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Abstract 

Background  Causal mediation analysis plays a crucial role in examining causal effects and causal mechanisms. Yet, 
limited work has taken into consideration the use of sampling weights in causal mediation analysis. In this study, we 
compared different strategies of incorporating sampling weights into causal mediation analysis.

Methods  We conducted a simulation study to assess 4 different sampling weighting strategies-1) not using sam-
pling weights, 2) incorporating sampling weights into mediation “cross-world” weights, 3) using sampling weights 
when estimating the outcome model, and 4) using sampling weights in both stages. We generated 8 simulated 
population scenarios comprising an exposure (A), an outcome (Y), a mediator (M), and six covariates (C), all of which 
were binary. The data were generated so that the true model of A given C and the true model of A given M and C 
were both logit models. We crossed these 8 population scenarios with 4 different sampling methods to obtain 32 
total simulation conditions. For each simulation condition, we assessed the performance of 4 sampling weighting 
strategies when calculating sample-based estimates of the total, direct, and indirect effects. We also applied the four 
sampling weighting strategies to a case study using data from the National Survey on Drug Use and Health (NSDUH).

Results  Using sampling weights in both stages (mediation weight estimation and outcome models) had the low-
est bias under most simulation conditions examined. Using sampling weights in only one stage led to greater bias 
for multiple simulation conditions.

Discussion  Using sampling weights in both stages is an effective approach to reduce bias in causal mediation analy-
ses under a variety of conditions regarding the structure of the population data and sampling methods.

Keywords  Mediation analysis, Sampling weights, Propensity scores

Background
An important scientific goal in many fields of research is 
determining to what extent the effect of an exposure on 
an outcome is mediated by an intermediate variable on 

the causal pathway between the exposure and outcome. 
In mediation analysis, the effect of an exposure on out-
come is decomposed into an indirect effect, the effect 
that is mediated through the intermediate variable, and 
a direct effect, the difference between the overall or total 
effect and the indirect effect. Traditionally, mediated 
effects have been evaluated using linear model specifi-
cations for the observed data [1]. The definitions of the 
direct and indirect effects themselves rely on this linear 
specification. Robins and Greenland [2] and Pearl [3] 
developed fully-nonparametric causal models for defin-
ing, identifying, and estimating direct and indirect effects 
that do not rely on a linear model specification. This 
approach to mediation analysis is commonly referred to 
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as “causal mediation modeling” because it uses potential 
outcomes/counterfactuals used in causal modeling for 
treatment effects to give non-parametric definitions of 
the effects involved in mediation analysis.

An underlying assumption of causal mediation analy-
sis is that the data are a simple random sample from the 
population of interest. However, often this assumption 
does not hold. In survey samples, individuals are sam-
pled randomly but with unequal probabilities. Alterna-
tively, analytic samples may not reflect a random sample 
due to missingness or attrition. A common approach to 
adjust for nonrandom sampling is to weight the sample 
such that the sample matches the population on observed 
covariates. Prior methodological work has considered 
causal modeling with nonrandom sampling for the effects 
of dichotomous treatments [4] or continuous treatments 
[5], but there has been little study of how to conduct 
causal mediation analysis on nonrandom samples.

We address this issue by assessing how best to use weights 
to account for nonrandom sampling (i.e., arising from sur-
vey sampling, nonresponse, or attrition) when conducting 
causal mediation analysis. We next provide a brief review 
of the literature on the use of sampling, attrition, or nonre-
sponse weights for causal modeling, in general, followed by 
an introduction to causal mediation analysis with random 
samples. We then detail our proposed approach to causal 
mediation analysis with nonrandom sampling and present 
the results of our simulation study. We conclude with an 
applied example of our proposed approach in which we 
examine potential mediating pathways underlying sub-
stance use disparities among sexual minority (e.g., gay, 
lesbian, or bisexual) women, using survey data from the 
National Survey of Drug Use and Health (NSDUH).

Sampling weights and causal modeling
Multiple authors have considered the use of sampling 
weights for causal modeling with binary treatments (e.g., 
Zanutto [6]; DuGoff et  al. [7]; Ridgeway et  al. [4]; Austin 
et al. [8]; Lenis et al. [9]; Dong et al. [10]), yielding varying 
suggestions for how best to use sampling weights when 
estimating treatment effects. Zanutto [6] focused on pro-
pensity score (PS) stratification, recommending in that 
context that sampling weights only be used in the outcome 
analyses estimating stratum-specific treatment effects. 
Zanutto argued that the PS model did not need sampling 
weights, as this model was used to create strata of individu-
als with similar propensities rather than population-level 
inferences. DuGoff et  al. [7] broadened their focus to PS 
matching, weighting, and stratification and recommended 
that, in addition to applying sampling weights in the out-
come models, sampling weights should be used as a covari-
ate (rather than as weights) in the PS model. Ridgeway et al. 
[4] focused on PS weighting and, in contrast to the first two 

papers, used theoretical derivation to show that consistent 
estimation of the treatment effects for the population can 
be obtained by (1) using sampling weights (as weights, not a 
covariate) in the estimation of the PS model and (2) weight-
ing the outcome model by the product of the sampling 
weights and inverse probability weights (IPW). Via simu-
lations they also showed that this method resulted in bet-
ter covariate balance and treatment effect estimates with 
the lowest root mean squared error (RMSE) across several 
data generating scenarios (including the ones considered 
in DuGoff et  al. [7]). Austin et  al. [8] and Lenis et  al. [9] 
both explored the implications of different approaches for 
handling sampling weights for PS matching and generally 
showed that no method of estimation was clearly preferable 
to the others. McCaffrey et al. [5] extended this research to 
continuous exposures. Like Ridgeway et al. [4], they showed 
that using sampling weights in the estimation of the gener-
alized propensity score (GPS) model and weighting by the 
product of the sampling weights and inverse GPS weights 
when estimating the treatment effects is sufficient for con-
sistent estimation of the treatment effects for the popula-
tion. They also showed that under various scenarios using 
sampling weights in both estimation stages is not necessary 
and that this held for multiple simulation study conditions. 
However, this issue has not been examined in the media-
tion context.

Background on causal mediation
A simple mediation model is illustrated in Fig.  1 where 
Y represents the outcome, A represents the exposure, X 
represents pre-exposure covariates, and M denotes the 
mediator. Note that we use the term “exposure” broadly 
to refer to a non-randomized or randomized condition, 
treatment, or intervention.

The total effect of A on Y includes two possible causal 
paths from A to Y: the path A → M → Y  is the indirect 
effect of A on Y through M and the path A → Y  is the 
direct effect of A on Y that does not go through M. Media-
tion is inherently about causal effects, which are defined as 
the difference between two potential outcomes for an indi-
vidual. We begin by introducing the potential outcomes 
needed to define the natural direct and indirect effects.

Consider the case in which A is a binary indicator of the 
exposure, indicating the exposed condition ( A = 1 ) or 
the comparison condition ( A = 0 ). There are two poten-
tial outcomes for each study participant corresponding to 
each exposure level a: the outcome had they received the 
exposure, denoted Y1 , and the outcome had they received 
the comparison condition, denoted Y0 . These two poten-
tial outcomes, Y1 and Y0 , exist for all individuals in the 
population regardless of whether the individual received 
the exposure or comparison condition. However, we can 
only observe one of these outcomes for each participant 
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depending on which exposure condition the individual 
actually receives.

The mediator is an “intermediate” outcome of the expo-
sure and itself has potential values. For each exposure level 
a there is a corresponding potential mediator value, denoted 
Ma . Also, there is a corresponding potential outcome that 
reflects the outcome value that would arise under the spe-
cific exposure level a and the specific potential mediator 
value Ma – this potential outcome is denoted Y(a,Ma) . Causal 
definitions of direct and indirect effects require extend-
ing the potential outcomes framework such that there is a 
potential outcome for each treatment and mediator pair. 
For the case of a binary exposure A, there are four potential 
outcomes for an individual, formed by crossing both poten-
tial exposure values with both potential mediator values: 
Y(1,M1) , Y(0,M0) , Y(1,M0) , and Y(0,M1) . Only Y(1,M1) or Y(0,M0) 
are observable, as these are the only potential outcomes 
for which the exposure status is concordant with the expo-
sure status for the mediator potential value. The other two 
potential outcomes (often referred to as cross-world coun-
terfactuals or cross-world potential outcomes) are hypotheti-
cal quantities because the mediator value is manipulated to 
take on the value it would have under the other exposure 
condition; these cross-world counterfactuals are neces-
sary to define the causal estimands of interest. In practice, 
we can only observe one outcome for a given individual i 
– either Y(1,M1) or Y(0,M0) – corresponding to the exposure 
level a that the individual actually received.

Estimands: natural direct and indirect effects
Causal effects are defined as contrasts between differ-
ent potential outcomes. Specifically, we consider the 
natural direct and natural indirect effects. Alternative 
mediation estimands exist (see [11] for details), but the 
natural direct and indirect effects tend to be used in 
most applications.

As with causal modeling for (non-mediated) treat-
ment effects, the total effect of a dichotomous expo-
sure for an individual equals the difference between 
the potential outcome when exposed and the potential 
outcome when not exposed or Y(1,M1) − Y(0,M0) . The 
estimand of interest for the total effect is the expected 
value of the individual effects across the entire 
population:

The natural direct effect (NDE) and natural indirect 
effect (NIE) are defined as follows:

We can similarly define an alternative TE decomposi-
tion comprised of NDE1 and NIE0:

There are two decompositions for TE: TE = NDE0 + NIE1 
and TE = NDE1 + NIE0 . The subscripts for NDE (i.e., NDE0 
or NDE1 ) denote the condition to which the mediator is held 
constant, whereas the subscripts for NIE denote the condi-
tion to which the exposure is held constant. We note that 
each decomposition includes an NIE and an NDE corre-
sponding to opposite subscripts.

Identification assumptions
Identification of the natural indirect and direct effects 
relies on the assumptions of positivity, consistency, and 
sequential ignorability. First, the positivity assumption 

(1)TE = E Y(1,M1) − Y(0,M0) = E[Y1 − Y0].

(2)NDE0 = E
[
Y(1,M0) − Y(0,M0)

]

(3)NIE1 = E
[
Y(1,M1) − Y(1,M0)

]
.

(4)NDE1 = E
[
Y(1,M1) − Y(0,M1)

]

(5)NIE0 = E
[
Y(0,M1) − Y(0,M0)

]
.

Fig. 1  Graphical depiction of a simple mediation model
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requires that all individuals have some positive probability 
of receiving each level of the exposure and each level of 
the mediator. Second, the consistency assumption states 
that the outcome observed for an individual is identical 
to (i.e., consistent with) the potential outcome that cor-
responds to their observed exposure value; similarly, their 
observed mediator value is the potential mediator value 

that corresponds to their observed exposure value. Finally, 
sequential ignorability refers to a set of assumptions 
regarding confounding. The nonparametric assumptions 
typically made for identification of NDE and NIE condi-
tional on pre-exposure variables X are the following: 

1	 No unobserved confounding of the effect of A on M
2	 No unobserved confounding of the effect of A on Y
3	 No unobserved confounding of the effect of M on Y
4	 No confounder (observed or unobserved) of the 

effect of M on Y that is affected by A

If individuals are randomly assigned to levels of the expo-
sure, then assumptions 1 and 2 should hold. However, 
assumptions 3 and 4 may not hold even when there is 
random assignment to the exposure. See [12] for further 
discussion of these identifying assumptions. Implicit in 
these identifying assumptions is the assumption that data 
are a simple random sample of the population.

Estimation
The basic idea is to obtain estimates of E

[
Y(1,M1)

]
 , 

E
[
Y(0,M0)

]
 , E

[
Y(1,M0)

]
 , and E

[
Y(0,M1)

]
 which are then 

plugged into Eqs. 2 and 3 or 4 and 5 to obtain estimates of 
the natural indirect and direct effects. Although there are 
numerous estimation strategies, we will focus on weight-
ing because it involves estimation of weights and the 
question arises as to whether the sampling weights should 
be included in the estimation of these weights, just as the 
question arose for weighted estimators of dichotomous 
or continuous treatments. Hong [13] first defined the fol-
lowing weights waa′ to estimate each potential outcome, 
E
[
Y(a,Ma′ )

]
 for a ∈ (0, 1) and a′ ∈ (0, 1):

where f(.) is a density function. Note that waa′ is a func-
tion of X as well as a and a′ , but we omit X from the waa′ 
notation for simplicity. The estimate of E

[
Y(a,Ma′ )

]
 is the 

weighted mean,

(6)waa′ =
f (M = m|A = a′,X = x)

f (M = m|A = a,X = x)p(A = a|X = x)

Under the previously stated assumptions of con-
sistency, positivity, and sequential ignorability (i.e., X 
strictly pre-exposure, or not affected by A), Huber [14] 
used the following manipulation (i.e., Bayes Rule)

to obtain an easier set of weights to estimate:

These weights have been referred to as “cross-world” 
weights as they are used to estimate the average cross-world 
potential outcomes (i.e., E

[
Y(1,M0)

]
 or E

[
Y(0,M1)

]
 ) [15]. In 

the denominator of Equation 8, note that p(A = a|X = x) 
appears on the left hand side whereas p(A = a′|X = x) 
appears on the right hand side; the change is the result of 
applying Bayes rule for the numerator and denomina-
tor of Eq. 6. Following [15], we will refer to the first term 
comprising the product on the right hand side of Eq. 8 as 
an odds weight and the second term as an inverse prob-
ability weight (IPW). These terms are so named because 
the IPW is of the standard IPW form and the odds weight 
term is the usual form for estimating the average treatment 
effect among the treated/exposed (ATT), with the addi-
tion of conditioning on the mediator. In practice, the odds 
weight and IPW are calculated separately and then multi-
plied together to obtain the final cross-world weights. Since 
E[Y(1,M1)] is the expected value of the potential outcome 
under treatment, w11 = 1/p(A = 1 | X = x) . Similarly, 
w00 = 1/p(A = 0 | X = x).

The development of these cross-world weights 
assumes the data are a simple random sample from the 
population of interest. The following section details 
our proposed approach for generalizing cross-world 
weights to incorporate sampling weights.

Accounting for sampling weights in cross‑world 
potential outcomes
Our proposed approach is an extension of prior theoreti-
cal work that showed that the use of composite weights 
– generated by multiplying sampling weights by IPW or 
generalized propensity score weights – yielded consistent 

E
[

Ŷ(a,Ma′ )

]

=
∑

i:Ai=a

Y obs
i waa′,i/

∑

i:Ai=a

waa′,i.

f (M = m|A = a,X = x) =
p(A = a|M = m,X = x)f (M = m|X = x)

p(A = a|X = x)

(7)waa′ =
p(M = m|A = a′,X = x)

p(M = m|A = a,X = x)p(A = a|X = x)

(8)
=

Odds Weight
︷ ︸︸ ︷

p(A = a′|M = m,X = x)

p(A = a|M = m,X = x)

IPW
︷ ︸︸ ︷

1

p(A = a′|X = x)
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estimation of population-level treatment effects [4, 5]. In 
a similar manner, we propose to create composite weights 
that are generated by multiplying sampling weights by 
cross-world weights for mediation analyses.

Below, we provide a theoretical derivation showing that 
the proposed composite weights will yield consistent esti-
mates of population-level natural direct and indirect effects 
in a sample. We assume that all the standard assumptions 
for causal mediation hold and that the mediator M and 
exposure A are sequentially ignorable given X. Sampling 
selection is not random, but it is random conditional on the 
sample design variables, denoted U. Let Z denote a sample 
selection indicator in which Z = 1 for sampled individuals 
and 0 otherwise; thus, Z = 1 for all individuals in the sam-
ple. The outcome is denoted Y and the observed data are 
(Y obs

i ,Mobs
i ,Xi,Ui,Ai,Zi) , i = 1, . . . , n . We assume Y obs

=

Y (A,M(A)) and Mobs = M(A) . Let S denote an indicator 
for whether an individual was selected into a sample, 
with S(U) = P(Z = 1)/P(Z = 1 | U) and Si = S(Ui) and 
W (X) = P(A=0|Mobs ,X)

P(A=1|Mobs ,X)P(A=0|X)
 and Wi = W (Xi) . It is pos-

sible that we observe Si and not Ui.
In addition to sequential ignorability, we assume 

Y obs,Mobs,X ,A⊥⊥Z | U . We now show that E[Y obs,W , S |

Z = 1,A = 1] = E[Y (1,M(0))]

(9)

=

∫

. . .

∫

W (X)S(U)y×

fY obs ,Mobs ,X ,U |A=1,Z=1(y,m,X ,U | A = 1,Z = 1)dy dmdX dU

=

∫

. . .

∫

W (X)S(U)ya×

fY obs ,Mobs ,X ,U ,A|Z=1(y,m,X ,U , a | Z = 1)dy dmdX dU da

=

∫

. . .

∫

W (X)S(U)yafY obs ,Mobs ,X ,A|U ,Z=1(y,m,X , a | U ,Z = 1)×

fU |Z(U | Z = 1)dy dmdX dU da

=

∫

. . .

∫

W (X)S(U)yafY obs ,Mobs ,X ,A|U (y,m,X , a | U)×

fU |Z(U | Z = 1)dy dmdX dU da

=

∫

. . .

∫

W (X)S(U)yafY obs ,Mobs ,X ,A|U (y,m,X , a | U)×

fZ|U (Z = 1 | U)fU (U)

P(Z = 1)
dy dmdX dU da

=

∫

. . .

∫

W (X)yafY obs ,Mobs ,X ,A|U (y,m,X , a | U)×

fU (U)dy dmdX dU da

=

∫

. . .

∫

W (X)yafY obs ,Mobs ,X ,A(y,m,X , a)dy dmdX da

=

∫

. . .

∫

W (X)yfY obs ,Mobs ,X |A=1(y,m,X | A = 1)dy dmdX

The results follow using the standard derivations 
for cross-world weighting. Note that since U  = X  , the 
W(X) are for the population and are not conditional on 
Z. However, we can only estimate P(A = 1 | Mobs,X) 
and P(A = 0 | X) using the observed sample. We can 
estimate the conditional probabilities for the popula-
tion using the observed sample provided we weight 
by the sampling weights when estimating the mod-
els [16]. Hence, we need to use sampling weights both 
when estimating P(A = 1 | Mobs,X) and P(A = 0 | X) 
and as part of the composite with the cross-world 
weights. These results apply regardless of how individu-
als are selected for the sample, whether it is by a prob-
ability sample design or by providing complete data or 
remaining enrolled in the study. As long as the selec-
tion mechanism is ignorable conditional on U and S(U) 
equals the inverse of the probability of selection, the 
result will hold.

To summarize, there has been a question in previ-
ous research as to whether sampling weights should be 
included in estimating the propensity model in the con-
text of both binary and continuous treatments. In the 
causal mediation literature, this question extends to esti-
mation of the weights for weighting estimators of causal 
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mediation effects. That is, do the sampling weights need 
to be included in estimating the weights (i.e., a propen-
sity model), or do they only need to be included in the 
weighted outcome analysis. Although there are other esti-
mators of causal mediation effects, this question does not 
directly apply to them because they do not involve esti-
mation of weights (i.e., a propensity model) and thus, we 
do not include those estimators in the simulation study.

Simulation study
We conducted a simulation study to evaluate the perfor-
mance of composite weights that equal the product of the 
sampling and cross-world weights, varying whether sam-
pling weights are used when estimating the conditional 
probabilities of exposure. We also compare composite 
weighting approaches to a naïve approach of not using 
sampling weights in either stage. Our simulations con-
sider a range of different populations scenarios defined by 
increasingly complex associations among the variables of 
interest as well as several different sampling methods used 
to select the sample population from the total population.

Data generation
We generated eight population scenarios of 90,000 indi-
viduals each. These scenarios were chosen to represent a 
range of complexity in the relationships among the vari-
ables of interest. Each scenario comprised the following 
variables (all of which were dichotomous): the exposure 
A, a mediator M, the outcome Y, and six covariates: U1 , 
U2 , U3 , X1 , X2 , X3 . The set of six covariates were divided 
into two groups: variables related to sampling selection 
(i.e., the Us) and those not related to sampling selection 
(i.e., the Xs). All six covariates, collectively denoted sim-
ply as C, were related to A, M, and Y.

To add complexity to the data distribution, we divided 
the population into three strata. Each stratum made up 
1/3 of the population, and we generated the covariates, C, 
according to the following distributions:

•	 Stratum 1: U1 ∼ Bernoulli(0.3), U2 ∼ Bernoulli(-0.4), 
U3 ∼ Bernoulli(-0.2), X1 ∼ Bernoulli(0.25), X2 ∼ Ber-
noulli(0.2), X3 ∼ Bernoulli(-0.3).

•	 Stratum 2: U1 ∼ Bernoulli(0.5), U2 ∼ Bernoulli(0), U3 ∼ 
Bernoulli(0.1), X1 ∼ Bernoulli(0.6), X2 ∼ Bernoulli(0.4), 
X3 ∼ Bernoulli(-0.1).

•	 Stratum 3: U1 ∼ Bernoulli(0.7), U2 ∼ Bernoulli(0.4), 
U3 ∼ Bernoulli(0.2), X1 ∼ Bernoulli(0.75), X2 ∼ Ber-
noulli(0.8), X3 ∼ Bernoulli(0.3).

The strata only affect the generation of the covariates, U and 
X, and as described below, they do not affect the sampling 
procedures or the relationships between the covariates and 

any of the other variables–exposure, mediator, and out-
come. Thus, they are not included in any analyses.

The eight population scenarios had the following asso-
ciations between A, M, C, and Y. Scenario 1 was the sim-
plest one where the true models that link A, C, and M 
had only main effects of the variables and no interactions. 
In contrast, Scenarios 2 to 4 added an interaction term to 
the model for Y; Scenario 5 included an interaction term 
in the model for M; Scenarios 6 through 8 each included 
an interaction term in both the models for M and Y. 

1	 Scenario 1: A ∼ C, M ∼ A + C, Y ∼ A + M + C;
2	 Scenario 2: A ∼ C, M ∼ A + C, Y ∼ A + M + A×M 

+ C;
3	 Scenario 3: A ∼ C, M ∼ A + C, Y ∼ A + M + C + 

A× X2;
4	 Scenario 4: A ∼ C, M ∼ A + C, Y ∼ A + M + C + 

M × X2;
5	 Scenario 5: A ∼ C, M ∼ A + C + A× X2 , Y ∼ A + M 

+ C;
6	 Scenario 6: A ∼ C, M ∼ A + C + A× X2 , Y ∼ A + M 

+ A×M + C;
7	 Scenario 7: A ∼ C, M ∼ A + C + A× X2 , Y ∼ A + M 

+ C + A× X2;
8	 Scenario 8: A ∼ C, M ∼ A + C + A× X2 , Y ∼ A + M 

+ C + M × X2.

The data were defined in a way such that the true model 
of treatment assignment A given the covariates C, and 
the true model of A given M and C were both logit mod-
els. P(M|A, C) was determined by these two models. Spe-
cifically, we created three vectors a, b, and d, which were 
defined by the formulas below:

Specifically, α and β represented vectors of parameters 
of length seven (one constant and six covariate coeffi-
cients). The equation for d was used to determine if an 
interaction existed between M and X2 in the true model 
of A given M and C; δ = -0.5 if the interaction between M 
and X2 existed in the true model of A given M and C, and 
0 otherwise. We then generated the exposure A and the 
mediator M using the probabilities defined as:

a = 0.68+ α′C

b = 0.8+ β ′C

d = −1.52+ δX2

(10)P(A = 1) = 1/(1+ exp(−a))

(11)P(A = 1|M = 0) = 1/(1+ exp(−b))

(12)P(A = 1|M = 1) = 1/(1+ exp(−b− d))
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With the unconditional and conditional probabilities of 
A = 1 defined above, we can derive the conditional prob-
abilities, P(M|A = 1) , as follows:

True effects
We calculated the true total effects (TE), natural direct 
effects (NDE), and natural indirect effects (NIE) using 
pseudo-populations that represented four potential out-
comes – Y(1,M1) , Y(0,M0) , Y(1,M0) , Y(0,M1) – according to 
the consistency assumption. The true TE, NDE, and NIE 
were calculated by subtraction between the correspond-
ing pseudo-population means.

Sampling and estimation
For each simulation condition, we drew a sample of 9,000 
individuals from the total population of 90,000 individu-
als; this process was replicated 1,000 times per simula-
tion condition. To reflect a variety of sampling strategies 
that may occur in practice, we examined 4 sampling 
methods: 

1	 Sampling depends on covariates only: S ∼ U;
2	 Sampling depends on covariates and the mediator: 

S ∼ U + M;
3	 Sampling depends on covariates and the treatment: 

S ∼ U + A;
4	 Simple random sampling: S ∼ 1

S is a binary variable determining whether an individual 
was selected into a sample in an iteration; U denotes the 
vector of covariates ( U1 , U2 , U3 ). We conducted a fully 
crossed simulation study with 32 conditions (eight popu-
lation scenarios × four sampling methods).

We tested 4 sampling weighting strategies: 

1	 Naïve: No sampling weights used in any part of the 
analysis

2	 Using sampling weights only in outcome models 
(second stage)

3	 Using sampling weights only in estimation of media-
tion cross-world weights (first stage)

4	 Using sampling weights in both stages

All four weighting strategies were applied in the media-
tion analysis of the 32 conditions. For each of the 1,000 
replicate samples for each of the 32 simulation condi-
tions, we performed the following analytic steps. 

(13)P(M = 1|A = 1) = (exp(−b)− exp(−a))/(exp(−b)− exp(−b− d))

(14)
P(M = 1|A = 0) = (exp(−b)− exp(−a))/(exp(d − a)− exp(−a))

1	 All analyses used propensity score weighting to 
account for the nonrandom assignment of treatment. 
We estimated the propensity score by fitting a logistic 

regression model to predict A from covariate vector 
C. Estimated propensity scores were used to gener-
ate IPW weights which were used both in estimating 
cross-world mediation weights and when estimating 
outcome models. Under sampling weighting strate-
gies 3 and 4, sampling weights were incorporated 
into estimation of the propensity scores and media-
tion weights.

2	 All analyses used weighting to estimate TE, NIE, and 
NDE. Mediation weights were estimated using the 
wgtmed function from the R package twangMe-
diation [17].

3	 Outcome logistic regression models were used to 
estimate weighted group means (i.e., E[Y(1,M1)] , 
E[Y(0,M0)] , E[Y(0,M1)] , and E[Y(1,M0)] ) which were 
used to calculate treatment effects-TE, NDE1 , NIE0 , 
NDE0 , and NIE1 . Under sampling weighting strate-
gies 2 and 4, outcome models used sampling weights.

For each condition and sampling weighting strategy, 
we calculated the following summary statistics over the 
1,000 replicate samples for each of the five effect esti-
mates (TE, NIE1 , NDE0 , NIE0 , and NDE1 ) and the four 
potential outcomes ( Y(1,M1) , Y(1,M0) , Y(0,M1) , Y(0,M0) ): mean, 
bias (average difference between estimates and true 
effects calculated based on potential outcomes in the 
population), relative bias (bias divided by the true effect), 
mean squared error between the estimates and true 
effects for simulating the data (MSE), mean of the esti-
mated standard error (SE), and standard deviation (SD) 
of the estimates across the 1000 replications.

Results
We evaluated the recovery of the population effects for 
each of the four sampling weighting strategies for each of 
the 32 simulation conditions examined. For simplicity, we 
only present the results under the simplest scenario (Sce-
nario 1) and one of the more complex scenarios (Scenario 
8). The results for the other six scenarios are generally 
similar and are available in Appendix A.

Figures  2 and 3 show the distributions of the differ-
ences between the 1,000 estimates and the true values for 
the effects of interest–TE, NIE1 , NDE0 , NIE0 , and NDE1 
for Scenarios 1 and 8, respectively. In each figure there 
is one panel for each effect. Each panel presents four sets 
of boxplots, one for each sampling method. Each set of 
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boxplots contain four color-coded boxplots displaying 
the distributions of the differences between the estimated 
effects and the true population effect, for each of the 
four sampling weighting strategies (both stages – purple; 
first stage only – blue; second stage only – green; neither 

stage – red). The closer the center of the boxplots are to 
0, the less bias in the estimates. The smaller the height of 
the box, the more precise the estimates are.

First we will consider results for Scenario 1 (see Fig. 2), 
focusing on TE estimation. Panel TE of Fig. 2 shows that, 

Fig. 2  Distributions of Estimated Effects for Scenario 1. Note: Neither stage: no sampling weights in either stage; 1st stage: only use sampling 
weights to estimate mediation weights; 2nd stage: only use sampling weights in outcome model; Both stages: use sampling weights in both stages. 
Sampling Methods: 1. S ∼ U , 2. S ∼ U +M , 3. S ∼ U + A , 4. S ∼ 1

Fig. 3  Distributions of Estimated Effects for Scenario 8. Note: Neither stage: no sampling weights in either stage; 1st stage: only use sampling 
weights to estimate mediation weights; 2nd stage: only use sampling weights in outcome model; Both stages: use sampling weights in both stages. 
Sampling Methods: 1. S ∼ U , 2. S ∼ U +M , 3. S ∼ U + A , 4. S ∼ 1
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across all four sampling weighting strategies, using sam-
pling weights in both stages yielded the smallest bias 
in the TE estimate (see purple boxplots). When sample 
selection depended on covariates and the mediator (Sam-
pling Method 2) or covariates and the treatment (Sam-
pling Method 3), using sampling weights in only the 
first or the second stage led to notably more biased TE 
estimates than weighting in both stages. For the TE, bias 
is small for all four sampling weighting strategies when 
sampling depends only on covariates (Sampling Method 
1) and there is effectively no bias under simple random 
sampling (Sampling Method 4). We note that effect esti-
mates were identical across weighting strategies for Sam-
pling Method 4. The results for the direct and indirect 
effects are similar to those of the total effect, although 
biases tend to be smaller in magnitude for the indirect 
effects.

Turning to TE estimation for Scenario 8 (Fig.  3), we 
observe that using sampling weights in both stages yields 
smaller bias than does the other weighting strategies for 
Sampling Methods 1, 2, and 3. For Sampling Method 4, 
effect estimates were again identical across weighting 
strategies with very little bias. For the other, more com-
plex, Sampling Methods 1, 2, and 3, the total effects are 
recovered comparably to that under simple random sam-
pling. That is, they are all slightly positively biased but the 
magnitude of the bias is less when using sampling weights 
at both stages compared to using weights at only one 
or neither of the two stages. Consistent with the over-
all findings for the TE estimates, the distributions of the 
NIE1 , NDE0 , NIE0 , and NDE1 estimates show that using 
sampling weights in both stages generally yielded the 
least biased results. Not using sampling weights in any 
part of the analysis resulted in inconsistent results across 
both sampling methods and estimators. For instance, for 
Sampling Method 3 (sampling depends on covariates and 
treatment), not using weights in either stage resulted in 
almost no bias for NIE1 and NIE0 yet positively biased 
results for TE, NDE0 , and NDE1 . For both Scenario 1 and 
8, the variance of the estimates depends on the estima-
tor but is mostly invariant to the sampling method or the 
sampling weighting strategy.

As shown in Appendix A, the distributions of effect 
estimates in Scenarios 2 to 7 had similar patterns as those 
in Scenarios 1 and 8. Specifically, using sampling weights 
at both stages led to the least biased estimates for 15 of 24 
scenarios for TE, 17 for NIE1 , 15 for NDE0 , 18 for NIE0 , 
and 15 for NDE1 . Moreover, the pattern of bias across 
the sampling methods and weighting strategies are very 
similar to those for Scenarios 1 and 8. For example, the 
TE bias is positive and relatively large in magnitude for 
weighting only in the first stage and negative for weight-
ing only in the second stage for Sampling Method 3 for 

every scenario. Similarly, as with Scenarios 1 and 8, bias 
and variance are somewhat larger for the direct effect 
estimates than the indirect effect estimates.

In addition to evaluating the bias and precision of the 
estimates under the different conditions, we evaluated 
the estimated standard errors of the estimates. Specifi-
cally, we compared the mean standard error estimates 
to the standard deviation of the estimates over the 1,000 
replications. Figure  4 shows this comparison for the 
four sampling methods (as indicated by the numerical 
plotting symbol) by the four sampling weighting strate-
gies (as indicated by the color of the plotting symbols) 
for Scenario 1. Figure  5 is the corresponding plot for 
Scenario 8, which shows similar patterns as Fig.  4. The 
results indicated that the uncertainty of the TE esti-
mate was overestimated using the estimated standard 
error of TE in Scenario 1. The average standard errors 
were about 1.06 to 1.18 times the size of the standard 
deviation of the estimates. The standard errors for NIE1 , 
NDE0 , NIE0 , and NDE1 were generally all overestimated 
as well. Some amount of overestimation of the standard 
errors is consistent with the literature. For example, [18] 
also found that sandwich standard errors overestimate 
total effect estimates calculated with estimated pro-
pensity scores. They explain that this is because sand-
wich standard errors do not account for correlation 
between the estimated means for the treatment and con-
trol groups resulting from estimation of the propensity 
scores. As noted by [19], estimation with estimated pro-
pensity scores is more efficient than estimation with the 
true propensity scores and sandwich estimators assume 
the weights are known.

For complete simulation study results, see Appendix A.

Empirical study
We additionally considered a motivating empirical exam-
ple that applies mediation analysis to health disparities 
research. Our specific focus is examining potential medi-
ating pathways that explain smoking disparities among 
sexual minority (e.g., gay, lesbian, or bisexual) women, 
using data from the National Survey of Drug Use and 
Health (NSDUH). Specifically, lesbian, gay, and bisexual 
(LGB) women report higher rates of smoking than heter-
osexual women [20, 21]. We conceptualize sexual minor-
ity status as the exposure of interest, in that it gives rise 
to experiences of “minority stress”, namely excess social 
stressors experienced by individuals in a marginalized 
social group (e.g., LGB individuals). Manifestations of 
minority stress may include experiences of stigma, dis-
crimination, bullying, and family rejection, among oth-
ers. Smoking among LGB individuals has been theorized 
to reflect, in part, a coping strategy to minority stress 
experiences.
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We apply mediation analysis to elucidate poten-
tial causal pathways that may give rise to these ele-
vated rates of smoking. Our hypothesized mediator 
is early smoking initiation (i.e., prior to age 15), which 
is a strong risk factor for developing nicotine depend-
ence. Specifically, we hypothesize that LGB women are 
more likely to begin smoking at an early age than het-
erosexual women, potentially in response to minority 
stressors. Resultantly, earlier smoking initiation among 
LGB women may contribute to higher rates of smok-
ing among LGB women. In summary, the exposure 
is defined as sexual minority status (1=LGB women, 
0=heterosexual women), the mediator is early smoking 
initiation (1=early initiation, 0=no early initiation), and 
the outcome is current smoking in adulthood (1=yes, 
0=no). Baseline covariates include age, race/ethnicity, 
education level, household income, employment status, 
marital status, and urban vs. rural residence. Figure  6 
illustrates our motivating example.

We applied the same four sampling weighting strat-
egies as those in the simulation study-using NSDUH 

sampling weights in neither stage, in the first stage 
(mediation weights) only, in the second stage (out-
come model) only, and in both stages. We fitted gen-
eralized boosted models (GBM) for the estimation 
of propensity scores and mediation weights. The TE, 
NDE, and NIE are compared across sampling weight-
ing strategies.

Table  1 lists the effect estimates computed in this 
empirical study using the four sampling weighting 
strategies. Although we do not know the “true” effects 
to benchmark our estimates against, we find that these 
four strategies yield notably different estimates in this 
empirical context. For example, not using sampling 
weights yielded estimates for TE, NDE0 , and NIE0 
that were consistently larger in magnitude relative to 
using sampling weights at both stages. Estimates were 
also consistently larger in magnitude – relative to 
using sampling weights at both stages – when using 
weighting at the first stage only (with the exception 
of NIE1 ). However, use of sampling weights in both 
stages yielded estimates that were consistently more 

Fig. 4  Standard Deviation (SD) vs Mean Standard Error (SE) of estimates for Scenario 1. Note: The plotting symbols 1 to 4 indicate the sampling 
methods: 1. S ∼ U , 2. S ∼ U +M , 3. S ∼ U + A , 4. S ∼ 1 . The colors indicate the sampling weighting strategy: Neither stage: no sampling weights 
in either stage; 1st stage: only use sampling weights to estimate mediation weights; 2nd stage: only use sampling weights in outcome model; Both 
stages: use sampling weights in both stages
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variable (i.e., wider CIs) than other sampling weight-
ing strategies. In this study, NDE0 and NIE0 were found 
not significantly different from 0. All the other effect 
estimates were significantly different from 0. However, 
in other analytic contexts, different sampling weight-
ing strategies may yield different patterns of statistical 
significance for effect estimates, and hence differential 
inferences.

Discussion
Survey data collected with unequal probability sam-
pling is often used for studying causal effects including 
decomposing total effects into direct and indirect effects 
through mediation analysis. A question that arises is how 
best to use sampling weights to estimate causal effects, 
including causal mediation effects, for the entire popu-
lation. Through analytic results, we demonstrated that, 

Fig. 5  Standard Deviation (SD) vs Mean Standard Error (SE) of estimates for Scenario 8. Note: The plotting symbols 1 to 4 indicate the sampling 
methods: 1. S ∼ U , 2. S ∼ U +M , 3. S ∼ U + A , 4. S ∼ 1 . The colors indicate the sampling weighting strategy: Neither stage: no sampling weights 
in either stage; 1st stage: only use sampling weights to estimate mediation weights; 2nd stage: only use sampling weights in outcome model; Both 
stages: use sampling weights in both stages

Fig. 6  Graphical depiction of the effect of LGB status on adult smoking status as mediated by early smoking initiation
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under common assumptions for causal mediation analy-
sis and assuming ignorability of sample selection given 
the sample design variables, it is possible to use sam-
pling weights to consistently estimate the counterfactual 
population means necessary for estimating total effects, 
direct effects, and indirect effects. These results assume 
that a weighted estimation such as proposed by [14] will 
be used to estimate the effects. Our derivation shows that 
sampling weights should be used (1) when estimating 
the probability of treatment and (2) that the product of 
the sampling weight and the IPW or cross-world weights 
should be used when estimating the population means of 
the potential outcomes. That is, sampling weights should 
be used at both estimation stages.

Our analytic results show that using sampling weights 
at both stages is sufficient for consistent estimation under 
standard assumptions. They do not show it is necessary. 
It is possible that under some conditions unbiased esti-
mates would be possible without weighting at both stages. 
However, the simulation study found that using sampling 
weights in both stages was less biased for all four sampling 
methods for all five effect estimates. Other weighting strat-
egies yielded notably larger bias for one or more effects 
for one or more sampling methods. Also, the variance of 
the estimated effects was roughly the same across the four 
sampling weighting strategies for a given effect, sample 
design, and scenario. Thus, based on the analytic results 
and the simulation study, weighting in both stages appears 
to be the preferred approach. In the empirical example, 
we did find that weighting at both stages tended to yielded 
more variable estimates than using no weights or weight-
ing only in the second stage. Thus, there may be a cost in 
terms of greater variance from using sampling weights in 
both stages as a tradeoff for less bias. This is an area that 
should be explored in future research studies. Another 
direction for future research is examining the inclusion 
of sampling weights in other estimators [22, 23] for causal 
mediation. These estimators do not require estimation of 

a propensity model for creating weights. Rather the ques-
tion addressed would be whether to include the sampling 
weights at all.

The simulation study found that the commonly used 
sandwich standard error estimators tended to overes-
timate the standard error of the effect estimates across a 
range of simulated data conditions. The bias was smallest 
for total effects and occurred for all the sampling strategies 
and scenarios. Further research is needed to explore modi-
fications to the sandwich estimators to correct the bias. 
For example, the sandwich estimator could be adjusted to 
account for the estimation of the probabilities of treatment 
used in creating the IPW and cross-world weights follow-
ing the approach described in [24] when logistic regression 
is used to estimate the probability of treatment.

The analytic results are independent of the source of 
nonrandom sampling (unequal probability sample design, 
attrition, or nonresponse). A limitation of the simulation 
study is that it does not explore nonrandom sampling due 
to attrition or nonresponse; it is not guaranteed that the 
relative performance of the estimators would be the same 
for nonresponse or attrition as they were in the simula-
tion study. Under some conditions, such as interactions 
between exposure and covariates related to sample inclu-
sion, use of the weights in the estimate of the conditional 
probabilities will be necessary to avoid bias. As such, we 
conclude that using the weights in both stages of the analy-
sis is a valuable strategy for ensuring the results are robust 
to bias, regardless of the source of nonrandom sampling. 
Additionally, our estimand of interest was the conditional 
probability of receiving treatment among the population, 
not among the sample. Furthermore, we note that prior 
authors [7–9] also considered the use of the sampling 
weights as a covariate to estimate propensity scores. This 
same approach might be used as an alternative in the con-
text of mediation analysis. Again, the key is that using the 
weights in both estimation stages provides robustness for 
causal mediation with nonrandom samples.

Table 1  Effect estimates for the empirical study

Sampling weighting TE NDE0 NIE1 NDE1 NIE0

Strategies (95%CI) (95%CI) (95%CI) (95%CI) (95%CI)

Neither stage 0.123 0.097 0.026 0.094 0.029

(0.105, 0.141) (0.080, 0.115) (0.020, 0.031) (0.076, 0.112) (0.026, 0.031)

2nd Stage 0.103 0.081 0.022 0.079 0.024

(0.073, 0.133) (0.051, 0.111) (0.014, 0.030) (0.049, 0.110) (0.021, 0.027)

1st Stage 0.123 0.072 0.051 0.113 0.010

(0.105, 0.141) (0.044, 0.100) (0.030, 0.071) (0.095, 0.132) (0.004, 0.015)

Both Stages 0.103 0.049 0.054 0.099 0.004

(0.073, 0.133) (-0.001, 0.099) (0.028, 0.081) (0.067, 0.132) (-0.007, 0.014)
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Conclusion
The combination of our analytic and simulation study 
results create a compelling case for using the sampling 
weights in both stages of the causal mediation analy-
sis when using weighted estimators. However, there are 
some limitations to our study. First our simulation study 
only considers relatively large samples of 9,  000 partici-
pants. Given that weighting can reduce the precision of 
estimates, the cost of weighting at both stages to avoid 
possible bias might be greater for small samples. That 
could result in one of the other sampling strategies yield-
ing less biased estimated effects when the sample sizes 
are smaller. Second, the simulation study only consid-
ered dichotomous variables for the outcome, mediator, 
and confounders. Use of dichotomous confounders and 
mediators constrains the IPW and cross-world weights to 
a small number of possible values. This might have lim-
ited the impact of weighting in the first stage on the vari-
ability of the final estimates. Third, the simulation study 
only considered the use of logistic regression to estimate 
the probability of treatment. Again results might differ 
when more flexible models such as GBM are used to esti-
mate the probability of treatment.
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