 0.770 (0.195) 0.232

TPra,w 0.105 (0.033) 0.104 (0.032) 0.110 (0.034) < .001 0.109 (0.031) 0.098 (0.033) < .001

TPra,s 0.007 (0.005) 0.007 (0.005) 0.007 (0.004) 0.896 0.007 (0.004) 0.008 (0.006) < .001

α̂ 0.956 (0.046) 0.955 (0.048) 0.959 (0.037) 0.022 0.957 (0.047) 0.954 (0.043) 0.220

ABI 0.700 (0.169) 0.693 (0.172) 0.730 (0.152) < .001 0.699 (0.171) 0.703 (0.166) 0.573
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When examining how rest-activity fragmentation met-
rics differ by sex (Table  4), we found that men have on 
average a less constant rest-activity pattern as denoted 
by smaller IS compared to women (0.529 vs 0.546, 
p = 0.001 ). During the day, men tend to transition less 
from rest to active periods while during the night men 
are more likely to transition from active to rest periods as 
indicated by lower TPra,w ( p < 0.001 ) and higher TPar,s 
( p < 0.001 ) than in women. Finally, on average they tend 
to have a less balanced activity behaviour than women as 
shown by lower α̂ ( p = 0.022 ) and ABI ( p < 0.001).

Fewer differences were observed as a function of age, 
although we found that older people tend to have a more 
fragmented rest-activity pattern (IV 1.039 vs 0.946 for age 
≥ 70 vs <70), to transition more from activity to rest dur-
ing waking periods ( TPar,w 0.305 vs 0.273), and to transi-
tion less from rest to active periods during the day ( TPra,w 
0.098 vs 0.109), but more during the night ( TPra,s 0.08 vs 
0.007); all p < 0.001.

Table  5 shows one fitted multivariate regression for 
each standardized rest-activity fragmentation metric. 
Being a woman, aged around 70 years old (see Figure 
S1 in Supplementary additional results for association 
with age), with lower educational level, not currently 
employed, having lower BMI and less prevalence mor-
bidities were associated with a more constant rest-
activity pattern (all p < 0.05 ). The same variables 

(except for sex) were associated with IV, but in the 
opposite direction, denoting a less fragmented rest-
activity pattern. TPar,w was associated with all socio-
demographic and health-related factors (except for sex 
and employment status), and TPar,s , in a complemen-
tary way, was only significantly associated with sex and 
employment status. Higher TPra,w was associated with 
being a woman, lower BMI and less morbidities while 
higher TPra,s was associated with higher BMI and more 
prevalent morbidities. Both α̂ and ABI were associated 
with all socio-demographic (except education) and 
health-related factors.

Table  6 presents Pearson’s correlation coefficients 
between IS, IV, TPs, α̂ , and ABI metrics. We observe 
one moderate correlation between α̂ and ABI that 
is expected as ABI is a transformation of α̂ . All the 
remaining correlations are considered fair or poor [39].

The sensitivity analysis on the impact of the l param-
eter for the DFA-derived metrics is presented in Sup-
plementary material (Section  3). Although both α̂ and 
ABI values for l = 1 and l = 2 were highly correlated 
( |r| > 0.8 ), associations with sociodemographic and 
health-related factors were more consistent when using 
l = 1 than l = 2.

Figures 4, 5, 6, 7, 8, and 9 show the time series pro-
cesses of individuals with extreme IS, IV, TP, and DFA 
values. In footnotes, a short description of what char-
acterized these time series is provided. More figures 

Table 5  Association of socio-demographic and health-related factors with standardized rest-activity fragmentation metrics, results 
from multivariate linear regressions

a means significant at 0.95 confidence level, estimated coefficient (Coeff.), 95% confidence interval (95% CI), high education (secondary school or above), morbidities 
(number of prevalent morbidities among: coronary heart disease, stroke, heart failure, cancer, arthritis, chronic obstructive pulmonary disease, depression, Parkinson’s 
disease and dementia)

Coeff. (95% CI) Coeff. (95% CI) Coeff. (95% CI) Coeff. (95% CI)

IS IV α̂ ABI

Age per 10 years 2.535 (0.896, 4.175)a -4.861 (-6.464, -3.258)a 3.721 (2.073, 5.369)a 2.890 (1.235, 4.546)a

Age2 per 10 years -0.182 (-0.298, -0.066)a 0.373 (0.259, 0.487)a -0.267 (-0.384, -0.150)a -0.204 (-0.321, -0.086)a

Women 0.154 (0.064, 0.243)a -0.063 (-0.150, 0.024) 0.110 (0.020, 0.200)a 0.219 (0.129, 0.309)a

Currently employed -0.327 (-0.424, -0.229)a 0.136 (0.041, 0.232)a -0.178 (-0.276, -0.080)a -0.101 (-0.200, -0.003)a

High education -0.112 (-0.188, -0.037)a 0.184 (0.110, 0.257)a -0.064 (-0.140, 0.011) -0.076 (-0.151, 0.000)

BMI per 5 kg/m2 -0.168 (-0.211, -0.126)a 0.180 (0.139, 0.221)a -0.152 (-0.194, -0.110)a -0.127 (-0.169, -0.084)a

Number of morbidities -0.085 (-0.135, -0.036)a 0.066 (0.018, 0.115)a -0.073 (-0.123, -0.024)a -0.056 (-0.106, -0.006)a

TPar ,w TPar ,s TPra,w TPra,s

Age per 10 years -2.874 (-4.452, -1.295)a -0.777 (-2.439, 0.884) 1.026 (-0.573, 2.624) -0.828 (-2.479, 0.824)

Age2 per 10 years 0.234 (0.122, 0.346)a 0.059 (-0.059, 0.177) -0.094 (-0.208, 0.019) 0.075 (-0.042, 0.192)

Women -0.024 (-0.110, 0.062) -0.346 (-0.437, -0.256)a 0.241 (0.154, 0.328)a -0.016 (-0.106, 0.074)

Currently employed -0.011 (-0.105, 0.083) -0.106 (-0.204, -0.007)a 0.036 (-0.059, 0.131) 0.064 (-0.034, 0.162)

High education 0.088 (0.015, 0.160)a 0.023 (-0.053, 0.099) -0.066 (-0.140, 0.007) -0.053 (-0.128, 0.023)

BMI per 5 kg/m2 0.228 (0.187, 0.268)a -0.041 (-0.083, 0.002) -0.261 (-0.302, -0.220)a 0.050 (0.007, 0.092)a

Number of morbidities 0.113 (0.066, 0.161)a -0.030 (-0.080, 0.021) -0.086 (-0.134, -0.038)a 0.114 (0.064, 0.164)a
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are available in the Supplementary material (Section 2, 
Figures S2 to S5).

Discussion
This study provides theoretical ranges and guidance 
on the interpretation of rest-activity fragmentation 
metrics. We extended previous research on TP [7, 
40] by proposing ML and Bayesian estimators for TP. 
We also proposed a transformation of DFA-derived 

self-similarity parameter, the ABI, to reflect the balance 
of activity behaviours over the observation period. This 
metric is complementary to the α metric that ought to 
be used when interest is in characterising the stationar-
ity of the activity pattern. Finally, using accelerometer 
data from around 2,859 individuals aged 60 to 83 years, 
we showed that most of the correlations between IS, IV, 
TP, and ABI were modest. We also found sociodemo-
graphic and health-related differences in some of the 

Table 6  Pearson’s correlation between inter-daily stability (IS), intradaily variability (IV), transition probability (TP) from activity to rest 
during the awake period ( TPar ,w ), TP from activity to rest during the sleep ( TPar ,s ), TP from rest to activity during the awake ( TPra,w ), TP 
from rest to activity during the sleep ( TPra,s ), estimated self-similarity parameter ( ̂α ), and activity balance index (ABI)

IS IV TPar,w TPar,s TPra,w TPra,s α̂ ABI

IS 1.000 -0.483 -0.419 0.027 0.507 -0.053 0.333 0.323

IV 1.000 0.500 0.012 -0.525 0.111 -0.585 -0.513

TPar ,w 1.000 0.146 -0.475 -0.051 -0.447 -0.367

TPar ,s 1.000 -0.153 -0.371 0.073 0.044

TPra,w 1.000 0.173 0.300 0.330

TPra,s 1.000 -0.159 -0.130

α̂ 1.000 0.789

ABI 1.000

Fig. 4  The sedentary: this individual presents the highest TPar ,w . Note that the black blocks in the non-blue region of figure (b) are short, ie, this 
individual has short bouts of activity

Fig. 5  The active: this individual presents the lowest TPar ,w . Note that the black blocks in the non-blue region of figure (b) are very long, ie, this 
individual has long bouts of activity
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rest-activity fragmentation metrics but not all, high-
lighting the fact that they measure different features.

We proposed Bayesian estimators of TP to estimate 
the probability of change from rest to active period and 
reversely, defined separately during the awake (day) and 
the sleep (night) windows. We observed, as expected, a 
higher TP from activity to rest during the sleep window 
than during the awake window and, on the reverse, a 

higher TP from rest to activity during the awake window 
than during sleep window [41]. We applied these metrics 
to rest/activity states defined by a threshold of accelera-
tion [17, 18]. These metrics might also be relevant using 
methods that differentiate sleep and wake states instead 
of rest and activity states to evaluate the fragmentation of 
sleep during the night.

Fig. 6  The good sleeper: this individual presents the lowest TPra,s and a high TPar ,s . Note that the black (white) blocks in the blue region of figure 
(b) are very brief (long), ie, during the night this individual almost does not display activity

Fig. 7  The insomniac: this individual presents the lowest TPar ,s . Note some large black blocks in the blue region of figure (b), specially at the third 
and fifth sleep windows, ie, during the night this individual presents long periods of activity

Fig. 8  The unbalanced rest-activity person, this individual presents the lowest IS, a high IV, both α̂ and ABI low. Note the flat time series in figure 
(c) displays a weak rest-activity pattern and high rhythm fragmentation. Note that the time series in figure (a) seems very random (constant spikes 
without clear difference between day and night), denoting a stationary random noise, ie, low α̂ and ABI
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When comparing rest-activity fragmentation metrics 
using data from adults aged 60 to 83 years, we found low 
to moderate correlations among the variables(|r| < 0.6 ), 
except for α̂ and ABI ( r = 0.789 ). Although calculated 
differently, these estimated correlations are in accordance 
with those found in the previous studies [7, 25, 26, 42–
44]. These modest correlations suggest that these met-
rics capture distinct features of individuals’ rest-activity 
patterns. The graphical analysis of the extreme cases of 
each metric (see Figs. 4, 5, 6, 7, 8, and 9 and Figures S2 to 
S5 in Section 2 of the Supplementary material) displays 
several behaviour profiles: sedentary, active, good sleeper, 
insomniac, (un)balanced rest-activity person, tireless per-
son, and a person with ultradian rhythm. We examined 
the robustness of our findings regarding the parameter l 
for the DFA-derived metrics ( α and ABI) and found that 
although values for l = 1 and l = 2 were highly corre-
lated, associations with sociodemographic and health-
related factors were more consistent when using l = 1 , as 
previously done in other studies [33, 45].

Few studies have examined factors associated with 
specific rest-activity fragmentation metrics among older 
adults using data from the Rush Memory and Aging Pro-
ject [7, 31, 43], the National Health and Nutrition Exami-
nation Survey (NHANES) [46, 47], and the Rotterdam 
study [42]. In these studies, women tended to have higher 
IS [42, 43, 47] and lower IV [42, 43], higher TP from rest 
to active state and lower TP from activity to rest [7], while 
women were found to have a higher α in the NHANES 
[46] but not in the Rush Memory and Aging Project [31]. 
Overall, older age was associated with higher IS [42, 43], 
higher IV [42, 43, 47], higher TPs [7] and lower α [31], 
although not systematically [47]. In the Rotterdam study, 
being in employment was associated with lower IS and 
IV [42] while we found the reverse for IV. Health-related 
factors such as higher BMI and prevalence of chronic dis-
eases were consistently found associated with lower IS 

[42, 47, 48], higher IV [42, 47, 48], and higher TP from 
activity to rest [7], as in the present study. Differences in 
some of the reported associations might arise from differ-
ences in the methods to derive the different metrics and 
in the sample characteristics. Overall, there is evidence of 
differences in the rest-activity fragmentation metrics by 
sociodemographic and health-related factors, supporting 
future studies to investigate their association with further 
health outcomes.

The study has several strengths, including the use of 
both theoretical and empirical demonstrations of the 
range of the rest-activity fragmentation metrics, using 
a large sample size. The combination of the approaches 
increases the validity of our findings. Second, using mul-
tiple metrics in the same study population allows for a 
comprehensive comparison of these metrics. The study 
has also limitations. We used data from participants who 
had complete data for seven days. This may have resulted 
in a selection of the participants, highlighting the need to 
further investigate the impact of non-wear time on these 
metrics to allow the use of these metrics in a large sam-
ple. In addition, participants were aged between 60 and 
83 years and most of them were Caucasian and relatively 
healthy; whether results are valid in other age and ethnic 
subgroups requires further investigations. The empirical 
application is restricted to one type of device, a specific 
cut-point, 40 mg, to differentiate rest from activity, and a 
specific algorithm to differentiate the sleep from the wak-
ing window, and should be replicated in studies using dif-
ferent settings.

Conclusion
This study provided properties of rest-activity fragmen-
tation metrics previously used and proposed new met-
rics. Their properties were evaluated using both theorical 
and empirical approaches among more than 2800 older 
adults. Overall this study shows that the rest-activity 

Fig. 9  The balanced rest-activity person, this individual presents the highest IS, a low IV and a high ABI. Note the very regular waves in figure 
(c) denoting a high IS and low IV, ie, strong rest-activity pattern and low rhythm fragmentation. Note that the time series in figure (a) is very well 
balanced between smoothness and spikes, display a fractal noise and balanced motion, ie, α̂ and ABI close to one
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fragmentation metrics examined in this paper - IS, IV, 
TPs ( TPra,w , TPra,s , TPar,w , TPar,s ), α̂ and ABI - are mod-
estly correlated, apart for ABI and α̂ . Additionally, these 
metrics are differently associated with socio-demo-
graphic and health-related factors. Thus, they might 
reflect different aspects of individual behaviours. How-
ever, consideration should be given to their strengths 
and limitations, as summarized in Table  2. We encour-
age the use of these metrics in future studies in order to 
get insight into the role of rest-activity fragmentation for 
health in complementarity to other circadian rhythm fea-
tures such as phase and amplitude.
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