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Introduction
Systematic reviews play a crucial role in evaluating multi-
ple studies on specific research topics, providing valuable 
evidence to support healthcare guidelines and decision-
making. A key component of systematic reviews is meta-
analysis, which quantitatively synthesizes evidence from 
different studies to improve statistical efficiency, reduce 
bias, and identify discrepancies among studies. A criti-
cal challenge in contemporary meta-analyses is their 
results’ sensitivity to data, model specifications, or inclu-
sion/exclusion criteria; this challenge has prompted 
various forms of sensitivity analysis. For instance, the 
fragility index, initially proposed to evaluate the impact 
of modifications in event status on the statistical signifi-
cance of clinical trials, has been extended to assess the 
results of meta-analyses and network meta-analyses of 
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Abstract
Systematic reviews and meta-analyses are essential tools in contemporary evidence-based medicine, synthesizing 
evidence from various sources to better inform clinical decision-making. However, the conclusions from different 
meta-analyses on the same topic can be discrepant, which has raised concerns about their reliability. One reason 
is that the result of a meta-analysis is sensitive to factors such as study inclusion/exclusion criteria and model 
assumptions. The arm-based meta-analysis model is growing in importance due to its advantage of including 
single-arm studies and historical controls with estimation efficiency and its flexibility in drawing conclusions with 
both marginal and conditional effect measures. Despite its benefits, the inference may heavily depend on the 
heterogeneity parameters that reflect design and model assumptions. This article aims to evaluate the robustness 
of meta-analyses using the arm-based model within a Bayesian framework. Specifically, we develop a tipping point 
analysis of the between-arm correlation parameter to assess the robustness of meta-analysis results. Additionally, 
we introduce some visualization tools to intuitively display its impact on meta-analysis results. We demonstrate the 
application of these tools in three real-world meta-analyses, one of which includes single-arm studies.
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multiple treatment comparisons [1–3]. Within the Bayes-
ian framework, the synthesized results, particularly con-
cerning interval estimates, are heavily influenced by the 
selection of prior distributions [4, 5]. In addition, differ-
ent meta-analysis models can yield divergent conclusions 
for medical decision-making. This issue has been illus-
trated by Cornell et al. [6], who demonstrated inconsis-
tent pooled results using different estimation approaches 
on the same datasets.

In current meta-analysis practices, the most preva-
lent models are contrast-based models that focus on 
estimating treatment contrasts. These models typically 
pre-determine a comparative effect measure and then 
combine study-specific contrasts into a synthesized effect 
estimate. Different from contrast-based models, arm-
based models include arm-level data [7], focus on esti-
mating arm-specific parameters across studies, and use 
the estimates of arm-specific parameters to generate a 
variety of effect estimates for treatment comparisons. In 
this way, they provide information on the absolute effect 
of each arm rather than solely focusing on the compari-
sons between arms. Although arm-based models used 
to be questioned for breaking the randomization of 
individual clinical trials [8], studies demonstrated that 
arm-based models could effectively respect randomiza-
tion by modeling correlations among treatment groups 
across trials [9]. In summary, contrast-based models 
assume exchangeable comparative effects across trials, 
while arm-based models assume exchangeable absolute 
effects. Comprehensive comparisons by White et al. [10] 
and Karahalios et al. [11] concluded that both models are 
valid tools for meta-analyses but are preferred under dif-
ferent assumptions.

Arm-based models have recently received increasing 
attention from the evidence synthesis community due to 
their advantages over contrast-based models. First, arm-
based models offer flexibility without necessitating com-
parative effect measures from each study. It has improved 
efficiency by borrowing information from double-zero 
events, single-arm studies, and historical controls with 
an easier model fitting and interpretation than a contrast-
based model [12]. Second, arm-based models can esti-
mate absolute treatment effects from single-arm studies 
[12–14]. Single-arm trials, frequently used in phase I and 
II clinical trials, allow researchers to evaluate the safety 
and preliminary efficacy of a treatment in a small group 
of participants before proceeding to larger, randomized 
controlled trials. Thirdly, they can simultaneously esti-
mate various types of effect measures (e.g., odds ratios 
[ORs], relative risks [RRs], and risk differences [RDs]) 
based on the estimates of arm-specific parameters (e.g., 
overall event probabilities). Moreover, arm-based models 
can also estimate conditional effects given baseline popu-
lation characteristics [15], making it more feasible than 

contrast-based models to deliver population-specific syn-
thesized results.

While the arm-based model has its benefits and prom-
ising applications, its results rely heavily on the cor-
relation between the outcome of treatment arms, a 
heterogeneity parameter that accounts for randomization 
within individual clinical trials [9]. In this paper, we refer 
to it as the between-arm correlation, which may reflect 
assumptions of meta-analysis designs. Some works 
showed that different design assumptions led to conflict-
ing conclusions from meta-analyses on the same topic 
[16, 17]. Moreover, the between-arm correlation indi-
cates the extent of information borrowing when incorpo-
rating single-arm studies. As a meta-analysis commonly 
contains only a limited number of studies, the estima-
tion of this between-arm correlation may be unstable, 
which implies different design assumptions and affects 
the validity of the results. Thus, it is critical to assess the 
impact of its estimate on the robustness of the synthe-
sized conclusions from an arm-based meta-analysis.

This article proposes a set of new methods based on 
the concept of “tipping point” to address this problem, 
and the robustness of meta-analysis results is assessed in 
terms of both point estimates (magnitudes of treatment 
effects) and interval estimates (which informs whether 
the treatment likely differs from the control). The term 
“tipping point” is commonly used in missing data impu-
tation and refers to a critical threshold at which the study 
conclusions change direction [18]. Specifically, tipping 
point analyses in missing data imputation evaluate the 
robustness of missing data assumptions by adding a suc-
cessive shift parameter to overturn the conclusion [19]. 
These analyses are commonly required by regulatory 
agencies as a routine measure to address missing data 
issues in clinical trials. However, they remain less recog-
nized within the community of evidence synthesis.

In the subsequent sections of this article, we provide 
the empirical distribution of between-arm correlations 
in real-world meta-analyses. Then, we review an arm-
based meta-analysis model — bivariate generalized linear 
mixed effects model (BGLMM) — and highlight the criti-
cal role of the correlation parameter in arm-based meta-
analyses. Next, we propose novel tipping point methods 
for assessing the robustness of meta-analytical esti-
mates and visualizing the results. Then, we demonstrate 
the application of the proposed methods through three 
case studies, encompassing scenarios with and without 
single-arm studies. Finally, we conclude the article with 
discussions.

Methods
Empirical distribution of between-arm correlations
We draw on empirical evidence from a large collection 
of 69,133 meta-analyses from the Cochrane Database 
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of Systematic Reviews to illustrate the importance of 
between-arm correlations in arm-based meta-analyses. 
This database has been utilized in our previous research 
on evaluating the empirical performance of meta-anal-
ysis methods, with the data collection process detailed 
therein [20]. Here, we included all Cochrane pairwise 
meta-analyses from 2003 Issue 1 to 2020 Issue 1, with 
binary outcomes that contain at least six studies. Their 
between-arm correlations can be illustrated by the cor-
relations of observed event probabilities between two 
treatment groups. Figure  1 presents the percentiles of 
Pearson’s correlation coefficients among these Cochrane 
meta-analyses categorized by the number of studies. The 
median Pearson’s correlation coefficient was generally 
around 0.7. Although the distribution ranges typically 
shrunk as the number of studies increased, the ranges 
were still wide when meta-analyses contained quite large 
numbers of studies, with 2.5% and 97.5% quantiles being 
roughly 0 and 1, respectively. These observations indi-
cate that between-study correlations are mostly positive, 
but they can be in a wide range, possibly affecting effect 
estimation.

Arm-based meta-analysis model
Model specification
Suppose a meta-analysis contains N  studies. Without 
loss of generality, this article focuses on binary outcomes. 
The i th study has ni1  subjects in the experimental group 
and ni0  subjects in the control group (i = 1, 2, . . . , N ). 
Let πik  be the probability of events for subjects receiv-
ing the experimental (k = 1) or the control (k = 0) treat-
ment in the i th study. The total number of events in the 
i th study’s group k  is Xik , which is assumed to follow a 
binomial distribution bin (nik, πik) [21].

We consider a BGLMM for the meta-analysis [7, 
22, 23]; this model is referred to as bivariate because it 
assumes a bivariate normal distribution for the study-
specific vector of transformed event probabilities for the 

control and experimental groups based on a specific link 
function:
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Here, σ0 and σ1 are between-study standard devia-
tions (SDs) of the two treatment groups, reflecting the 
heterogeneity in treatment arms across studies. The 
parameter ρ  accounts for the between-arm correlation, 
measuring the strength and direction of the relationship 
between treatment effects in two arms. It is possible to 
assume an equal between-study SD for both treatment 
groups (σ0 = σ1 = σ ) to reduce the model complexity; 
this assumption can be assessed using criteria such as 
the deviance information criterion (DIC) [24] for Bayes-
ian model selection. The link function g (·) has various 
choices, such as logit, probit, and complementary log-log 
transformation functions. In addition, µ0  and µ1  are the 
fixed effects of arm-specific event probabilities on the 
transformed scale.

When g (·) is the logit link function, exp(µ1 − µ0)  rep-
resents the conditional OR. The marginal event prob-
ability of treatment group k  can be approximated as 
πk = E (πik) ≈ expit( µk√

1+C2σ2k
), where C = 16

√
3/ (15π)

; here, the π  in C  represents the mathematical con-
stant of about 3.14 [25]. It is smaller than the con-
ditional event probability expit (µk), unless there is 
no heterogeneity among studies (σ2

k = 0), leading to 
equal conditional and marginal event probabilities. 
If we assume an equal between-study SD for the two 
treatment groups, the marginal OR, RR, and RD have 
expressions as OR = exp[(µ1 − µ0) /

√
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. Based on the marginal event probabilities, the arm-
based BGLMM can yield the marginal OR, RR, and RD 
[22, 26]. Interested readers may refer to McCullagh [27] 
for discussions on the differences in conditional and 
marginal inferences. In the following sections, we focus 
on the marginal inferences because all three commonly 
used effect measures (OR, RR, and RD) can be estimated 
under this framework.

Model implementation
The BGLMM can be fitted using either frequentist [22, 
28] or Bayesian approaches. The Bayesian approach is 
usually more computationally intensive than the fre-
quentist approach, especially when conducting a more 
complicated network meta-analysis [29]. Nevertheless, 
it is less challenging for pairwise meta-analysis models, 
which are the focus of this article. We adopt the Bayesian 
framework, where parameters can be controlled through 
prior distributions, and use the R package “rjags” (version 

Fig. 1  Percentiles of Pearson’s correlation coefficients between the ob-
served event probabilities (on the logit scale) in the experimental and con-
trol groups among 69,133 Cochrane pairwise meta-analyses with binary 
outcomes
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4–13) [30] for all following analyses. We use the Markov 
chain Monte Carlo (MCMC) algorithm with three chains 
of different initial values, each containing 10,000 burn-in 
iterations among 100,000 iterations and a thinning rate 
of 2 to reduce auto-correlations. This provides 135,000 
Gibbs samplers for each analysis, from which the treat-
ment effects and correlation parameters can be estimated 
by the posterior medians and 95% credible intervals 
(CrIs).

The influential role of the correlation parameter
The between-study variance-covariance matrix Σµ  
needs to be carefully estimated when fitting the BGLMM. 
Within it, the between-arm correlation is the key to 
account for randomizations within individual clinical tri-
als in a meta-analysis. Inappropriate estimation of this 
parameter could affect the validity of conclusions from 
the arm-based meta-analyses. In addition, as discussed 
in Jackson et al. [31], there are two fitting approaches 
regarding whether to consider the uncertainty of the 
estimated variance-covariance matrix. The standard 
procedure approximates the true variance-covariance 
matrix with the estimated one when making inferences 
about the treatment effect. However, this approxima-
tion is improper when a meta-analysis includes a small 

number of studies. It remains unclear how many studies 
are needed in multivariate meta-analyses for reliable esti-
mation of the variance-covariance matrix.

The Bayesian analyses allow for the uncertainty in the 
between-study variance-covariance matrix by placing 
priors on parameters, where external evidence can be 
incorporated via informative priors. However, research-
ers should be cautious when using weakly informative 
prior distribution because sometimes different priors can 
lead to markedly different results. For example, Wang et 
al. [5] evaluated the impact of covariance priors on arm-
based meta-analyses and found that the commonly used 
conjugate inverse-Wishart (IW) prior distribution gen-
erally produces overestimation of variances and under-
estimation of correlations between treatment-specific 
log-odds. It can cause substantial bias in the estimation 
of log ORs and absolute effects. Other researchers also 
found considerable uncertainty in the between-study 
variance-covariance matrix estimation [32].

We simulated a dataset with 50 studies, each compris-
ing 50 subjects in both the control and experimental 
groups (ni0=ni1=50). Table 1 illustrates the data structure 
for the first five studies. Simulation details are provided 
in Table 2. After randomly sorting these simulated stud-
ies, we conducted a set of meta-analyses using the first 5, 

Table 1  The first five studies in a simulated meta-analysis with a binary outcome

Study ID (i) No. of events in the control 
group (Xi0)

No. of subjects in the control 
group (ni0)

No. of events in the experi-
mental group (Xi1)

No. of sub-
jects in the 
experimental 
group (ni1)

Study 1 21 50 17 50
Study 2 9 50 17 50
Study 3 13 50 29 50
Study 4 9 50 15 50
Study 5 30 50 42 50

Table 2  True parameter values and their estimates in simulated meta-analyses. The true values of parameters for the simulation were 
ρ = 0.7 (between-arm correlation), σ0 = σ1 = 1 (between-study standard deviations), and µ0 = 0 , µ1 = 0.5  (event probabilities 
on the logit scale). The estimates were obtained using posterior medians with 95% credible intervals (Crls) in parentheses. The MCMC 
algorithm used three chains of 10,000 adaptation iterations, 100,000 iterations, 10,000 burn-in iterations, and a thinning rate of 2
No. of study Marginal OR

(95% CrI)
Marginal RR
(95% CrI)

Marginal RD
(95% CrI)

ρ̂
(95% CrI)

σ̂0 = σ̂1 = σ̂
(95% CrI)

True value 1.54 1.21 0.11 0.7 1
5 1.860

(0.746, 4.500)
1.430
(0.849, 2.450)

0.145
(− 0.069, 0.345)

0.644
(− 0.382, 0.973)

1.030
(0.559, 2.430)

10 1.900
(1.110, 3.190)

1.440
(1.060, 1.990)

0.153
(0.025, 0.273)

0.630
(− 0.048, 0.925)

0.879
(0.582, 1.460)

15 1.870
(1.320, 2.680)

1.350
(1.140, 1.630)

0.153
(0.068, 0.239)

0.811
(0.423, 0.960)

0.974
(0.697, 1.460)

20 1.690
(1.160, 2.450)

1.260
(1.070, 1.520)

0.128
(0.036, 0.217)

0.659
(0.250, 0.874)

1.010
(0.764, 1.400)

30 1.700
(1.300, 2.210)

1.260
(1.120, 1.420)

0.128
(0.063, 0.192)

0.722
(0.432, 0.884)

0.940
(0.746, 1.230)

50 1.690
(1.350, 2.130)

1.250
(1.130, 1.390)

0.127
(0.073, 0.182)

0.649
(0.413, 0.807)

0.960
(0.803, 1.170)
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Fig. 2  Forest plots for (A) the acute diverticulitis data, (B) the facial mask data, and (C) the physical distance data
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10, 15, 20, 30, and 50 studies sequentially. Table 2 indi-
cates great uncertainties in estimating the between-arm 
correlation, with notably wide 95% CrIs persisting across 
different numbers of studies. For instance, the meta-
analysis with five studies yielded 95% CrI (− 0.382, 0.973) 
for ρ , which covers a wide range of the correlation’s pos-
sible domain (− 1, 1). Even with 50 studies, the interval 
estimate is still wide, with 95% CrI (0.413, 0.807), indi-
cating substantial uncertainty. Nevertheless, real-world 
meta-analyses often involve a limited number of studies 
[33, 34]. As shown in our examination of 69,133 pairwise 
meta-analyses from the previous Cochrane database, the 
median number of studies was 3. Furthermore, 89.7% 
of them included fewer than 10 studies, with only 2.5% 
involved more than 20 studies. Consequently, consider-
able uncertainties in the between-arm correlation esti-
mates are common in real-world meta-analyses, posing 
a big challenge for valid arm-based meta-analyses. To 
address this, we proposed tipping point analyses to assess 
the robustness of meta-analysis results to the correlation 
parameter.

Tipping point analysis for the between-arm correlation
Tipping point analysis regarding interval estimates
Recall that through the implementation of BGLMM, 
estimates of comparative effect measures (e.g., OR, RR, 
and RD) can be obtained. The determination of an effect 
difference between two treatments relies on whether 
their interval estimates cover the null values (i.e., for OR 
and RR, the null value is 1; for RD, the null value is 0). 
In this article, we refer to it as an interval conclusion. In 
the preliminary Bayesian implementation of BGLMM, 
where the correlation parameter is assigned a weakly-
informative prior distribution, we term the conclusion 
drawn from this approach as the original conclusion. To 
assess the robustness of these effect measure estimates 

regarding the original interval conclusion, a plausible 
range of values is assigned to the correlation parameter. 
The “tipping point” is identified as the value at which the 
original interval conclusion is flipped. This concept of a 
“tipping point” is borrowed from the sensitivity analysis 
of missing data analysis in randomized controlled trials.

For the arm-based meta-analysis model, we focus 
on investigating the tipping point for the between-arm 
correlation coefficient ρ . Potentially, ρ  can vary in a 
range Rρ , with the most general case being Rρ =(− 1, 
1). Alternatively, one can incorporate clinical or statisti-
cal prior knowledge to restrict Rρ  to a plausible range. 
For example, when both treatments are acknowledged to 
have effects in the same direction, one may only consider 
a positive correlation coefficient between the treatment 
groups. In this case, Rρ =(0, 1).

As ρ  takes continuous values, we can simplify the 
implementation by discretizing Rρ . Consider B  equally 
spaced points within the reasonable range Rρ  (e.g., 
B =100 or by an increment of 0.01 in the ρ  value), 
we repeatedly estimate absolute and comparative 
effect measures with ρ  fixed at each value in the set of 
{r1, r2, . . . , rB} . If the original interval conclusion is 
altered at ρ = rb , where b ∈ {1, 2, . . . , B} , rb  is iden-
tified as the tipping point and is denoted by rtpb . Due to 
Monte Carlo errors, the tipping point may not be a single 
point but may instead represent a range of values for ρ , 
within which the conclusion may oscillate before stabiliz-
ing. We define a set of all such tipping points as the “tip-
ping range,” denoted by Tρ =

[
min

(
rtpb

)
,max

(
rtpb

)]
.

After obtaining the tipping point or the tipping range, 
we can compare it with the original estimates of the cor-
relation, denoted as ρ̂ , from the preliminary implemen-
tation. If tipping points are close to ρ̂ , or if the tipping 
range contains ρ̂ , the original conclusion can be easily 
flipped by changing the correlation coefficient, suggesting 

Fig. 3  The scatterplots of event probabilities in the experimental and control groups for (A) the acute diverticulitis data, (B) the facial mask data, and (C) 
the physical distance data. Dashed lines in (A) represent event probabilities for single-arm studies. The 0.5 continuity correction has been applied to adjust 
for double-zero events in (B) and (C)

 



Page 7 of 13Han et al. BMC Medical Research Methodology          (2024) 24:162 

that the meta-analysis conclusion is not robust. On the 
opposite, if the tipping point or the tipping range does 
not exist or falls within an implausible region, the meta-
analysis conclusion is robust. For example, if the tipping 
point of the correlation coefficient takes a negative value, 
but the two treatments are known to have a positive cor-
relation, it suggests that the meta-analysis conclusion 
could still be robust.

Tipping point analysis regarding point estimates
Monitoring the magnitude change of effect estimate is 
also important for assessing the potential impact of bias 
[35, 36]. Thus, we propose the tipping point analysis 
regarding point estimates in addition to the interval esti-
mates. Similarly, the effect measure is estimated when the 
correlation parameter is assigned to plausible values. The 
tipping point or the tipping range is detected when the 
change of the estimated effect measure from its original 
estimate exceeds a pre-defined threshold. In this article, 
we consider the relative change, which is calculated as the 
new effect estimate (given a specific value for the correla-
tion) minus the original effect estimate and then divided 
by the original effect estimate. The relative change can be 
positive or negative, implying the direction of changes 
in the new estimates. In the following examples, we use 
± 15% and ± 30% as thresholds of low and high rela-
tive changes. Note that the threshold can be determined 
based on the clinical context from experts (e.g., clinically 
meaningful difference).

Visualization of robustness assessment
We visualize tipping points regarding interval estimates 
in graphs by plotting both point and interval estimates of 
effects against the pre-specified range of the correlation 
coefficient values. We propose to use different colors to 
distinguish whether the assigned correlation coefficient 
value falls within the 95% Crl of the original correlation 
parameter and whether the conclusions of treatment 
effects are different from the original results. Specifi-
cally, the effect estimates are colored in black if the cor-
relation coefficient takes values within the 95% CrI of its 
original estimate. The effect estimates are in blue when 
the correlation coefficient takes the value of its posterior 
median (i.e., the point estimate ρ̂ ). The effect estimates 
are in red when the interval conclusion is different from 
the original result (in terms of whether the CrI covers the 
null value). A transition to the red color suggests tipping 
points or tipping range of the correlation coefficient. If 
the potential tipping point is within the 95% CrI for the 
correlation coefficient, the effect estimates are colored 
in dark red. We also present the posterior density of the 
correlation parameter to reflect the likelihood of the tip-
ping point or range. In summary, the plot suggests sensi-
tive results to the between-arm correlation when several 

effect estimates are in dark red, and their corresponding 
tipping point values show high posterior density.

For tipping points regarding point estimates, we keep 
tracking the relative change in magnitude of estimated 
effect measures over assigned correlation values. The tra-
jectory is colored in red if the assigned correlation value 
is within the original 95% CrI of ρ .

We will demonstrate these visualization approaches in 
the following section.

Case studies
We applied the proposed method to three pairwise 
meta-analyses with binary outcomes, comprising one 
with single-arm studies and two without single-arm 
studies. Figure 2 presents the forest plots of these three 
meta-analyses. The first meta-analysis by Au et al. [37] 
examined the risk of requiring additional treatment or 
intervention to settle in the initial episode for patients 
with uncomplicated acute diverticulitis. It compared 
patients receiving treatments without antibiotics to those 
receiving treatments with antibiotics. This meta-analy-
sis had three single-arm studies exclusively focusing on 
treatments without antibiotics. Using a random-effects 
model would discard information from these three sin-
gle-arm studies, resulting in a synthesized RR of 1.47, 
with a 95% confidence interval (CI) of (0.73, 2.97), based 
on the remaining six studies.

The other two meta-analyses are from the systematic 
review performed by Chu et al. [38], investigating the 
effects of preventive measures on virus transmission for 
respiratory diseases. One meta-analysis studied the effect 
of facial mask use on preventing respiratory disease infec-
tion in the healthcare setting. They obtained a synthe-
sized RR of 0.30 with 95% CI (0.22, 0.41) from 26 studies 
using a random-effects model. Six studies were omitted 
from the analysis due to zero counts of infection events 
in both the experimental and control groups. Xiao et al. 
[39] re-analyzed the data with a frequentist BGLMM that 
accounted for double-zero-event studies and obtained 
the synthesized RR as 0.34 with 95% CI (0.23, 0.51). The 
last meta-analysis studied the effect of physical distance 
on preventing Middle East respiratory syndrome (MERS) 
with a synthesized RR of 0.24 and 95% CI (0.05, 1.24) in a 
random-effects model. In the original analysis, four stud-
ies did not contribute to the synthesized RR due to zero 
counts of infection events in both treatment groups.

We re-analyzed the foregoing three meta-analyses 
with the BGLMMs under the Bayesian framework with 
the logit link function. All parameters were assigned 
with weakly-informative priors: µ0, µ1 ∼ N(0, 1002), 
ρ ∼ U(−1, 1) , and σ0, σ1 ∼ U(0, 10) .

We first considered two candidate models with equal 
variance assumption (σ0 = σ1 = σ) and unequal variance 
assumption (σ0 �= σ1), and performed a model selection 
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procedure to find the best model based on DIC with the 
absolute difference strategy, where we always select the 
less complex model if the difference in DIC is not greater 
than 3 [24]. We henceforth refer to the results selected 
in this step (rather than those initially reported in the 
source papers) as the original result of the meta-analy-
sis. Our main interest is to assess the robustness of the 
original results. Table  3 presents these original results 
for the three meta-analyses. Figure  3 displays estimated 
event probabilities in the experimental group compared 
to the control group. It suggests a stronger positive cor-
relation between the treatment groups in the facial mask 
data compared to the other two datasets. This evidence 
aligns with the estimates presented in Table  3, where 
the between-arm correlation coefficient ρ  for the facial 

mask data was around 0.9 with a narrow 95% CrI, while 
the other two datasets exhibited smaller correlation coef-
ficients with wide 95% CrIs that included zero.

Subsequently, the proposed method was applied 
with the selected model assumption to identify poten-
tial tipping points for the correlation coefficient ρ . We 
re-estimated a variety of effect measures, including treat-
ment-specific absolute risks (ARs), ORs, RRs, and RDs, 
by setting ρ  to a range of values from − 0.99 to 0.99 with 
an increment of 0.01. Due to space limits, we focus on 
tipping point analyses for ρ  regarding effect measures’ 
interval conclusions; the tipping point analyses regarding 
effect measures’ magnitudes are discussed only for the 
third meta-analysis.

All statistical code and data for implementing the pro-
posed method and case studies are publicly available on 
the Open Science Framework (https://osf.io/8z9bp/).

Results
Acute diverticulitis data
The DICs in Table  3 suggest the equal between-study 
SD assumption (σ0 = σ1 = σ ) for the acute diverticulitis 
data. The posterior median of the correlation coefficient 
ρ  was 0.415, with a wide 95% CrI of (− 0.555, 0.962). 
Figure 4 summarizes the results of our proposed tipping 
point analysis for ρ . In Fig.  4(A), the MCMC posterior 
density for the between-arm correlation ρ  is left-skewed. 
The comparative effect measures (i.e., OR, RR, and 
RD) showed increasing trends as assigned values of ρ  
approaching one, indicating the effect of borrowing more 
homogenous information between the two treatment 
groups. Their corresponding interval estimates became 
narrower, which was expected due to increased informa-
tion sharing between two treatment groups at such high 
correlations. Tipping points were observed at ρ ≥  0.920, 
corresponding to 5.70% of ρ̂ ’s marginal posterior sam-
ples. This provides a quantitative measure of the uncer-
tainty surrounding the original conclusion concerning 
the correlation parameter and the posterior probability 
of the tipping range of correlation. Therefore, evaluating 
the impact of tipping points should be complemented 
by analyzing the posterior density of the tested param-
eter. By integrating clinical insights regarding the desired 
precision in the results, one can determine whether the 
original conclusion is robust or not. The existence of a 
tipping point itself does not necessarily imply that the 
original results are not robust.

Facial masks data
In this case study, the model with heterogeneity SDs 
assumption (σ0 �= σ1)  was selected since the DIC differ-
ence between the two candidate models exceeded 3. The 
results of tipping point analyses are presented in Fig.  5. 
Overall, we found that the original results were robust 

Table 3  Results of case studies based on posterior medians with 
95% credible intervals (CrIs) under two model assumptions

Equal standard 
deviation

Unequal stan-
dard deviations

Meta-analysis 1: acute diverticulitis data
AR of control group 0.037 (0.019, 0.085) 0.049 (0.020, 0.240)
AR of experimental group 0.056 (0.035, 0.108) 0.057 (0.036, 0.114)
OR 1.560 (0.687, 3.370) 1.200 (0.197, 3.340)
RR 1.530 (0.702, 3.190) 1.190 (0.242, 3.150)
RD 0.019 (− 0.020, 0.060) 0.009 (− 0.177, 

0.063)
Correlation ρ 0.415 (− 0.555, 0.962) 0.376 (− 0.609, 

0.953)
σ0 0.726 (0.380, 1.420) 1.180 (0.396, 4.330)
σ1 0.726 (0.380, 1.420) 0.693 (0.317, 1.570)
DIC 77.14 78.10
Meta-analysis 2: facial mask data
AR of control group 0.231 (0.152, 0.352) 0.227 (0.148, 0.337)
AR of experimental group 0.079 (0.044, 0.150) 0.094 (0.049, 0.183)
OR 0.290 (0.189, 0.423) 0.356 (0.221, 0.564)
RR 0.348 (0.235, 0.494) 0.417 (0.268, 0.634)
RD − 0.149 (− 0.227, 

− 0.095)
− 0.129 (−
0.198, − 0.076)

Correlation ρ 0.916 (0.721, 0.982) 0.925 (0.750, 0.983)
σ0 2.030 (1.470, 2.970) 1.850 (1.310, 2.790)
σ1 2.030 (1.470, 2.970) 2.610 (1.750, 4.120)
DIC 212.86 209.70
Meta-analysis 3: physical distance data
AR of control group 0.130 (0.043, 0.380) 0.149 (0.048, 0.399)
AR of experimental group 0.060 (0.012, 0.263) 0.044 (0.009, 0.235)
OR 0.428 (0.106, 1.630) 0.281 (0.037, 1.580)
RR 0.472 (0.125, 1.540) 0.319 (0.050, 1.480)
RD − 0.064 (− 0.220, 

0.051)
− 0.091 (−
0.319, 0.048)

Correlation ρ 0.738 (− 0.309, 0.987) 0.620 (− 0.672, 
0.982)

σ0 3.180 (1.350, 8.330) 4.300 (1.650, 9.320)
σ1 3.180 (1.350, 8.330) 2.260 (0.009, 8.900)
DIC 44.30 44.33
DIC: deviance information criterion

https://osf.io/8z9bp/
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Fig. 5  The estimated effect measures for the facial mask data when the correlation coefficient ρ  is fixed to values within (− 1, 1) under unequal stan-
dard deviations assumption (σ0 �= σ1)

 

Fig. 4  The estimated effect measures for the acute diverticulitis data when the correlation coefficient is fixed to values within (− 1, 1) under equal 
standard deviation assumption (σ0 = σ1 = σ )
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to a wide range of values for the correlation coefficient. 
Although tipping points were observed, they fell outside 
of the 95% CrI for ρ̂ , suggesting that the correlation coef-
ficient was not likely to take values that could affect the 
conclusion. Based on these observations, we concluded 
that the effect estimates were stable and not sensitive to 
the variation of correlation values in the facial mask data.

Physical distance data
Based on the DICs, we assumed σ0 = σ1 = σ . The results 
of tipping point analyses in Fig.  6 identified a tipping 
range of [0.93, 0.99] within 95% CrI of ρ̂ . According to 
the posterior density, there were 17.3% of ρ̂  within this 
region. This raised concerns about the robustness of the 
original results regarding the correlation coefficient, as 
conclusions could be reversed due to a small shift in the 
correlation value.

Figure  7 presents the tipping point analysis for ρ  
regarding effect measures’ magnitudes. The solid lines 
show the trajectory of relative change in magnitude of 
effect measures (OR, RR, and RD) when ρ  is assigned to 
values between − 1 and 1. For the values within the 95% 
CrI of ρ̂ , the lines are colored in red; for those outside 
the 95% CrI of ρ̂ , the lines are colored in black. The blue 
dashed vertical line marks the original point estimate of 
ρ . Overall, most parts of the red lines are within the 15% 
threshold, especially for those around the point estimate 

of ρ . This suggests that the point estimate of the correla-
tion parameter is of less concern.

Discussion
In meta-analyses without single-arm studies, fixing val-
ues of the correlation coefficient ρ  mainly impacts the 
interval estimates of effect measures. In meta-analyses 
with single-arm studies, non-robust results typically arise 
when most included single-arm studies have event prob-
abilities deviating significantly from those of other com-
parative studies, as depicted by dashed lines in Fig. 3(A) 
but without intersecting the scatters. Therefore, our 
method provides an alternative approach to assess the 
reliability of results obtained from single-arm studies.

Previous studies in the literature primarily focused 
on the impact of prior distributions on Bayesian meta-
analyses [4, 5], with little attention given to the impact of 
correlation parameters’ estimates on the meta-analysis 
results. Our study is the first to investigate such impact 
and develop novel methods to quantify and visualize it in 
the framework of Bayesian arm-based meta-analyses.

There are some limitations of this study. First, our anal-
yses have mainly focused on interpreting the robustness 
of the results from a statistical perspective. However, 
clinical insights are highly needed in such an assessment, 
particularly when determining a reasonable range of 
values for the between-arm correlation coefficient. Sec-
ond, fixing the correlation parameter to a specific value 

Fig. 6  The estimated effect measures for the physical distance data when the correlation coefficient ρ  is fixed to values within (− 1, 1) under equal 
standard deviation assumption (σ0 = σ1 = σ )
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reduces the uncertainties in the estimates compared to 
the original analysis, where the correlation parameter is 
assigned to a prior distribution. Therefore, even assign-
ing the correlation coefficient at the same value as its 
point estimate in the original analysis, the resulting esti-
mates of effect measures could still be slightly different 
from the original analysis. Third, this article only consid-
ered the arm-based model. Contrast-based models are 
widely used in current meta-analysis research; similar 
approaches of tipping point analyses could be developed 
for contrast-based models.

In summary, sensitivity analyses are crucial for inter-
preting arm-based meta-analyses, which are of growing 
importance. Current sensitivity analyses often con-
sider changes in events (such as the fragility index), 
model choices, and prior distributions used for Bayes-
ian analyses. Our proposed tipping point analyses 
tackle the problem from a different perspective, con-
sidering the impact of correlation parameters on effect 
measure estimates. Future work could extend to other 
commonly used models in meta-analyses, such as the 
beta-binomial model [22] or contrast-based models. 
Contrast-based models do not involve between-arm 
correlations; their heterogeneity parameter is primarily 

the heterogeneity variance for a treatment contrast. The 
proposed tipping point analyses can also be extended to 
network meta-analyses, where multiple treatment com-
parisons can be jointly synthesized. Such an extension 
requires a more thorough consideration, as the vari-
ance-covariance matrix in this setting can become more 
complex.

Conclusions
This article focused on the impact of the between-arm 
correlation on the results of arm-based meta-analyses, 
an increasingly useful method for including single-arm 
studies, historical controls, and population-specific 
estimates under the Bayesian framework. We have 
proposed a tipping point analysis method to quanti-
tatively assess the robustness of meta-analysis results 
by assigning specific values to the correlation param-
eter within a plausible range. Innovative graphical 
tools have also been introduced to intuitively visualize 
the impact of the correlation parameter and its tip-
ping points on the conclusions about treatment effects 
drawn from meta-analyses. We have demonstrated the 
proposed tipping point analysis on three real-world 
meta-analyses.

Fig. 7  Tipping point analyses regarding effect measures’ magnitudes for the physical distance data
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