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Abstract 

Background On‑site monitoring is a crucial component of quality control in clinical trials. However, many cast doubt 
on its cost‑effectiveness due to various issues, such as a lack of monitoring focus that could assist in prioritizing 
limited resources during a site visit. Consequently, an increasing number of trial sponsors are implementing a hybrid 
monitoring strategy that combines on‑site monitoring with centralised monitoring. One of the primary objectives 
of centralised monitoring, as stated in the clinical trial guidelines, is to guide and adjust the extent and frequency 
of on‑site monitoring. Quality tolerance limits (QTLs) introduced in ICH E6(R2) and thresholds proposed by TransCel‑
erate Biopharma are two existing approaches for achieving this objective at the trial‑ and site‑levels, respectively. 
The funnel plot, as another threshold‑based site‑level method, overcomes the limitation of TransCelerate’s method 
by adjusting thresholds flexibly based on site sizes. Nonetheless, both methods do not transparently explain the rea‑
son for choosing the thresholds that they used or whether their choices are optimal in any certain sense. Additionally, 
related Bayesian monitoring methods are also lacking.

Methods We propose a simple, transparent, and user‑friendly Bayesian‑based risk boundary for determining 
the extent and frequency of on‑site monitoring both at the trial‑ and site‑levels. We developed a four‑step approach, 
including: 1) establishing risk levels for key risk indicators (KRIs) along with their corresponding monitoring actions 
and estimates; 2) calculating the optimal risk boundaries; 3) comparing the outcomes of KRIs against the optimal 
risk boundaries; and 4) providing recommendations based on the comparison results. Our method can be used 
to identify the optimal risk boundaries within an established risk level range and is applicable to continuous, discrete, 
and time‑to‑event endpoints.

Results We evaluate the performance of the proposed risk boundaries via simulations that mimic various realistic 
clinical trial scenarios. The performance of the proposed risk boundaries is compared against the funnel plot using 
real clinical trial data. The results demonstrate the applicability and flexibility of the proposed method for clinical 
trial monitoring. Moreover, we identify key factors that affect the optimality and performance of the proposed risk 
boundaries, respectively.

Conclusion Given the aforementioned advantages of the proposed risk boundaries, we expect that they will benefit 
the clinical trial community at large, in particular in the realm of risk‑based monitoring.
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Background
For clinical trials that evaluate new medical treatments 
or devices, sponsors are responsible for monitoring the 
underlying study to ensure (i) that the enrolled subjects’ 
rights and safety are protected and (ii) that the protocol 
of the trial is strictly followed so that the collected data 
is of high quality and integrity. Baigent et  al. [1] classi-
fied clinical-trial monitoring into three main categories: 
oversight by the trial committee, on-site monitoring, 
and centralised monitoring. These monitoring strate-
gies often work in concert to ensure the compliance and 
validity of clinical trials. Oversight by trial committees 
involves a group of experts, which may include sponsors 
or independent third-party personnel such as the inde-
pendent data monitoring committee (IDMC). Their pri-
mary objective is to review the safety, efficacy, and study 
design throughout the trial. On-site monitoring refers to 
the assessment conducted by sponsors or their represent-
atives at clinical sites to verify the authenticity and integ-
rity of trial records, ensure adherence to the study design, 
and assess investigators’ familiarity with the protocol. In 
contrast to on-site monitoring, centralised monitoring 
examines the trial quality remotely by analysing the accu-
mulated data.

Centralised monitoring has garnered tremendous 
attention in recent years mainly due to the following 
reasons. First, several studies demonstrate that 100% 
source data verification (SDV), even incurring high cost, 
is insufficient for achieving satisfactory monitoring out-
comes. For example, a recent retrospective study [14] 
analysing 1168 Phase I-IV trials conducted by 53 spon-
sors revealed that, in median, SDV only corrected 32.0% 
of all corrections in the case report form. Other issues are 
identified through auto-queries or other data-cleaning 
methods, such as medical and biostatistics reviews. Simi-
larly, another study [15] found that SDV only contributed 
7.8% of all queries. These findings highlight the limited 
role of untargeted on-site monitoring and indicate the 
need for sponsors to prioritise more important aspects. 
Second, the approval rate for new drugs from Phase I 
to a successful new drug application (NDA) is typically 
less than 10% [6]. Meanwhile, despite the increasing 
costs of research and development (R &D), the return 
rate on R &D investments has decreased from 10.1% in 
2010 to 1.8% in 2019 [7]. A report [4] showed that on-
site monitoring in large global clinical trials may cost 
up to 30% of the total budget. In other words, sponsors 
have the potential to achieve substantial cost savings if 
there are alternatives to on-site monitoring. Third, regu-
latory agencies from various countries and regions have 
published guidelines concerning centralised monitoring 
[5, 8, 17, 18]. Unsurprisingly, these guidelines advocate 
for the use of centralised monitoring and emphasise its 

importance. For example, the FDA [17] advises sponsors 
to develop a monitoring plan that addresses the specific 
risks related to ethics and data integrity in their trial. The 
benefits of centralised monitoring are also illustrated 
in the ICH E6(R2) guideline [9]. Lastly, considering the 
budget limitations faced by investigator-led clinical trials, 
where extensive on-site monitoring may not be feasible, 
centralised monitoring becomes particularly vital [3].

As an essential tool for implementing centralised moni-
toring, the concept of risk-based monitoring (RBM) was 
originally defined in an EMA reflection paper [8] as “a 
systematic process put in place to identify, assess, con-
trol, communicate, and review the risks associated with 
the clinical trial during its lifecycle”. Currently, there are 
two approaches for RBM based on trial- and site-levels, 
respectively. The ICH E6(R2) guideline [9] introduces a 
seven-step risk-based approach and suggests the estab-
lishment of quality tolerance limits (QTLs) to identify 
trial- or system-level critical data or processes, such as 
the incidence proportion of adverse events of special 
interest (AESI), which can impact the safety of clini-
cal trial subjects or the reliability of trial results [2]. On 
the other hand, TransCelerate proposed the concept of 
“thresholds” primarily for assessing risks related to criti-
cal data or processes at the site-, country-, or protocol-
level [15], such as discontinuation rate. For critical data 
or processes at the trial- and site-levels, there can be 
instances where their meanings overlap. For example, the 
rate of major protocol deviations can serve as a param-
eter at the trial-level or as a risk indicator at the site-level. 
The difference between them lies in the use of different 
criteria, such as QTLs or thresholds, for risk assessment. 
In addition, TransCelerate [16] used the terms “param-
eters” and “risk indicators” to represent critical data or 
processes at the trial- and site-levels, respectively.

Using QTLs or thresholds, sponsors can guide the 
extent and frequency of on-site monitoring and take 
corresponding monitoring actions by assessing the risk 
levels of a trial or site, respectively. For example, we use 
the discontinuation rate as a key indicator to assess the 
site’s risk level. We estiablish three risk levels, whose 
monitoring actions correspond to that on-site monitor-
ing is required (high-risk), recommended (medium-risk), 
or unnecessary (low-risk), respectively. Assuming the 
thresholds for determining different risk levels are set at 
10% and 30%, where the discontinuation rate below or 
equal to 10% indicates a low-risk level, above 30% indi-
cates a high-risk level, and between the two indicates an 
medium-risk level. For example, if a site’s discontinuation 
rate is 35%, it would be assessed as a high-risk site requir-
ing on-site monitoring.

Despite the potential merits listed in last paragraph, 
the aforementioned methods have two main limitations. 
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First, the specific reason for defining QTLs or thresholds 
is typically not explicitly described. For instance, Trans-
Celerate [15] only provided some rules-of-thumb, such 
as defining the discontinuation rate for high-risk levels as 
30% more or less than the expected rate or a minimum 
of 4 subjects discontinued. Zink et  al. [21] also pointed 
out that TransCelerate [15] did not even clearly explain 
whether it was relative or absolute change that was con-
sidered for the thresholds. Second, in comparison to 
larger sites, sites with a small number of subjects may 
have a high incidence proportion for a binary risk indica-
tor. To address this issue, Zink et al. [21] advocated using 
funnel plots to identify risk indicators with outliers, where 
the thresholds were determined based on the lower and 
upper ends of a two-sided nominal (conservative) 95% 
confidence interval. The thresholds in the funnel plot 
increase as the sample size decreases. Furthermore, Zink 
et al. argued that TransCelerate’s method requires defin-
ing different thresholds based on various risk indica-
tors, which can be very time-consuming. Consequently, 
the thresholds in the funnel plot are usually used only to 
differentiate between therapeutic areas or populations. 
However, they only considered discrete endpoints and 
did not further investigate continuous or time-to-event 
endpoints. In real trials, there are risk indicators related 
to these types of endpoints, as evidenced by the examples 
in TransCelerate’s position paper [15].

Due to these limitations, the primary objective of this 
paper is to find a widely applicable and explicit risk-based 
monitoring method that can assist in guiding and adjust-
ing the extent and frequency of on-site monitoring. To 
avoid confusion with the terminology used in the ICH 
E6(R2) guideline and TransCelerate’s position paper [15], 
we introduce the term “key risk indicators” (KRIs) to 
represent critical data or processes at both the trial- and 
site-levels rather than using parameters or risk indica-
tors, while using the term “boundaries” as a substitute for 
QTLs or thresholds. In contrast to the aforementioned 
methods, we propose the implementation of a Bayes-
ian interval design to minimise the decision error rate 
based on different risk levels for critical data or processes 
[10, 20]. The decision error refers to a failure to accu-
rately assess the risk level of a KRI through the proposed 
risk boundary. The steps involved in our method are as 
follows: 

1. Establishing risk levels for KRIs along with their cor-
responding monitoring actions and estimates.

2. Calculating the optimal risk boundaries based on the 
risk level estimates.

3. Determining the risk level to which a trial or site 
belongs by comparing its KRIs’ outcomes against the 
optimal risk boundaries.

4. Providing recommendations and suggestions for on-
site monitoring based on the comparison results.

Here, we need to clarify the difference between risk level 
estimates and risk boundaries. The former refers to the 
estimate of a KRI for different risk levels in a trial or site. 
For example, the incidence proportions of AESI for high-
risk and low-risk sites are estimated to be 20% and 5%, 
respectively. Risk boundaries are criteria used to deter-
mine which risk level a site belongs to when its incidence 
proportion of AESI falls between 20% and 5%. The pro-
posed method can determine the risk level of a trial or 
site based on one or multiple KRIs. It is applicable to a 
wide range of clinical trials, from Phase I to Phase IV, 
single or multicenter, at both the trial- and site-levels, 
although in this paper we primarily focus on the latter.

The rest of this paper is structured as follows. In 
Method section, we introduce the statistical theory that 
forms the basis of the proposed method and illustrate its 
advancements over existing methods. We then apply the 
general methodology to find KRIs for various common 
distributions, including Poisson, binomial, exponential, 
and normal distributions. Subsequently in Simulation, 
Results, and Example  sections, we evaluate the perfor-
mance of the proposed method in simulations and a real 
case study. We discuss the influential factors for the pro-
posed method and provide additional considerations in 
Discussion section.

Method
Notations for the observed KRIs’ outcomes
Let X:=(Xjk) be a J × K  KRI matrix, where Xjk is an 
independent random variable, and its value xijk denotes 
the observed outcome of the jth KRI for the ith subject 
at the kth trial or site, for i = 1, . . . , njk , j = 1, . . . , J  , and 
k = 1, . . . ,K  . njk counts the number of subjects with the 
jth KRI recorded at the kth trial or site. Typically, K equals 
1 at the trial-level monitoring.

If the occurrence of the jth KRI can only be recorded 
once during the course of the trial, such as early with-
drawal, then xijk = 1 if it occurs, and otherwise xijk = 0 . 
In this case, we can assume that Xjk follows a binomial 
distribution Bin(Pjk , njk) (with the total Bernoulli trial 
number equal to 1), where Pjk denotes the true incidence 
proportion of the jth KRI at the kth trial or site. If the 
event of the jth KRI, such as the number of AESIs, may 
occur one or multiple times for the same subject, then 
Xjk can be assumed to follow a Poisson distribution 
Poisson(�jk) , where �jk denotes the true average number 
of events or risk rate of the jth KRI per subject at the kth 
trial or site in a unit time. If Xjk represents a time-to-
event KRI, such as the duration from the first dose to the 
occurrence of an AESI, one can assume that Xjk follows 
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an exponential distribution Exp(�jk ) . Finally, if the jth KRI 
is a continuous endpoint, Xjk can be assumed to follow a 
normal distribution N (Mjk ,�

2
jk ) , where Mjk and �jk denote 

the mean and standard error of the jth KRI at the kth trial 
or site.

Establishing risk levels for KRIs along with their 
corresponding monitoring actions and estimates
In our method, the risk assessment of a trial or site is 
based on KRIs. Thus, we need to first establish G risk 
levels and corresponding monitoring actions for KRIs. 
It is generally recommended to establish two ( G = 2 ) or 
three ( G = 3 ) risk levels that align with those of QTLs 
or TransCelerate’s thresholds. For example, in TransCel-
erate’s position paper, they defined high-, medium-, and 
low-risk levels and provided the corresponding monitor-
ing actions, such as on-site monitoring for high-risk sites 
and no such action for low-risk sites. In real clinical tri-
als, the number of risk levels can be tailored to specific 
requirements.

Next, we need to define estimates of KRIs at differ-
ent risk levels and assume they follow different distri-
butions based on KRI types. For instance, we assume 
the estimate of the jth binary KRI at the g th risk level 
follows a binomial distribution Bin(pjg , njk) , where pjg 
denotes the estimated incidence proportion of the jth 
KRI at the g th risk level and g = 1, 2, . . . ,G . Without 
loss of generality, we order the risk levels as follows: 
pj1 > pj2 > · · · > pjG , which means g = 1 represents 
the highest risk level, while g = G corresponds to the 
lowest risk level. For example, the estimated high- and 
medium-risk incidence proportions of the jth binary 
KRI are pj1=50% and pj2=30%, respectively. These esti-
mates are derived from historical data of similar prod-
ucts, medical and statistical considerations, or other 
available criteria.

It should be noted that for certain distributions, risk level 
estimates may need to be adjusted based on the time of 
risk-based monitoring. For instance, if historical data indi-
cates a high-risk incidence proportion of 50% for a binary 
KRI after 2 years of follow-up, using this criterion as a high-
risk level estimate for risk-based monitoring conducted 
after 2 months of follow-up may not be appropriate. Hence, 
two approaches can be used to determine the estimates 

of risk levels at different risk-based monitoring times. The 
first approach involves using specified rules. For example, 
the high-risk discontinuation rate of each risk-based moni-
toring is defined as 30% more than the average discontinu-
ation rate across all sites. The second approach does not 
rely on the average value but rather adjusts the risk level 
estimates based on different monitoring times. This typi-
cally requires certain assumptions and is only applicable for 
the risk boundaries based on the Poisson process and bino-
mial distribution; the details of the technique are presented 
in Calculating the optimal risk boundaries and Binomial, 
exponential and normal distributions sections, respectively.

Calculating the optimal risk boundaries
We use the Poisson-distributed site-level KRIs to illus-
trate how to calculate the optimal risk boundaries, as 
the derivation for other distributions or levels is similar. 
Thus, according to Notations for the observed KRIs’ out-
comes section, we first need to define the observed KRI’s 
outcomes Xjk ∼ Poisson(�jk) . As mentioned in Estab-
lishing risk levels for KRIs along with their corresponding 
monitoring actions and estimates section, we next need to 
define the g th risk-level estimate following a Poisson distri-
bution Poisson(�jg ) , where �jg denote the estimated average 
number of events of the jth KRI per subject in a unit time at 
the g th risk level. g = 1, 2, . . . ,G and �j1 > �j2 > · · · > �jG

.
In this step, our objective is to find the optimal risk 

boundary, denoted as θjgk , between the g th and (g + 1)th 
risk level estimates based on the jth Poisson-distributed 
KRI at the kth site. To achieve this, one needs to establish 
a total of G hypotheses whenever we conduct risk-based 
monitoring for the jth KRI at the kth site; for example, 
Hjgk : �jk = �jg , indicating that the true risk of the kth site 
based on the jth KRI is at the g th risk level. Our method 
determines the optimal risk boundary θjgk by minimising 
the decision error rate, which is given by

where Sg represents the complement of Sg and Sg denotes 
the monitoring action to be taken at the g th risk level. To 
avoid clutters, we abuse the notation for probabilities 
without specifying the observed value of the underlying 
random variable. As can be seen from Eq. (1), our general 
framework can treat different hypotheses as random 
events. More concretely, Pr(Sg |Hjgk) indicates the proba-
bility when the true risk of the kth site is at the g th level, 

(1)

Pr(Error) =

G

g=1

Pr(Hjgk)Pr(Sg |Hjgk)

=

G−1

g=1

{Pr(Hjgk)Pois(θjgk ; �jg )− Pr(Hjgk)Pois(θjgk ; �j(g+1))} +

G

g=2

Pr(Hjgk),
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yet we do not take the correct monitoring action. Pr(Hjgk) 
represents the prior probability that the g th hypothesis is 
true. Hence, in Eq. (1), the decision error rate that will be 
minimised is the posterior probability of incorrect deci-
sions, a simple calculation using the Bayes’ rule. 
Pois(θjgk ; �jg ) =

∑⌊θjgk⌋

τjk=0 e
−�jg

(�jg )
τjk

τjk !
 is the cumulative 

mass function of the Poisson distribution when the num-
ber of events is below ⌊θjgk⌋ , where τjk denotes the average 

number of events of the jth KRI per subject at the kth site. 
Appendix A demonstrates that due to the monotonicity 
of the optimisation objective function, the minimum 
decision error rate is achieved when τjk is at its maxi-
mum. By minimising the decision error rate (in close-
form), we get the analytical solution for the optimal risk 
boundary θjgk:

The two terms in the above display represent the influ-
ence of prior information and KRIs’ risk level estimates 
on the determination for the risk boundaries. It can be 
interpreted as a non-informative prior when setting 
Pr(Hjgk) = Pr(Hj(g+1)k) almost surely. A total of G − 1 
risk boundaries can be identified based on G different 
risk levels. Compared to all other values between the 
two risk levels, the risk boundary we found minimises 
the decision error rate, so we named it the optimal risk 
boundary.

In addition, there are two other points that can be 
expanded upon. First, consider a scenario where there 
are a total of J independent Poisson-distributed KRIs at 
the site-level. Since the family of Poisson distributions is 
closed under summation, we have Xk ∼ Poisson(�k) , 
where Xk =

∑J
j=1 Xjk and �k =

∑J
j=1

�jk . Similarly, we can 
calculate the sum of �jg as �g =

∑J
j=1

�jg and use this value as 
the risk level estimate in place of �jg to calculate the risk 
boundary θgk , where �1 > �2 > · · · > �G . Consequently, 
we can evaluate the risk level of the kth site using single 
or multiple KRIs. Second, in the Poisson distribution, we 
convert the collected data to a unit time scale to com-
pare the average number of events. Another approach is 

(2)Poisson distribution: θjgk =
ln
(

Pr(Hj(g+1)k )

Pr(Hjgk )

)

ln �jg − ln �j(g+1)
+

�jg − �j(g+1)

ln �jg − ln �j(g+1)
.

to keep the data unchanged and adjust the estimates of 
risk levels based on the risk-based monitoring times. This 
allows for the comparison of the average total number of 
events per subject until time t, which is denoted by Njk(t) . 
In this context, {Njk(t), t ≥ 0} is a counting process. 
When it satisfies the conditions for a Poisson point pro-
cess P{Njk(t)− Njk(0) = τjk} [12], and considering J KRIs 
in total, we obtain the following expression for the deci-
sion error rate when the KRIs follow a Poisson process:

where Hgk : �k tk = �g tk , and by abuse of notation 
�k tk :=

∑J
j=1

�jk tjk and �g tk :=
∑J

j=1 �jg tjk . Here tjk 
denotes the average follow-up time from enrollment or 
the previous risk-based monitoring to the current risk-
based monitoring for the jth KRI at the kth site. Typically, 
t1k , t2k , . . . , tJk are the same because each KRI often shares 
the same follow-up time at the same site. Furthermore, 

P(�gk ; �g tk ) =
∑⌊�gk ⌋

τk=0
P{Nk (tk )− Nk (0) = τk } =

∑⌊�gk ⌋

τk=0
e−�g tk (�g tk )

τk

τk !
 , 

where Nk (t) :=
∑J

j=1
Njk (t) and τk :=

∑J
j=1

τjk . �gk represents the 
optimal risk boundary based on the Poisson process at the 
g th level and the kth site. Using the same method as that 
for getting θjgk , we obtain:

The derivation of Eqs. (2) and (4) can be found in 
Appendix A.

Comparing and making decisions
Consider a situation where we categorise KRIs into 
three risk levels, whose monitoring actions correspond 
to that on-site monitoring is required, recommended, 
or unnecessary, respectively. Through Eq.  (4), we can 
obtain two risk boundaries, denoted as �1k and �2k . 
Let Êjk be the average observed number of events of 
the jth KRI per subject at the kth site when conduct-
ing risk-based monitoring. We calculate Êk :=

∑J
j=1 Êjk 

and compare it against �1k and �2k to decide if on-
site monitoring is warranted. If Êk ≤ �2k , it indicates 

(3)

Pr(Error) =

G
∑

g=1

Pr(Hgk)Pr(Sg |Hgk)

=

G−1
∑

g=1

{Pr(Hgk)P(�gk ; �g tk)− Pr(Hgk)P(�gk ; �g+1tk)} +

G
∑

g=2

Pr(Hgk),

(4)

Poisson process: �gk =
ln

(

Pr(H(g+1)k )

Pr(Hgk )

)

ln �g tk − ln �g+1tk
+

�g tk − �g+1tk

ln �g tk − ln �g+1tk
.
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that on-site monitoring can be temporarily stopped 
for the kth site since the KRIs are at a low-risk level. If 
�2k < Êk ≤ �1k , on-site monitoring is recommended 
if there is sufficient budget or resources. Otherwise, if 
Êk > �1k , on-site monitoring is mandated. �gk is only 
determined by tjk and �jg ; it is not affected by the sam-
ple size. Notably, for multiple KRIs, in addition to com-
paring the combined KRI against the risk boundary 
�gk , another feasible way is to assess the risk level of 
the jth KRI based on �jgk and establish a criterion for 
monitoring actions, where �jgk is the risk boundary cal-
culated based on the jth KRI only. For example, if five or 
more of the ten KRIs at the kth site are assessed as high-
risk, on-site monitoring should be conducted.

When conducting risk assessments using multiple KRIs, 
the importance of each KRI may be different, or we may 
have less confidence in risk level estimates for certain KRIs. 
Therefore, one strategy is to incorporate weighting coeffi-
cients when summing over different KRIs. That is, we could 
redefine �g tk as �g tk :=

∑J
j=1 wj�jg tjk . This flexibility allows 

us to assign more weights to important KRIs or KRIs with 
better estimates. When w1 = · · · = wJ = 1 , �g tk reduces to 
the unweighted version. On the other hand, the jth KRI has 
no influence on �g tk when wj = 0 . Commonly used weight-
ing options can be based on: a fully data-driven approach by 
calculating the Euclidean distance between two neighbour-
ing risk level estimates of each KRI [5, 11], or simply prior 
experience, knowledge, or even some subjective choices on 
a case-by-case basis. When using the weighting method, 
Êk :=

∑J
j=1 wjÊjk and each KRI in Êk should be assigned 

the same weights as those in �g tk . This ensures that the 
comparison between Êk and �gk remains meaningful.

Binomial, exponential and normal distributions
We do not limit ourselves just to the Poisson distribution, 
because other distributions such as the binomial, expo-
nential, or normal distribution are also very common in 
applications. Normal distribution is still additive and the 
previous weighting strategy for Poisson distribution can 
be straightforwardly extended to normal distribution. The 
additivity of the binomial distribution requires two extra 
conditions: first, the true incidence proportions of mul-
tiple KRIs at the same site are the same, and second, the 
same risk level estimates of these KRIs are also the same. 
However, when summing over multiple independent 
exponential-distributed KRIs, they no longer follow the 
exponential distribution but instead follow the Gamma 
distribution. But this issue can be rectified by considering 
the Gamma distribution instead, which we do not further 
pursue in this paper. Assuming there are J KRIs in total, 
the optimal risk boundaries for these three distributions 
are given by

where we assume that estimates of KRIs for these three 
distributions at the g th risk level follow Bin(pg , nk) , 
Exp(�jg ) , and N (µg , σ

2
g ) , respectively. nk =

∑J
j=1

njk 
and p1g = p2g = · · · = pJg = pg . µg =

∑J
j=1

wjµjg and 
σ 2
1
= σ 2

2
= · · · = σ 2

G =

∑J
j=1

σ 2
jg = σ 2 . Hgk in Eqs. (5) and (7) 

represent Pk = pg and Mk = µg , respectively. Hjgk in 
Eq. (6) represents �jk = �jg.

For the binomial distribution, since the risk bounda-
ries use multiple binary KRIs, the scenario that sites 
with a small number of subjects may have a high inci-
dence proportion undoubtedly decreases unless multi-
ple low-risk KRIs occur at the same time. However, πgk 
does not consider the influence of follow-up time. In 
addition to using some specified rules mentioned in 
Establishing risk levels for KRIs along with their corre-
sponding monitoring actions and estimates section, the 
risk boundaries of the binomial distribution can also be 
adjusted based on the risk-based monitoring time. 
Consider the following scenario: let tjg denote the aver-
age follow-up time for the jth KRI in historical data, 
such as 2 years in Establishing risk levels for KRIs along 
with their corresponding monitoring actions and esti-
mates section. When the occurrence time of events for 
the jth KRI follows an exponential distribution, we 
obtain �jg = −

ln(1−pjg )

tjg
 , where �jg and pjg are defined 

identically as in Establishing risk levels for KRIs along 
with their corresponding monitoring actions and esti-
mates section. Next, when conducting risk-based mon-
itoring, the average follow-up time from enrollment or 
the previous risk-based monitoring to the current risk-
based monitoring for the jth KRI at the kth site is 
denoted as tjk , such as 2 months in Establishing risk 
levels for KRIs along with their corresponding monitor-
ing actions and estimates section. We use the equation 
pjgk = 1− exp(−�jg tjk) to calculate an updated parame-
ter pjgk , which is the adjusted incidence proportion of the 
jth KRI at the g th risk level and the kth site based on fol-
low-up time tjk . Finally, we use pjgk in place of pg in 
Eq. (5) to calculate the risk boundary πjgk . Furthermore, 
under the non-informative prior condition, when the jth 
KRI can only occur once, if we calculate �jgk based on 
�jg and tjk , then convert �jgk to π∗

jgk using the formula 

(5)

Binomial distribution: πgk =
n−1
k ln

(

Pr(H(g+1)k )

Pr(Hgk )

)

ln
(

pg (1−pg+1)

pg+1(1−pg )

) +
ln
(

1−pg+1

1−pg

)

ln
(

pg (1−pg+1)

pg+1(1−pg )

) ,

(6)
Exponential distribution: ejgk =

ln
(

Pr(Hj(g+1)k )

Pr(Hjgk )

)

�jg − �j(g+1)
+

ln �jg − ln �j(g+1)

�jg − �j(g+1)
,

(7)Normal distribution: δgk =
ln
(

Pr(H(g+1)k )

Pr(Hgk )

)

σ 2

µg − µg+1
+

µg + µg+1

2
,
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π∗
jgk = 1− exp(−�jgk) . We observe that π∗

jgk and πjgk , 
which are the jth KRI’s risk boundaries derived from the 
Poisson process and the binomial distribution, respec-
tively, are very close. The former increasingly converges 
to the latter as the difference between two neighbouring 
risk level estimates decreases. Through simulations, it was 
found that the difference between the two is less than 0.01 
in most cases. See Fig. S1 in Appendix C for more details. 
In addition to adjusting the risk boundary of the binomial 
distribution based on follow-up time, the aforementioned 
method can also address the limitation of Eq. (5) for han-
dling multiple KRIs at the same risk level but with differ-
ent incidence proportions. We can convert their incidence 
proportions or the average of them to incidence rates, 
then calculate the risk boundary based on the Poisson 
process and conduct risk assessments.

For the same �jg , the exponential distribution’s risk 
boundary can be derived as the reciprocal of the Poisson 
distribution’s risk boundary when there is only one KRI 
and a non-informative prior is used. For the normal dis-
tribution, Eq.  (7) shows that its optimal risk boundary is 
the median of two neighbouring KRIs’ risk level estimates 
( µg+µg+1

2  ) when using a non-informative prior. Similar 
findings can be observed when assuming that a binary KRI 
follows a uniform distribution. Only when the sum of two 
neighbouring risk level estimates equals 1, the risk bound-
ary based on a binomial distribution equals the median. In 
terms of comparison, for the binomial or normal distribu-
tion, we can directly compare the observed results against 
their risk boundaries, while we need to convert the risk 
boundaries by multiplying them with − ln(Prjk) for the 
exponential distribution, where Prjk represents the per-
centage of subjects at the kth site who have experienced 
the jth KRI event when conducting risk-based monitor-
ing. Subsequently, we compare them against the observed 
quantile survival time, such as the first quartile (Q1) sur-
vival time when Prjk = 0.25 . A summary of the optimal 
risk boundaries by distribution is provided in Appendix F.

Minimise the average decision error rate
Consider a hypothesis that the risk at the kth site falls 
within a specific risk interval, such as Hgk :�g ≤ �k < �g−1 . 
In this situation, the optimal risk boundaries are deter-
mined by minimising the average decision error rate. As 
an illustration, for the Poisson distribution,

(8)

Pr(Error) =

G
∑

g=2

Pr(Hgk)

∫

�g−1

�g

f (�k |Hgk)Pr(Sg−1|Hgk)d�k

=

G−1
∑

g=2

⌊θ(g−1)k−1⌋
∑

τ=0

[

f (τ ){Pr(Hgk |τ )− Pr(H(g+1)k |τ )}
]

+

G
∑

g=2

Pr(Hgk),

where G ≥ 3 . f (�k |Hgk) denotes the probability of 
�k ∈ (�g , �g−1) . Typically, it is assumed to follow the 
uniform distribution U(�g , �g−1) . τ denotes the aver-
age number of events per subject. f (τ ) is the probability 
density function of τ . The remaining parameters’ defini-
tions are similar to those in Calculating the optimal risk 
boundaries section. We have

where Pois(τ + 1; �g ) represents the cumulative mass 
function of the Poisson distribution. The complete 
derivation for the Poission and other distributions can 
be found in Appendix B. When minimising the average 
decision error rate, the optimal risk boundaries have no 
analytical solution and need to be solved numerically.

Non‑constant risk rate
In the previous sections, we assumed that the inci-
dence rate used in the Poisson or exponential distribu-
tion and the incidence proportion used in the binomial 
distribution do not vary over time. However, according 
to Liu et  al. [13], this assumption is typically applica-
ble only to rare events. Furthermore, if we take action 
on high-risk KRIs, it is typical for the risk rates of KRIs 
to differ before and after the intervention. Therefore, 
we adopt the approach proposed by Zink et  al. [21], 
which divided the time into fixed-duration windows 
and assessed the risk separately within each window. 
The division of time windows can be based on two 
patterns: calendar days and study days. The former is 
based on the actual length between two dates, while 
the latter is based on the time relative to the date of the 
first dose. For example, a high discontinuation rate may 
occur in a certain time window divided based on calen-
dar days due to COVID-19 pandemic-related reasons. 
On the other hand, if the incidence rate of an adverse 
event (AE) changes with the cumulative administra-
tion of the treatment drug, then time windows based 
on study days may be appropriate. For example, in tri-
als of immune checkpoint inhibitors, when a sufficient 
number of immune cells are activated to have effects, 
some immune-related AEs may occur at the same time. 

(9)Pr(Hgk | τ ) =
Pr(Hgk ){Pois(τ + 1; �g−1)− Pois(τ + 1; �g )}

f (τ )(�g−1 − �g )
,
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In this situation, we can divide time windows based on 
the points where efficacy changes [19].

The risk estimate of each time window’s can also be 
determined through the two approaches mentioned in 
Establishing risk levels for KRIs along with their cor-
responding monitoring actions and estimates  section. 
Additionally, using an informative prior can contrib-
ute to adjusting risk boundaries. For instance, in a time 
window with a high discontinuation rate due to the 
COVID-19 pandemic, setting Pr(H(g+1)k) > Pr(Hgk) can 
raise the risk boundary. This indicates that although the 
discontinuation rate is relatively high in certain time 
windows, sponsors believe that this is a consequence 
of the COVID-19 pandemic rather than trial quality 
issues. Thus, a higher risk boundary is set compared 
to that in other time windows. In Example  section, 
we provide a more detailed explanation on how prior 
information affects the calculation of risk boundaries.

Simulation
In Simulation and Results  section, we first verified 
whether the proposed method is consistent with theoret-
ical reasoning that can find the optimal risk boundaries 
within a given range of risk levels. Here we conducted 
simulations with a single binary KRI (J = 1) . We designed 
each simulation to involve only one site, with all subjects 
being recruited at the same time. We established high- or 
low-risk levels. Each site was randomly assigned to high- 
or low-risk levels in a 1:1 ratio and enrolled 100 subjects. 
The reason for using such a large sample size is to obtain 
stable results to demonstrate the optimality of the pro-
posed risk boundaries. Additionally, we simulated a sce-
nario in which there were 50 subjects and the ratio of 
low- to high-risk sites was 7:3. We used this allocation 
ratio as prior information when calculating the risk 
boundaries. We defined six high- ( g = 1 ) and low-risk 
( g = 2 ) estimate ( pjg ) scenarios, whose ( p11 , p12 ) were 
(15%, 5%), (20%, 10%), (20%, 15%), (25%, 15%), (35%, 
25%), and (40%, 30%), respectively. The occurrence times 
of all KRI events were sampled from an exponential dis-
tribution Exp(�jg ) whose parameter �jg was converted 
from the incidence proportion pjg using the equation 
�jg = −

ln(1−pjg )

tjg
 , where tjg = 10 . By comparing the occur-

rence time of the event with the risk-based monitoring 
time, we determined if the KRI event occurred. The risk-
based monitoring time in this simulation was set for the 
10th month after the first dose.

Furthermore, we compared the results of the proposed 
risk boundary with those of directly using the median 
of two neighbouring risk level estimates. In this simula-
tion, the KRI events in the high- and low-risk sites were 
sampled from a binomial distribution Bin(pjg , n) with 
incidence proportions of 30% ( p11 ) and 10% ( p12 ), and 

the total number of subjects (n) were 10, 20, and 50, 
respectively.

Next, we simulated 12 scenarios to further identify 
the influencing factors for the proposed risk boundaries. 
Table 1 summarises the parameters used in these simu-
lations, including the number of sites, total number of 
subjects (n), percentage of collected monitoring data, 
and either the incidence proportion ( pjg ) or the aver-
age number of KRI events ( �jg ). Except in Scenarios 9 
and 10, the events of KRIs in all other scenarios can only 
occur once. The simulation data for Scenarios 9 and 10 
was sampled from Poisson(�jg ) . For all other scenarios, 
we used the same pattern as in the previous simulations 
to sample the occurrence time from the exponential 
distribution and compare it with the risk-based moni-
toring time to determine whether the event occurred. 
When there was a single site, all subjects were recruited 
at the same time, with tjg = 10 . When there were 5 
and 10 sites, we simulated the multicenter competitive 
recruiting scenarios. We set an accrual period (a) and 
assigned the recruitment time ( a ·U  ) to each subject, 
where U ∼ Unif(0, 1) . For 5 and 10 sites, the number 
of subjects for each site was sampled from the multi-
nomial distributions PN(n, 0.25, 0.25, 0.2, 0.2, 0.1) and 
PN(n, 0.15, 0.15, 0.15, 0.1, 0.1, 0.1, 0.1, 0.05, 0.05, 0.05)  , 
respectively. tjg in multi-center trials equals f − a

2 , where 
f represents follow-up period.

The sites in Scenario 2 were categorised into high-, 
medium-, and low-risk levels, while all other scenarios 
only had high- and low-risk levels. The allocation ratio 
between high-risk and low-risk sites was 2:3 in Sce-
narios 5, 6, and 9, 3:2 in Scenarios 7, 8, and 10, and 1:1 
in the remaining scenarios. We simulated the scenario 
where some incidence proportions were the same at dif-
ferent risk levels, such as in Scenario 3. Also, in Scenario 
4, we weighted incidence proportions to evaluate if such 
weighting would improve performances compared to the 
unweighted Scenario 3 with identical parameters. Each 
scenario had 3 KRIs, except for Scenarios 11 and 12. To 
be more similar to the real situation, even at the same risk 
level, the incidence proportions of different KRIs varied. 
For instance, in Scenario 1, the incidence proportions of 
different KRIs at the high-risk site ( pj1 ) were 40%, 25%, 
and 10%, respectively. Lastly, we evaluated the influence 
of various numbers of KRIs on performance in Scenarios 
11 and 12. Scenario 11 used only one KRI, while Scenario 
12 used 3, 5, and 10 KRIs, respectively. The ratios of differ-
ent incidence proportions at the same risk level were 1:1:1 
for 3 KRIs and 2:1:2 for 5 and 10 KRIs. These allocation 
ratios ensured that in Scenarios 11 and 12, regardless of 
the number of KRIs involved, the average incidence pro-
portions at the same risk level were equal. The evaluation 
metric was the accuracy rate for the site risk assessment. 
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In the simulations, the non-informative prior risk bound-
aries were calculated based on the Poisson process, while 
the informative prior risk boundaries were calculated 
based on the binomial distribution. In each simulation 
scenario, 1000 replications were generated. All the simu-
lation studies are done in software SAS 9.4.

Results
The accuracy rates of the risk boundaries obtained using 
the proposed method are shown by the gold lines in 
Panels A-F of Fig.  1, while the blue lines represent the 
accuracy rate using all other values within the range of 
high- and low-risk levels. The simulation results dem-
onstrated that the proposed risk boundaries found the 
highest accuracy rate, while the median did not achieve 
the highest accuracy rate for the binary KRI in most sce-
narios. In the non-informative prior, the proposed risk 
boundary is typically lower than the median if the lat-
ter is below 50%. In contrast, when the median exceeds 
50%, the proposed risk boundary is higher. They overlap 
when the median is 50%. The exception occurred when 
informative priors were used. The results where the ratio 
of high-risk to low-risk sites was not 1:1 are provided in 
Appendix D. The accuracy rates with and without prior 
information are represented by the gold lines and the 
black lines in the figure, respectively. Similarly to the 

non-informative prior, the proposed method identified 
the optimal risk boundaries.

When considering incidence proportions of 30% and 
10% for high- and low-risk levels, respectively, the Panels 
G-I in Fig. 1 show the differences between the proposed 
risk boundary (18.62%) and the median (20%) with vari-
ous numbers of subjects. To make the results clear and 
easy to understand, we only drew sites that fell within 
this interval and randomly moved the data points in the 
event of unaltered accuracy. Outside of this interval, the 
performances of the two were the same. When using the 
median, sites with a true incidence proportion of 30% 
were misclassified as low-risk, as represented by the 
dots in the figure, whereas our method correctly identi-
fied them as high-risk. Conversely, when sites with a true 
incidence proportion of 10% fell within this interval, it 
indicated that the median correctly evaluated the risk 
while our method was wrong, as represented by the tri-
angles. The final results revealed that the proposed risk 
boundaries exhibited 60-70 fewer mistakes in 1000 sim-
ulations than using the median when the total number 
of subjects was 10 or 20. When there were 50 subjects, 
fewer sites fell within this interval due to the increase in 
the sample size, yet the proposed risk boundaries still 
demonstrated an approximately 3% higher accuracy rate 
than the median.

Table 1 Summary of 12 simulation scenarios with various parameters

a represents risk-based monitoring is conducted when a certain percentage of the trial data is collected

 bindicates that the scenarios were weighted, and the weights ( wpjg ) assigned to different incidence proportions are wp1g = 10% , wp2g = 45% , and wp3g = 45% 
respectively

Scenario # of site Total # of subjects ( n) % of  Monitoringa Incidence proportion ( pjg ) or average 
number of KRI events ( �jg ) at different risk 
levels

1 1 1‑25 10%‑100% p11 = 40% , p21 = 25% , p31 = 10%,

p12 = 10% , p22 = 4% , p32 = 1%

2 1 1‑25 10%‑100% p11 = 40% , p21 = 30% , p31 = 20%,

p12 = 25% , p22 = 15% , p32 = 5%

p13 = 10% , p23 = 4% , p33 = 1%

3 1 1‑25 10%‑100% p11 = 20% , p21 = 20% , p31 = 5%,

p12 = 20% , p22 = 5% , p32 = 1%

4b 1 1‑25 10%‑100% Same as Scenario 3

5 5 20,50,80 33% Same as Scenario 1

6 5 120 20% Same as Scenario 1

7 10 160,200 33% Same as Scenario 1

8 10 200,400 20% Same as Scenario 1

9 5 20,30 33% �11 = 7 , �21 = 4 , �31 = 1,

�12 = 5 , �22 = 3 , �32 = 1

10 10 50,80 20% Same as Scenario 11

11 1 1‑25 30%,50% p11 = 25% , p12 = 10%

12 1 1‑25 30%,50% p11 = 35% , p21 = 25% , p31 = 15%,

p12 = 15% , p22 = 10% , p32 = 5%
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Figure  2 shows how the accuracy rate varies with the 
percentage of monitoring and the total number of sub-
jects. The grey, transparent plane represents an accuracy 
rate of 80%. The accuracy rates in Scenario 1 were higher 
than 80% in most parts. Impacted by the diminishing gap 
between different risk level estimates, the accuracy rates 
in Scenario 2 were higher than 80% only when there were 
a substantial number of subjects or monitoring data. Sce-
nario 4 used a weighting strategy and improved accuracy 
rates compared to Scenario 3, thus demonstrating the 
viability of the weighting strategy.

In the case of 5 sites, such as Scenarios 4 and 5 in 
Table 2, the accuracy rate was high when there were more 
subjects and at least 33% of the monitoring data was col-
lected. Otherwise, the accuracy rate would decrease if 
either of these conditions were not satisfied. Similar find-
ings were observed when there were 10 sites. For exam-
ple, the accuracy rate was 82.6% in Scenario 7, where the 
total number of subjects was 200 and 33% of the moni-
toring data was collected. On the other hand, the accu-
racy rate was 81.3% when only 20% of the monitoring 
data was collected in Scenario 8, even though there were 

400 subjects. The above findings remind us that, simi-
lar to single site simulation results, the accuracy rate of 
multicenter simulations was also influenced by the quan-
tity of monitoring data and the total number of subjects. 
The duration of the accrual period and follow-up period 
also affected the accuracy rate. This is because a lower 
amount of censored data is associated with a shorter 
accrual period or a longer follow-up period. In scenarios 
where the number of sites differed while keeping other 
factors constant, such as Scenario 5 with 80 subjects and 
Scenario 7 with 160 subjects, the subjects were more dis-
persed due to the increase in site number. Consequently, 
the accuracy rate was impacted to some extent. At last, 
when KRIs could occur multiple times, the simulation 
results also complied with the above-mentioned rules.

Figure  3 shows the influence of different numbers of 
KRIs on the accuracy rate at a single site. It is evident 
that the accuracy rate improved and became more stable 
as more KRIs were used. When using a single KRI, the 
accuracy rates were mainly within 60% and 70%, regard-
less of whether 30% or 50% of the monitoring data was 
collected. Furthermore, when there were 3 KRIs and 30% 

Fig. 1 The comparison of the performances between the proposed risk boundaries and all other values within the incidence proportion range, 
including the median. HR and LR denote high‑ and low‑risk levels, respectively. AR is the abbreviation for accuracy rate
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of the monitoring data was collected, the accuracy rates 
increased and reached 80% when the total number of 
subjects was 15.

Example
In this section, we illustrate how to apply the proposed 
risk boundaries in practice using data from a real clini-
cal trial (NCT00339183). This is a Phase III multicenter 
randomised controlled trial (MRCT) with 946 previ-
ously treated metastatic colorectal cancer patients across 
151 sites. For demonstration purposes, one-third of the 
sites were randomly selected. The primary objective of 
the study is to compare the efficacy of panitumumab 
combined with chemotherapy to the efficacy of chemo-
therapy alone. The datasets were downloaded from Pro-
ject Data Sphere. To evaluate the risk level of each site, 
we selected 4 KRIs: the discontinuation rate and the 
incidence proportions of dry skin, diarrhoea, and paro-
nychia. The latter three risk levels are listed as frequent 

Fig. 2 The influence of various percentages of monitoring and the number of subjects on the accuracy rate

Table 2 The accuracy rate of the proposed risk boundaries in 
multicenter scenarios

a  represents the percentages of monitoring. The units of accrual period and 
follow-up period are months

Scenario (% 
of  Ma)

# of site n Accrual 
Period 
( a)

Follow‑up 
Period ( f )

Accuracy Rate

5 (33%) 5 20 1 3 73.8%

50 3 7 79.8%

80 4 8 84.3%

6 (20%) 5 120 10 10 79.9%

7 (33%) 10 160 4 8 79.7%

200 6 12 82.6%

8 (20%) 10 200 6 12 72.7%

400 8 16 81.3%

9 (33%) 5 20 NA NA 80.3%

30 NA NA 84.9%

10 (20%) 10 50 NA NA 81.1%

80 NA NA 86.3%
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AEs for panitumumab in the drug instructions and were 
counted only once if they occurred multiple times in one 
subject. We assume that at the same site, the risk level 
estimates and true incidence proportions of these three 
AEs are the same. To define the risk levels for these KRIs, 
we used some specified rules, which were that a site with 
a discontinuation rate more or less than 30% and 15% of 
the overall rate or an incidence proportion of AEs more 
or less than 15% and 10% of the overall incidence propor-
tion were considered as high- and medium-risk, respec-
tively. The overall rate and incidence proportion were 
estimated by averaging all sites. For clarity, we only iden-
tified sites with a high discontinuation rate as high-risk. 
Although sites with both high and low incidence propor-
tions were considered as high-risk, we only displayed 
situations where the incidence proportions of AEs were 
too low, such as sites with unreported AEs. The proposed 
risk boundaries were determined through the binomial 

distribution based on the medium- and high-risk levels, 
using various informative and non-informative priors. 
The high-risk threshold of the funnel plot was based on 
a nominal 99.7% confidence interval, which is consistent 
with Zink et al. [21].

We first assessed the risk for the final trial data. In the 
left panel of Fig. 4, the black line represents the average 
discontinuation rate across all sites, while the aquama-
rine line represents the risk boundary calculated using 
our method with a non-informative prior. Different prior 
ratios of low and high discontinuation rate sites are rep-
resented by the orange, yellow, and purple lines to be 7:3, 
6:4, and 4:6, respectively. The threshold of the funnel plot 
is represented by the dashed blue line. The pink dashed 
line represents the risk boundary achieved by minimis-
ing the average decision error rate without prior infor-
mation. The final results indicated that sites 14 and 27 
were identified as high-risk sites when the prior ratio of 

Fig. 3 The influence of various numbers of KRIs on the accuracy rate at a single site. M represents the percentage of monitoring

Fig. 4 The proposed risk boundaries and the funnel plot in a real clinical trial. The average incidence proportions of the discontinuation 
and the three AEs are 25.0% and 22.2%, respectively. The high‑risk levels of the discontinuation and three AEs are 55.0% and 7.2%. The medium‑risk 
levels of the discontinuation and three AEs are 40.0% and 12.2%. njk is the number of subjects with the jth KRI recorded at the kth site. nk =

∑J
j=1

njk
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low and high discontinuation rate sites was 7:3. This con-
clusion aligned with that of the funnel plot. As the prior 
ratio decreased from 7:3 to 4:6, more sites are needed to 
take some additional monitoring actions, such as on-site 
monitoring. If this ratio is interpreted as the severity of 
trial quality that sponsors assume, as described in Non-
constant risk rate  section, or as the proportion of sites 
where sponsors prefer not to take additional monitoring 
actions, then the trend is reasonable. Notably, the purple 
line indicates that sponsors wanted to take more addi-
tional monitoring actions compared to the non-informa-
tive prior; this is impossible for the funnel plot to achieve. 
The pink dashed line has the widest risk boundary since 
the upper limit of the high-risk estimate for the discon-
tinuation rate was 100%.

The right panel of Fig.  4 illustrates the scenario when 
three AEs were used to calculate the risk boundaries. 
Since a lower incidence proportion indicates higher risk, 
the prior ratios of low and high incidence proportions are 
respectively represented by the orange, yellow, and pur-
ple lines to be 3:7, 4:6, and 6:4, which is the opposite of 
the discontinuation rate setting. However, the risk assess-
ment results of three AEs can be interpreted in the same 
way as those of the discontinuation rate. For example, the 
purple line suggests that there were more sites with low 
incidence proportions or high risks based on the prior 
information, or it indicates that sponsors assumed that 
more sites were at a high-risk level or that they preferred 
to take more additional monitoring actions. In addition, 
the threshold of the funnel plot was a little wide, so no 

site required additional monitoring actions. We can 
imagine that if we only used one AE as KRI, that is, nk 
equaled 25 at most, then only a small segment at the end 
of the funnel plot is greater than zero, rendering it almost 
meaningless in terms of risk assessment.

Figure 5 shows the risk assessment results based on the 
discontinuation rate at different stages, divided based on 
the relative time windows when combined with the traffic 
light system [15] proposed by TransCelerate in scenarios 
with a non-informative prior or a prior information ratio 
of 6:4. Compared to the non-informative prior, the over-
all risks across the sites decreased when the prior infor-
mation ratio was 6:4, which aligned with the previous 
conclusions. For sites 14 and 27, their multiple relative 
time windows were classified as high or medium risks. 
By comparing the positions of sites in Fig.  4 with their 
results in different time windows in Fig. 5, we observed 
a correspondence between most of them, such as sites 1 
and 2.

Discussion
Through simulations, we observed the relationships 
between the proposed method and various factors. The 
risk level estimates and prior information primarily influ-
ence whether the proposed boundaries are optimal, while 
the difference between two neighbouring risk level esti-
mates, the number of subjects at the site, the number 
of KRIs, and the percentage of the collected monitoring 
data primarily impact the performance of the proposed 
risk boundaries. Sponsors have the flexibility to choose 

Fig. 5 The risk of each site is assessed based on the discontinuation rate within each of the 60‑day time window. Only sites with at least one 
discontinued subject are included in the analysis
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either of the two approaches proposed in Establishing 
risk levels for KRIs along with their corresponding moni-
toring actions and estimates section for determining risk 
level estimates, depending on their specific requirements 
and available information. However, similar to QTLs and 
thresholds, the accurate definition of risk level estimates 
is crucial, and it can even be considered a limitation of 
such methods. Therefore, it is recommended to make 
reference to historical data or other available criteria as 
much as possible.

In Simulation  section, we demonstrated that the pro-
posed method identified the optimal risk boundaries 
when the prior information and the true proportions of 
site risks were consistent. Nevertheless, in practice, the 
true proportions of high- and low-risk sites are unknown 
and can vary across different trials, drugs, and even dif-
ferent stages of the trial, as illustrated in the COVID-19 
example. The definition of high- and low-risk is highly 
subjective and often cannot be resolved through a pure 
technical approach. Therefore, prior information should 
primarily be applied to adjusting the risk boundaries 
according to the specific requirements of the trial. The 
proposed method ensures the identification of the opti-
mal risk boundaries under the given requirements. In 
Example section, we provide an intuitive explanation for 
selecting the prior information. The inclusion of prior 
information allows for flexibility in determining the num-
ber of sites to take monitoring actions, which can be 
adjusted according to the preferences and needs of spon-
sors. From this perspective, the proposed method offers 
an adaptable approach to adjusting risk boundaries.

When considering the factors affecting the perfor-
mance of the proposed method, the difference between 
risk level estimates is selected based on historical data of 
similar products, expert advice, or other criteria. There-
fore, we mainly focus on discussing the influence of the 
other three factors. Generally, higher accuracy rates are 
associated with a larger sample size or monitoring data. 
This finding is particularly beneficial for large-scale tri-
als or sites, as it allows for cost savings by reducing the 
frequency of on-site monitoring. Regarding the number 
of KRIs, when the risk level estimates of KRIs are accu-
rately defined, more KRIs lead to an increased accuracy 
rate. However, in real trials, accurately defining risk level 
estimates for numerous KRIs and ensuring their inde-
pendence can be challenging. Therefore, it is advisable to 
prioritise the selection of KRIs with a higher level of con-
fidence to effectively incorporate them into the proposed 
method.

Additionally, there are two issues related to independ-
ence that should be considered. First, the independence 

assumption required by the Poisson distribution should 
be assessed for events that can occur multiple times. In 
other words, the occurrence of an event should not be 
influenced by previous events. For example, if the proba-
bility of an AE recurrence significantly decreases after its 
initial occurrence, the independence assumption may not 
hold. Second, the independence between the KRIs used 
for the combination should also be assessed. A common 
example is when there is a competing risk between two 
KRIs, which may violate this independence assumption. 
Another important consideration is the choice between 
using cumulative data or staged data for risk-based moni-
toring. Our recommendation is as follows: if a trial or site 
is not intervened on and the risk rate does not signifi-
cantly change over time, it is preferable to use the cumu-
lative data. However, in cases involving post-intervention 
data or situations where the risk rates fluctuate, the 
staged data, as shown in Example section, can be used for 
risk-based monitoring.

The proposed risk boundaries provide several distinct 
advantages. First, the calculation process for the pro-
posed risk boundaries is straightforward and typically 
does not require extensive programming. Since the pro-
posed method provides analytical solutions, it can be eas-
ily used by non-statistical roles in clinical research, such 
as physicians, project managers, or clinical research asso-
ciates. In Appendix E, we have developed the SAS macro 
to calculate risk boundaries based on different distribu-
tions. Second, the proposed method is applicable to a 
wide range of clinical trials, including Phase I to Phase IV, 
single or multicenter. The proposed risk boundaries can 
be derived from different KRIs, similar to TransCelerate, 
or only focus on therapeutic areas or populations, similar 
to the funnel plot, rather than being limited to a single 
approach. Although the proposed method can techni-
cally be applied at different levels, its practical imple-
mentation should adhere to the corresponding rules. For 
instance, site-level boundaries can be adjusted during the 
trial, while trial-level boundaries are not recommended 
for adjustment. We have derived risk boundaries based 
on four commonly used distributions. The proposed 
method can also be used for other distributions, such as 
the Weibull distribution, when applicable. However, it 
may not have an analytical solution. Third, compared to 
testing the risks between sites using frequentist methods, 
the proposed method avoids the issue of multiple test-
ing, thereby streamlining the analysis process. Fourth, 
the proposed method provides flexibility in incorporat-
ing multiple KRIs and assigning different weights to each 
KRI. This allows for customisation based on the specific 
risk factors of interest in a given trial.
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Conclusion
In this paper, we propose a Bayesian risk-based moni-
toring method for assessing the trial quality based on 
the prespecified KRIs and their risk level estimates. 
The proposed method distinguishes itself from other 
approaches through its clear purpose and approach to 
boundary selection, aiming to identify the optimal risk 
boundaries that minimise the decision error rate. The 
proposed risk boundaries are applicable at both the 
trial- and site-levels, accommodating multiple risk lev-
els and various endpoint types. In conclusion, with the 
trend shifting from 100% SDV to more targeted moni-
toring, centralised and risk-based monitoring are play-
ing an increasingly pivotal role in clinical monitoring. 
Consequently, this direction deserves further study and 
development.
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