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Abstract 

Background  Longitudinal ordinal data are commonly analyzed using a marginal proportional odds model for relat-
ing ordinal outcomes to covariates in the biomedical and health sciences. The generalized estimating equation (GEE) 
consistently estimates the regression parameters of marginal models even if the working covariance structure is mis-
specified. For small-sample longitudinal binary data, recent studies have shown that the bias of regression parameters 
may result from the GEE and have addressed the issue by applying Firth’s adjustment for the likelihood score equation 
to the GEE as if generalized estimating functions were likelihood score functions. In this manuscript, for the propor-
tional odds model for longitudinal ordinal data, the small-sample properties of the GEE were investigated, and a bias-
reduced GEE (BR-GEE) was derived.

Methods  By applying the adjusted function originally derived for the likelihood score function of the proportional 
odds model to the GEE, we produced the BR-GEE. We investigated the small-sample properties of both GEE and BR-
GEE through simulation and applied them to a clinical study dataset.

Results  In simulation studies, the BR-GEE had a bias closer to zero, smaller root mean square error than the GEE 
with coverage probability of confidence interval near or above the nominal level. The simulation also showed that BR-
GEE maintained a type I error rate near or below the nominal level.

Conclusions  For the analysis of longitudinal ordinal data involving a small number of subjects, the BR-GEE is advan-
tageous for obtaining estimates of the regression parameters of marginal proportional odds models.

Keywords  Bias reduction, Marginal model, Categorical data, Penalization, Firth’s adjustment

Introduction
Longitudinal ordinal data are frequently collected in bio-
medical and health science studies. In such a study, each 
subject is observed repeatedly over a period, and ordinal 
responses of interest at each observation are recorded. 
Because repeated responses from the same subject are 
usually correlated, a straightforward application of gen-
eralized linear models for a single response variable to 
longitudinal data is not appropriate. There are numerous 
approaches for extending generalized linear models to 
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longitudinal data. One approach for extending general-
ized linear models to longitudinal data is a class of regres-
sion models where the model for the mean response at 
each observation does not incorporate dependence on 
any random effects or previous responses. The model is 
known as a marginal model. An alternative approach for 
accounting for the within-subject association is via the 
introduction of random effects. The model is known as 
the generalized linear mixed effects model. Due to the 
interpretation of their regression coefficients, the for-
mer are often referred to as “population-average mod-
els,” and the latter are referred to as “subject-specific 
models” [1]. Assuming a situation where the target of 
inference is the population-level summary described as 
a basis for comparison between treatment conditions 
in ICH E9 (R1), “Addendum on Estimands and Sen-
sitivity Analysis in Clinical Trials” to the guideline on 
Statistical Principles for Clinical Trials [2], we focus on 
marginal models here. For estimation of the marginal 
model parameters, assumptions about the joint distribu-
tion of the responses are not necessary. The avoidance of 
distributional assumptions leads to a method of estima-
tion known as the generalized estimating equation (GEE) 
[3]. An appealing property of the GEE estimator is that 
it is a consistent estimator even if the assumed model 
for the covariance among the repeated measures is not 
correctly specified. In addition, we can obtain valid vari-
ance estimate for regression coefficients by utilizing the 
empirical or sandwich estimator. The sandwich estimator 
possesses a notable property as it demonstrates robust-
ness by providing valid variance estimate even when the 
working covariance among the repeated measures is not 
correct. The GEE requires only that the model for the 
mean response, the link function and the variance of each 
response be correct.

For binary response data, recent studies have inves-
tigated the small-sample property of GEE estimates of 
the regression parameter and the bias-reduced estimates 
obtained by applying Firth’s adjustment for the likelihood 
score equation [4] to the GEE as if generalized estimat-
ing functions were likelihood score functions [5–8]. Paul 
and Zhang [5] found that GEE estimates yielded biased 
estimates of the regression parameters when the sample 
size was small and that bias-reduced estimates improved 
bias and mean squared error (MSE) by simulation stud-
ies. Mondol and Rahman [6] showed that bias-reduced 
GEE (also referred to as penalized GEE) achieved con-
vergence and provided finite estimates in the presence of 
separation. Geroldinger et al. [7] reported that the bias-
reduced estimation improved convergence compared to 
the standard GEE with a similar or even better perfor-
mance in terms of the accuracy of estimates. Gosho et al. 
[8] reviewed bias-reduced GEEs and modified covariance 

estimators and evaluated their performance in sparse 
binary data from small-sample longitudinal studies. In a 
study investigating marginal models in small samples, Bie 
et al. [9] reported that both GEE and marginalized mul-
tilevel models exhibit small-sample bias when correct 
correlation structure is adopted. Greenland [10] states 
that “the potential for small-sample bias in results from 
asymptotic procedures needs to be checked more rou-
tinely than is current practice.”

The proportional odds model is the commonly used 
model for relating ordinal outcome to covariates. The 
model is also referred to as the proportional odds version 
of the cumulative logit model [11]. The proportional odds 
model assumes that the association of each covariate 
with the outcome is represented by a single odds ratio. 
The purpose of this paper is to obtain the bias-reduced 
GEE (BR-GEE) estimates of the proportional odds model 
for longitudinal ordinal data and to investigate the small-
sample properties of both the GEE and the BR-GEE 
through simulation. Kosmidis and Firth [12] derived gen-
eral expressions for the adjusted score equations for the 
general class of multivariate models. Using the adjusted 
score equations exploited in Kosmidis and Firth [12] for 
the multivariate generalized linear model, Kosmidis [13] 
derived the adjusted score equation for the proportional 
odds model. We apply the adjusted likelihood score 
equation for the proportional odds model to the GEE to 
obtain the BR-GEE estimate as a solution to an adjusted 
estimating equation, which is induced by adding the 
adjustment function.

“Methods” section provides a brief summary of the BR-
GEE estimates for longitudinal ordinal data. In “Simula-
tion study” section, the results of the simulation study are 
presented and the small-sample properties of the GEE 
and the BR-GEE are investigated. In “Example” section, 
we apply the BR-GEE to the data of postoperative pain 
after laparoscopic cholecystectomy illustrated in Lumley 
[14]. A discussion of our findings follows in “Discussion” 
section.

Methods
Notation and GEE for the proportional odds model
Suppose a study includes N  subjects with ni repeated obser-
vations of the K  multinomial ordered categories for the 
ith subject, i = 1, . . . ,N  . For simplicity, we assume equal 
repetition, ni = n . Let Y it represent responses as a vector 
Y it = Yit1, . . . ,Yitq

T of q = K − 1 dummy variables, where 
Yitk = 1 for the observation at occasion t(t = 1, . . . , n) of 
subject i(i = 1, . . . ,N ) falling in category k(k = 1, . . . , q) 
and Yitk = 0 otherwise. The vector of marginal means or 
response probabilities of Y it is π it =

(

πit1, . . . ,πitq
)T . The 

proportional odds model links the cumulative probability 
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γitk = πit1 + · · · + πitk to a p-vector of covariates xit via 
the following relationship:

where δ =

(

β01, . . . ,β0q ,β
T
)T

 is a (q + p)-vector of 
model parameters with β01 < · · · < β0q and 
β =

(

β1, . . . ,βp
)T . The linear term ηitk = β0k + xTitβ is 

determined by ηitk =
∑p+q

r=1 δrzitkr
 , where zitkr is the (k , r) 

th element of the q × (q + p) matrix,

Let Y i =
(

Y
T
i1, . . . ,Y

T
in

)T and π i =
(

πT
i1, . . . ,π

T
in

)T 
denote responses and response probabilities, respectively, 
for subject i . Then, a GEE for consistent estimation of δ is 
given in the form,

where Di = D(π i; δ) is the qn× p Jacobian of π i with 
respect to δ and V i = V i(δ,α) is a ‘working’ covariance 
matrix indexed by δ and an association parameter α . Fur-
ther details on the GEE for ordinal data can be found 
in Agresti [11], Heagerty and Zeger [15], Fahrmeir and 
Pritscher [16], Lipsitz et  al. [17], Liang et  al. [18], and 
Williamson et al. [19].

Let V itt = Var(Y it) = diag(π it)− π itπ
T
it  denote the 

q × q multinomial covariance matrix for Y it . For t  = t′ , 
V itt′ = Cov(Y it ,Y it′) is the covariance matrix between 
two different occasions in the same subject. The sim-
plest model for the working covariance matrix is the 
independent model, V itt′ = 0 . Lumley [14] described 
working covariance structures V itt′ and computational 
methods for ordinal data based on the global odds ratio 
that allow the GEE to be used for smaller sets of ordinal 
data and with less effort expended on modeling associa-
tions. For each pair of categories c and c′ of two ordi-
nal responses Rit and Rit′ in the same subject, the global 
odds ratio is defined as

log
(

γitk
1−γitk

)

= β0k + xTit β (i = 1, . . . ,N ; t = 1, . . . , n; k = 1, . . . , q),

Zit =











1 0 · · · 0 xT
it

0 1 · · · 0 xT
it

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 · · · 1 xT
it











(i = 1, . . . ,N ; t = 1, . . . , n) .

U(δ,α) =

N
∑

i=1

D
T
i V

−1
i

(Y i − π i) = 0,

�itct′c′ =
Pr(Rit≤c,Rit′≤c′)Pr(Rit>c,Rit′>c′)
Pr(Rit>c,Rit′≤c′)Pr(Rit≤c,Rit′>c′) , c, c′ = 1, . . . , q.

The covariance of Yitc and Yit′c′ is given by 
cov(Yitc,Yit′c′) = E(YitcYit′c′)− E(Yitc)E(Yit′c′) , where the 
second term is the product of πitc and πit′c′ . The first term 
E(YitcYit′c′) can be expressed by the joint cumulative prob-
abilities γitct′c′ = Pr(Rit ≤ c,Rit′ ≤ c′):

The joint cumulative probabilities γitct′c′ can be 
expressed in terms of global odds ratio and marginal 
cumulative probabilities:

where κ = 1+ (γitc + γit′c′)(�itct′c′ − 1) . A simple esti-
mate of the crude global odds ratio is calculated by 
the weighted mean of the log odds ratios with weights 
inversely proportional to the variances for every possible 
pair of the two time points (t, t′) , where the odds ratios are 
computed based on the 2× 2 tables obtained from the q2 
ways of collapsing the row and column classifications into 
dichotomies for a K × K  table of the variables Rit and Rit′ 
over all subjects. Hines [20] compared the various models 
for V itt′ both in terms of efficiency and computational sta-
bility. She showed that the performance of Lumley’s crude 
global odds ratio method is satisfactory. Therefore, our 
approach is based on the working covariance structure of 
the independence or exchangeable model, where the crude 
global odds ratio is constant for all pairs of times.

Bias‑reduced GEE for the proportional odds model
Firth [4] showed that the solution of the following 
adjusted score equation results in an estimator that is 
free from the first-order term in the asymptotic expan-
sion of the bias in the MLE of the regression parameter:

with A(θ) = −I(θ)b(θ) , where θ = (θ1, . . . , θp)
T is a p

-vector of regression parameters from the generalized lin-
ear model, U(θ) = ∂

∂θ
l(θ) = 0 is the standard score equa-

tion based on the log-likelihood function l(θ) , I(θ) is the 
expected information matrix for θ , and b(θ) is the first 
term in the asymptotic expansion of the bias of the MLE.

Kosmidis and Firth [12] derived general expressions for 
the adjusted score functions for the general class of mul-
tivariate models, which include multivariate generalized 
linear models. Using the adjustment functions exploited 
in Kosmidis and Firth [12] for the score functions of the 

E(YitcYit′c′) =











γitct′c′ c = c′ = 1

γitct′c′ − γitct′(c′−1) c = 1, c′ > 1

γitct′c′ − γit(c−1)t′c′ c > 1, c′ = 1

γitct′c′ − γitct′(c′−1) − γit(c−1)t′c′ + γit(c−1)t′(c′−1) c > 1, c′ > 1

(1)

γitct′c′ =
κ −

√

κ2 − 4�itct′c′(�itct′c′ − 1)γitcγit′c′

2(�itct′c′ − 1)
,

U
∗(θ) = U(θ)+ A(θ) = 0,
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multivariate generalized linear model, Kosmidis [13] for-
mulated the adjustment function of the score function of 
the proportional odds model. Considering that the GEE 
is equivalent to the generalized linear model score func-
tion under the identity working covariance structure, 
we treat U(δ,α) as if it were a likelihood score function 
and apply the adjustment function in the score function 
to the GEE. Then, the adjustment function for the gen-
eralized estimating function for the proportional odds 
model is given by

where Zi =
(

Z
T
i1, . . . ,Z

T
in

)T , ηi = (ηTi1, . . . , η
T
in)

T with ele-
ments of ηit = (ηit1, . . . , ηitq)

T , D
(

π i; ηi
)

 is the qn× qn 
Jacobian of π i with respect to ηi , 
F =

∑N
i=1(D

(

π i; ηi
)

Zi)
T
V

−1
i D

(

π i; ηi
)

Zi , D2
(

π i; ηi
)

 is 
the (qn)2 × qn matrix with the s th block as the Hessian of 
πis with respect to ηi(s = 1, . . . , qn) , Iqn is the qn× qn 
identity matrix, zisr is the (s, r) th element of Zi , V i is the 
covariance matrix of the vector Y i , and 

(

D
(

π i; ηi
)

V
−1
i

)

s
 

is the s th row of D
(

π i; ηi
)

V
−1
i  . The matrix D

(

π i; ηi
)

 is 
the block diagonal matrix whose t th diagonal element is

where gitk = g(ηitk ) with g(η) = dG(η)/dη and G(η) = exp(η)/(1+ exp(η)) ; 
hence, gitk = G(ηitk)(1− G(ηitk)) = γikt(1− γikt).

The matrix D2
(

π i; ηi
)

 is the (qn)2 × qn matrix with 
the (s,u) th element given by:

where v = (t − 1)q + k(t = 1, . . . , n; k = 1, . . . , q) and 
w = (t − 1)q + k(t = 1, . . . , n; k = 1, . . . , q − 1).

The r th element of the bias-reduced generalized esti-
mating function is U∗

r (δ,α) = Ur(δ,α)+ Ar(δ,α) . The 

Ar(δ,α) =
1

2

N
∑

i=1

qn
∑

s=1

tr

[

ZiF
−1

Z
T
i

{(

D
(

π i; ηi
)

V
−1
i

)

s

⊗

Iqn

}

D
2
(

π i; ηi
)

]

zisr (r = 1, . . . , q + p) ,

�it =

























git1 0 · · · 0 0

−git1 git2 · · · 0 0

0 −git2

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
. git,q−1 0

0 0 · · · −git,q−1 gitq

























(i = 1, . . . ,N ; t = 1, . . . , n) ,

csu =







γitk(1− γitk)(1− 2γitk),
−γitk(1− γitk)(1− 2γitk)

0,

s = (v − 1)(nq + 1)+ 1,u = v
s = w(nq + 1)+ 1,u = w
otherwise

BR-GEE estimate ˜δ is such that U∗
r

(

˜δ, α̃
)

= 0 for every 

r = 1, . . . , q + p , where α̃ is the estimate of global odds 
ratio. ˜δ can be estimated using an iterative method 
described below:

Step 1: Choose an initial value ˜δ
0
 of δ.

Step 2: If the working covariance structure is exchange-
able, we calculate the log (crude) global odds ratio α̃ [14].

Step 3: Given ˜δ
(t)

 at the tth iteration and α̃ (unneces-
sary if the working covariance structure is independent), 

the covariance matrix is estimated from the global odds 
ratio and the predicted cumulative probabilities [14].

Step 4: Given the working covariance matrix V−1
i

(

˜δ
(t)
, α̃

)

 , 
the current estimate ˜δ

(t)
 is updated according to the 

adjusted GEE using the Newton‒Raphson method given by

with

Step 5: Iterate steps 3 and 4 until a desired convergence 
criterion is satisfied (for example, max

∣

∣

∣

˜δ
(t+1)

− ˜δ
(t)
∣

∣

∣
≤ 0.0001 ). 

At convergence, the estimate of δ is denoted by ˜δ  and 
referred to as the BR-GEE estimate.

The consistent estimate of the covariance matrix of the 
GEE regression parameter estimates is given by the sand-
wich estimator of Liang and Zeger [3],

where r̂i r̂Ti = (Y i − π̂ i)(Y i − π̂ i)
T is used to estimate 

Cov(Y i).

In this manuscript, we calculate the covariance matrix 
for the BR-GEE derived from the estimating function 
U

∗(δ,α) = U(δ,α)+ A(δ,α),

˜δ
(t+1)

= ˜δ
(t)

+ F
(

δ, α̃
)−1

∣

∣

∣

δ=˜δ
(t) U

∗
(

δ, α̃
)∣

∣

δ=˜δ
(t) ,

F(δ,α) =

N
∑

i=1

D
T
i V

−1
i Di.

�GEE =

(

N
∑

i=1

D
T
i V

−1
i Di

)−1( N
∑

i=1

D
T
i V

−1
i Cov(Y i)V

−1
i Di

)(

N
∑

i=1

D
T
i V

−1
i Di

)−1

,
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with

Mancl and DeRouen [21] described that the bias-cor-
rected covariance estimator used with the critical value 
based on the F-distribution instead of chi-square pro-
duced proper test sizes. Therefore, in the following, we 
used the critical value of the t-distribution with the num-
ber of the sample size minus the number of coefficients in 
the regression model as the degree of freedom to compute 
the confidence interval and the statistical significance.

When the sample size is small, the sandwich covari-
ance matrix is expected to underestimate the covariance 
matrix. To reduce the small-sample bias, several modi-
fied variance estimators have been developed [22]. In 
this manuscript, in addition to �GEE and �BR−GEE, we 
used the bias-corrected covariance estimates of Mancl 
and DeRouen [21] obtained by substituting the GEE and 
BR-GEE estimates into the following equation in order 
to calculate the 95% confidence interval,

with

where Iqn is the qn× qn identity matrix and H ii is the 
matrix calculated by

Simulation study
In this section, we conducted a limited simulation study 
to investigate the small-sample properties of both the 
standard GEE (GEE) and the proposed bias-reduced GEE 

�BR−GEE =

(

N
∑

i=1

D
T
i V

−1
i Di + AA

T

)−1

M

(

N
∑

i=1

D
T
i V

−1
i Di + AA

T

)−1

,

M =

(

N
∑

i=1

D
T
i V

−1
i r̂i r̂

T
i V

−1
i Di + AA

T

)

.

�MD =

(

N
∑

i=1

D
T
i V

−1
i

Di

)−1

MMD

(

N
∑

i=1

D
T
i V

−1
i

Di

)−1

.

MMD =

(

N
∑

i=1

D
T
i V

−1
i

(Iqn −H ii)r̂i r̂
T

i (Iqn −H ii)
T
V

−1
i

Di

)

,

H ii = Di

(

N
∑

i=1

D
T
i V

−1
i Di

)−1

D
T
i V

−1
i .

(BR-GEE) estimation of the regression parameters in a 
marginal model for correlated ordinal data. We assumed 
a randomized clinical trial with a parallel group design, 
where each subject was assigned to either the treatment 
group or the control group. Balanced correlated ordinal 
data with K = 3 of the total number of response catego-
ries and with observations over n = 4 time occasions were 
generated using the algorithm given in Ibrahim et al. [23]. 
They used the Goodman and Kruskal Ŵ coefficient as a 
measurement of the association for the responses of each 
subject. We modified the algorithm to specify the associa-
tion of the within-subject observation by using the global 
odds ratio. Specifically, we modified the macro developed 
by Ibrahim et  al. [23] to calculate the joint probabilities 
of responses between two time points, which are used to 
generate correlated ordinal data, by substituting the global 
odds ratio and marginal cumulative probability based on 
the marginal model into expression (1). For the exchange-
able correlation, we used a common exp(α) as global odds 
ratio for all pairs of time points, while for AR-type cor-
relation, we used exp(α/τ) as global odds ratio based on 
the time interval τ for each pair of time points. We used 
a proportional odds marginal model both to simulate and 
to fit the data. We considered the following proportional 
odds model for the i th subject measured at the t th occa-
sion ( i = 1, . . . ,N ; t = 1, . . . , 4):

where γitk is the cumulative probability, Trti is a treat-
ment assignment variable coded as 1 for the first half 
of the subjects or 0 for the second half of the sub-
jects, and Timeit is an occasion coded as 1, 2, 3 and 
4. We conducted simulations for four different sam-
ple sizes: N = 20, 30, 40, 50 . We let the (q + p)-vec-
tor parameter set used with regression model (2) be 
δ = (β01,β02,β1,β2,β3,β4,β5,β6,β7)

T = (−0.1, 1, 1.2,−0.9,

−0.6,−0.3,−0.3,−0.2,−0.1)T to evaluate the perfor-
mance under the alternative hypothesis (Scenario 1). In 
addition, we let δ = (1.1, 2.2, 0,−2.1,−1.4,−0.7, 0, 0, 0)T 
to evaluate the empirical type I error rate (Scenario 2). 
For this set of simulations, the marginal response prob-
abilities of the treatment group at the last time point are 
(0.75,0.15,0.10) . The covariance structure used to generate 
data was an exchangeable structure with the log global odds 
ratio of α as 1, 1.5, 2 and an autoregressive-type (AR-type) 

(2)
logit(γitk) = β0k+β1Trti+

3
∑

s=1

{βs+1I(Timeit = s)+ βs+4Trti × I(Timeit = s)} (k = 1,2) ,
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structure with the log global odds ratio of α/|t − t′|(t �= t′) 
for each α as 1, 1.5, 2 . For each parameter configuration, 
5,000 simulation replications were performed.

For each scenario, we fit the correct marginal mean 
model, and the covariate coefficients were estimated by 
the GEE and the BR-GEE with the independent and 
exchangeable in terms of the crude global odds ratio sug-
gested in Lumley [14] as the working covariance struc-
ture. The algorithm convergence criterion was less than or 
equal to 0.0001, and the maximum iterations allowed 
were set to 50. The standard errors of the GEE and the 
BR-GEE estimated regression coefficients were estimated 
by substituting each parameter estimate into �GEE and 
�BR−GEE , respectively. We defined a model fit as having a 
convergence problem if the algorithm convergence crite-
rion was not met or if the maximum of the absolute value 
of the estimated regression parameters was above 10. 
There were a small number of datasets where the diagonal 
elements of the sandwich variance estimate were negative 
when there was a convergence problem. At that time, we 
replaced it with the model-based variance to evaluate the 
performance measures. We focused on the results of the 
coefficient β1 , which represents the treatment effect at the 
last time point. In this simulation study, we defined the 
bias as bias

(

̂β1

)

= ̂β1 − β1 , where ̂β1 =
∑Ls

l=1
̂β1l/Ls , ̂β1l 

is the estimate of β1 for the l th replication, and Ls is the 
number of runs in which the regression parameter was 
estimated. The root mean square error (RMSE) was 
defined by RMSE

(

̂β1

)

=

√

∑Ls
l=1(

̂β1l − β1)
2
/Ls . Using 

the standard error estimate, we constructed 95% confi-
dence intervals by multiplying the standard error with the 
2.5th percentile and 97.5th percentile of the t-distribution. 
Then, we defined the coverage probability of 95% confi-
dence intervals for the parameter β1 to be the proportion 
of the number of 95% confidence intervals that contain 
the true parameter value to the total number of runs 
where the regression parameter was estimated. Further-
more, the empirical type I error rate was defined as the 
proportion of times 

∣

∣

∣

̂β1l/SE(̂β1l)
∣

∣

∣
≥ t0.975 for the null 

hypothesis, where t0.975 is the 97.5th percentile of the 
t-distribution.

In addition, the bias, RMSE and coverage for the speci-
fied scenarios with (K , n) = (3,6), (4,4), (4,6) were inves-
tigated. And, for each scenario, coverage probability 
of the 95% confidence interval based on the Mancl and 
DeRouen’s bias-corrected covariance estimates were cal-
culated in addition to that based on �GEE and �BR−GEE.

Results for the convergence
First, we report the percentage of simulation replica-
tions in which there was evidence of quasicomplete 
separation as well as the percentage of simulation sets 

where the model had convergence problems for Scenario 
1 and Scenario 2 (see Table  S1 for the results with true 
exchangeable covariance structure (Scenario 1), Table S2 
for the results with true exchangeable covariance struc-
ture (Scenario 2), Table S3 for the results with true AR-
type covariance structure (Scenario 1), and Table S4 for 
the results with true AR-type covariance structure (Sce-
nario 2) in Additional file). We defined that the simula-
tion datasets had evidence of quasicomplete separation 
when all categories but one level of 1 or K  of the outcome 
for either treatment group were zero at a time point, such 
as Table 1. The model fit by the GEE had the convergence 
problem in the presence of quasicomplete separation. 
For instance, the percentage of datasets where GEE esti-
mation had a convergence problem fell within the range 
7.30–8.06 when N = 20 , 1.56–1.66 when N = 30 , 0.28–
0.40 when N = 40 , and 0.06–0.08 when N = 50 for Sce-
nario 1 with true exchangeable covariance structure. In 
contrast, it was 0.00% for all settings for the BR-GEE. The 
performance of the estimates of β1 was similar for both 
true covariance structures. Therefore, here, we present 
the results of the estimates of β1 in the true exchange-
able covariance structure only. See Additional file for the 
results in the AR-type covariance structure.

Results for the performance under the alternative 
hypothesis (Scenario 1)
In this section, we first report the distribution of the esti-
mates. Then, we summarize the results for the simulation 
in terms of bias, RMSE, and coverage probability of the 
95% confidence interval.

Figure 1 shows the box and whisker plot for estimates 
of β1 with an exchangeable (correctly specified) and an 
independent (misspecified) working covariance for the 
true exchangeable covariance structure. The distribu-
tion of the GEE estimates had substantially large outliers 
for datasets with evidence of quasicomplete separation. 
On the other hand, the BR-GEE did not have such out-
liers, regardless of the value of the global odds ratio 
and the working covariance structure for each sample 
size ( N ≤ 50 ). See Fig. S1 for the results in the AR-type 
covariance structure.

Table 1  Example of quasicomplete separation due to treatment 
(Trt) against outcome Y (N = 40)

Quasicomplete separation

Y

1 2 3

Trt 1 20 0 0

0 5 5 10
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Figure 2 shows the bias of the estimates of β1 . Although 
it decreased as the sample size increased, bias of the 
GEE estimates still existed when N = 50 . On the other 
hand, the bias of the BR-GEE estimates was close to 
zero regardless of the value of the global odds ratio and 
the working covariance structure for each sample size 
( N ≤ 50 ). See Fig. S2 for the results in the AR-type 
covariance structure.

Figure  3 shows the RMSE of the estimates of β1 . The 
RMSE of the BR-GEE estimates was smaller than that of 
the GEE estimates regardless of the value of the global 
odds ratio and the working covariance structure for each 
sample size ( N ≤ 50 ). See Fig. S3 for the results in the 
AR-type covariance structure.

Figure  4 shows the coverage probabilities of the 
95% confidence interval of β1 . For N=20, the coverage 

probability of the 95% confidence interval based on 
the GEE was below the nominal level of 95%; on the 
other hand, that based on the BR-GEE was close to 
95%. In general, as the number of subjects increased 
( N ≥ 30), the coverage probabilities of both methods 
became similar and slightly above 95%. See Fig. S4 for 
the results in the AR-type covariance structure. When 
the 95% confidence interval based on the BR-GEE was 
estimated by substituting the parameter estimate into 
�GEE instead of �BR−GEE , undercoverage of the 95% 
confidence interval based on the BR-GEE was observed 
for N=20 but not for N ≥ 30. See Fig. S6 for the results 
in the exchangeable covariance structure, and Fig. S7 
for those in the AR-type covariance structure.

The bias and RMSE for the scenarios with 
(K , n) = (3,6), (4,4), (4,6) were similar to the results when 

Fig. 1  Box and whisker plot for estimates of β1 with true exchangeable covariance structure (Scenario 1). GEE:Ind, generalized estimating equation 
with working independent covariance structure, GEE:Exch, generalized estimating equation with working exchangeable covariance structure, 
BR-GEE:Ind, bias-reduced generalized estimating equation with working independent covariance structure, BR-GEE:Exch, generalized estimating 
equation with working exchangeable covariance structure
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K = 3 and n = 4 . The differences in coverage probabili-
ties between GEE and BR-GEE exhibited similar charac-
teristics for (K , n) = (3,4) and (3, 6) . Specifically, when 
N = 20 , the coverage probabilities based on the GEE fell 
below the nominal level while those based on the BR-
GEE exceeded it. However, when K = 4 , such differences 
in coverage probabilities between GEE and BR-GEE were 
not observed. See Fig. S10 to Fig. S27 in Additional file. 
The coverage probability of the 95% confidence interval 
based on the Mancl and DeRouen’s bias-corrected covar-
iance estimates calculated by substituting the BR-GEE 
estimates generally remained above the nominal confi-
dence level, similar to that of the 95% confidence interval 
based on �BR−GEE . See Table. S5 to Table. S12 in Addi-
tional file.

Results for the type I error rate under the null hypothesis 
(Scenario 2)
Figure  5 presents the empirical type I error rate of the 
t-test under the null hypothesis H0 : β1 = 0 result-
ing from the use of the GEE or the BR-GEE. For N=20, 
although the type I error rate for the GEE was somewhat 
inflated, that of the BR-GEE was approximately 0.05. In 
general, as the number of subjects increased ( N ≥ 30), 
the type I error rates of both methods became similar and 
slightly conservative. See Fig. S5 for the results in the AR-
type covariance structure. For the empirical type I error 
rate of the t-test under the null hypothesis, H0 : β1 = 0 , 
when the standard error for the BR-GEE as well as the 
GEE was estimated using the standard sandwich variance 
estimator, inflation of the type I error rate was observed 

Fig. 2  Bias associated with estimates of β1 with true exchangeable covariance structure (Scenario 1). GEE:Ind, generalized estimating equation 
with working independent covariance structure, GEE:Exch, generalized estimating equation with working exchangeable covariance structure, 
BR-GEE:Ind, bias-reduced generalized estimating equation with working independent covariance structure, BR-GEE:Exch, generalized estimating 
equation with working exchangeable covariance structure
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for N=20 but not for N ≥ 30. See Fig. S8 for the results 
in the exchangeable covariance structure, and Fig. S9 for 
those in the AR-type covariance structure.

Example
In this section, we applied the proposed method to data 
from a randomized clinical trial of patients with postop-
erative pain after laparoscopic cholecystectomy. One of 
the aims of the study was to determine whether the use 
of an abdominal suction drain reduces shoulder tip pain 
after laparoscopic surgery. Patients rated their shoulder 
pain levels on a visual analog scale in the morning and 
afternoon of the first 3 days after the operation. The data-
set from Lumley [14] contained 41 patients (22 patients 

in the active treatment group and 19 patients in the con-
trol group) with 6 time points and 5 ordered pain score 
categories per patient. The pain in the control group 
peaked on the afternoon of day 2 [24]. Therefore, in this 
manuscript, we analyzed the data of 4 time points (Day 
1 (am), Day 1 (pm), Day 2 (am), and Day 2 (pm)) of all 
6 time points and estimated the treatment effect at Day 
2 (pm). The time points for each morning and afternoon 
from Day 1 to Day 2 are designated as time = 1 to time = 4 
in sequential order. To estimate the treatment effect at 
the last time point, we fit the marginal model of the pro-
portional odds model with 9 covariates: 8 binary indica-
tors (treatment, sex, time point, interaction of treatment 
and time point) and one continuous variable (age),

Fig. 3  RMSE associated with estimates of β1 with true exchangeable covariance structure (Scenario 1). GEE:Ind, generalized estimating equation 
with working independent covariance structure, GEE:Exch, generalized estimating equation with working exchangeable covariance structure, 
BR-GEE:Ind, bias-reduced generalized estimating equation with working independent covariance structure, BR-GEE:Exch, generalized estimating 
equation with working exchangeable covariance structure
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where Sexi = 1 denotes that the subject is male, Trti = 1 
if the subject receives the active treatment, and 0 oth-
erwise. For this model, we estimated the regression 
parameter by using the GEE and the BR-GEE, assuming 
an independent and exchangeable working covariance 
structure. In addition, we calculated the 95% confidence 
interval by using the t-distribution. In this model, the 
regression parameter β1 represents the treatment effect 
at the last time point (Time = 4).

logit(γitk ) = β0k+β1I(Trti = 1)+β2I(Sexi = 1)+β3Agei+

3
∑

s=1

{βs+3I(Timeit = s)+ βs+6I(Trti = 1)× I(Timeit = s)} (k = 1 to 4) ,

The odds ratio of favorable response comparing the 
active treatment group with the control group and the 
95% confidence intervals by using the GEE with inde-
pendent working covariance structure, the GEE with 
exchangeable working covariance structure, the BR-GEE 
with independent working covariance structure, and the 
BR-GEE with exchangeable working covariance struc-
ture were 14.0 (3.6, 54.5), 12.8 (3.5, 47.0), 12.1 (3.6, 41.1) 
and 10.6 (3.2, 34.8), respectively. Each of the odds ratios 
can be interpreted as a common odds ratio derived from 

Fig. 4  95% confidence interval coverage for estimates of β1 with true exchangeable covariance structure (Scenario 1). GEE:Ind, generalized 
estimating equation with working independent covariance structure, GEE:Exch, generalized estimating equation with working exchangeable 
covariance structure, BR-GEE:Ind, bias-reduced generalized estimating equation with working independent covariance structure, BR-GEE:Exch, 
generalized estimating equation with working exchangeable covariance structure
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4 logistic regression models for each possible binary 
dichotomization (1 vs. 2,3,4,5; 1,2 vs. 3,4,5; 1,2,3 vs. 4,5; 
1,2,3,4 vs. 5) of the outcome. Overall, the estimate was 
smaller for the BR-GEE than for the GEE. And the results 
from any methods suggested that subjects with the active 
treatment were likely to have a more favorable response 
when compared to subjects with the control treatment.

Discussion
In this paper, we have investigated a BR-GEE to obtain 
GEE estimates of the proportional odds model for longi-
tudinal ordinal data. The BR-GEE was derived by apply-
ing adjusted score equations for the proportional odds 
model in Kosmidis [13] to the GEE as if it were equivalent 
to the likelihood score equation. A similar approach for 

small-sample bias reduction in the GEE estimate for clus-
tered binary data was investigated in recent studies (Paul 
and Zhang [5], Mondol and Rahman [6], Geroldinger [7], 
Gosho et al. [8]).

In the simulations that are reported here, the BR-GEE 
performs better than the standard GEE for small-sample 
by providing finite estimates in the presence of quasi-
complete separation. This finding is consistent with that 
of Mondol and Rahman [6].

With the above consideration, in the estimation of the 
regression parameter when the proportional odds model 
is applied to longitudinal ordinal data in a small-sample 
size of 50 or less, it is advantageous to apply the BR-GEE 
instead of the standard GEE. However, these findings are 
subject to the following limitations. First, our simulation 

Fig. 5  Type I error rate of t-test of H0 : β1 = 0 with true exchangeable covariance structure (Scenario 2). GEE:Ind, generalized estimating equation 
with working independent covariance structure, GEE:Exch, generalized estimating equation with working exchangeable covariance structure, 
BR-GEE:Ind, bias-reduced generalized estimating equation with working independent covariance structure, BR-GEE:Exch, generalized estimating 
equation with working exchangeable covariance structure
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setting is limited. In fact, we did not consider simulations 
with extreme parameter settings where datasets with no 
observations for a specific category throughout all time 
points are generated. Such settings would lead to condi-
tional performance evaluation, and therefore we decided 
to avoid such configurations in this study. Second, we 
assumed we had complete data, so further study may be 
required to evaluate the properties of the BR-GEE when 
there are missing data. In addition, the bias-corrected 
covariance estimator for GEE with longitudinal ordinal 
data may also be in need of further investigation. The 
bias correction methods for the variance–covariance 
matrix in small-sample GEE estimation have primarily 
been evaluated assuming binary or count response data. 
Considering ordinal response data, we believe that new 
insights can be obtained by applying the previously pro-
posed methods as well as the method proposed in this 
study and conducting a detailed evaluation of operational 
characteristics. As alternative models when proportional 
odds model is not appropriate, we have other types of 
logit including the adjacent-categories or continuation-
ratio. Furthermore, for applying the stereotype model 
to longitudinal data, estimation methods using GEE was 
considered [25]. It is worth considering the application of 
bias-reduction methods to these models.
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