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Abstract
Background Individualizing and optimizing treatment of relapsing-remitting multiple sclerosis patients is a 
challenging problem, which would benefit from a clinically valid decision support. Stühler et al. presented black 
box models for this aim which were developed and internally evaluated in a German registry but lacked external 
validation.

Methods In patients from the French OFSEP registry, we independently built and validated models predicting 
being free of relapse and free of confirmed disability progression (CDP), following the methodological roadmap 
and predictors reported by Stühler. Hierarchical Bayesian models were fit to predict the outcomes under 6 disease-
modifying treatments given the individual disease course up to the moment of treatment change. Data was 
temporally split on 2017, and models were developed in patients treated earlier (n = 5517). Calibration curves, 
discrimination, mean squared error (MSE) and relative percentage of root MSE (RMSE%) were assessed by external 
validation of models in more-recent patients (n = 3768). Non-Bayesian fixed-effects GLMs were also applied and their 
outcomes were compared to these of the Bayesian ones. For both, we modelled the number of on-therapy relapses 
with a negative binomial distribution, and CDP occurrence with a binomial distribution.

Results The performance of our temporally-validated relapse model (MSE: 0.326, C-Index: 0.639) is potentially 
superior to that of Stühler’s (MSE: 0.784, C-index: 0.608). Calibration plots revealed miscalibration. Our CDP model 
(MSE: 0.072, C-Index: 0.777) was also better than its counterpart (MSE: 0.131, C-index: 0.554). Results from non-
Bayesian fixed-effects GLM models were similar to the Bayesian ones.

Conclusions The relapse and CDP models rebuilt and externally validated in independent data could compare and 
strengthen the credibility of the Stühler models. Their model-building strategy was replicable.
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Background
In recent years, a wide spectrum of disease-modifying 
treatments (DMTs) became available for relapsing-
remitting multiple sclerosis (RRMS) patients [1, 2]. The 
Multiple Sclerosis (MS) Therapy Consensus Group rec-
ommends choosing a DMT based on individual disease 
and personal characteristics, and the risk versus benefit 
profile of the therapy [2]. This endeavour is difficult due 
to the heterogeneous nature and course of RRMS, the 
multitude of DMTs investigated at the group level in 
selected trial populations that do not mainly represent 
real-world MS populations, and the rarity of head-to-
head comparisons [3].

Multivariable prognostic models have been developed 
to predict the individual RRMS course, but most of them 
lack methodological quality or external validation, ham-
pering their implementation in clinical practice [4–6]. 
Stühler et al. [7] proposed methodologically sound pre-
diction models for personalizing DMT choice in RRMS 
patients based on their characteristics. They used real-
world data from the German NeuroTransData registry 
(NTD) (https://www.neurotransdata.com/) which extend 
the clinical trial data by including heterogeneous MS 
patient profiles from a large number of different clinical 
sites. The selected target population consisted of adult 
RRMS patients under treatment with specific DMTs and 
whose disease is not progressed. We believe that this 
selected population could answer questions of medical 
relevance such as what could be a starting therapy or a 
subsequent therapy for a treated RRMS patient in need 
of a therapy change [3]. Based on the proposed mod-
els, Stühler et al. [7] provide guidance when choosing or 
switching to another DMT at least 6 months after diag-
nosis between 6 DMTs: dimethyl fumarate, fingolimod, 
glatiramer acetate, interferon beta1, natalizumab, and 
teriflunomide. The models included clinical and demo-
graphic variables commonly collected during routine 
care and predicted outcomes after the treatment switch 
given the patient history up to that switch. The outcomes 
were the number of on-therapy relapses and the occur-
rence of confirmed disability progression (CDP), which 
are widely used in clinical practice to monitor the disease 
and assess treatment effectiveness. Hierarchical Bayes-
ian generalized linear models (GLMs) were fitted to data 
from adult RRMS patients registered in NTD until July 1, 
2018. Model calibration and discrimination were evalu-
ated under several internal validation schemes.

A prognostic model needs robustness and transport-
ability to other patient settings before it is implemented 
into clinical practice. In this paper we looked on prog-
nostic models which also include treatment as a factor 
and its interaction with other prognostic factors. Such 
a model is often called a treatment response prediction 
model. It should be developed on a representative data 

set of sufficient size. Estimating treatment interaction 
parameters requires higher patient numbers than esti-
mating average treatment effects [8]. Such models reflect 
the prognosis observed in specific patient groups under 
specific treatment. They provide associations in such 
groups between treatment given and outcome observed. 
Formally, they are not causal models that would allow 
statements about changes in outcome if changes in treat-
ment occur. This delicate distinction is often overlooked. 
In this paper we therefore used the term prognostic 
model and quantify associations between treatment his-
tory and patient features with respect to a future out-
come. We avoid statements on optimal treatment effects 
for individual patients [9], because our approach may be 
impaired by unobserved confounding. For example, if 
a new drug is introduced on the market, changes from 
older drugs to the new drug may be motivated by mar-
ket strategies of the respective company [10]. Effects 
observed after such switches are “prognostic” in terms 
that they reflect the effect of the drug and not interac-
tions between drug and patient’s features.

Validation should assess discrimination: the model’s 
potential to differentiate between patients with and with-
out favourable outcomes. Also, calibration needs to be 
demonstrated: agreement between predicted outcome 
probability under the received treatment and the out-
comes observed frequencies. Good calibration avoids 
harmful effects as over- or under-treatment [11]. External 
validation is the preferred method to investigate discrim-
ination and calibration. It ensures validity in a population 
other than that of the model development, confirming its 
generalisability [12].

The models in Stühler et al. [7] (referred to in our 
study as NTD models) were published as black boxes 
not accompanied by model coefficients, freely avail-
able tools, or instructions except the predictive factors 
they use. This hinders their implementation or indepen-
dent validation. To our knowledge, they have not yet 
been externally validated. As the next best option, simi-
lar independent findings in a replication study following 
the same methodological approach and using the same 
medical input can increase confidence in these models. 
Hence, we aimed to (1) independently replicate the NTD 
model-building process to predict probabilities of being 
relapse-free and CDP-free in response to 6 DMTs in 
RRMS patients from a different setting, and (2) externally 
evaluate these replicated models by temporal validation.

Methods
Data source and participants
Since 2011, the real-world MS registry Observatoire 
Francais de la sclérose en plaque (OFSEP) documents 
patient records from 38 centres in France. It collects stan-
dardized data retrospectively during the first visit and 

https://www.neurotransdata.com/
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prospectively thereafter [13–15]. A subset of the OFSEP 
dataset until December 15, 2021 (Supplementary Mate-
rial (SM) Table S1) was transferred to us after approval 
by the OFSEP Steering Committee (0266). It contained 
78 419 therapy cycles from 29 021 patients (SM Table 
S2). The Ethics Committee of LMU Munich (21-1174) 
also approved the project. OFSEP announced our study 
on their website (https://www.ofsep.org/fr/etudes/ext-
val-phrend) and their patients could give project specific 
dynamic consent [16].

The transferred OFSEP dataset included heteroge-
neous patient profiles. Thus, we had to process the data 
to select a population of interest with quality docu-
mentation, which includes adult RRMS patients with a 
non-progressed disease and in need of therapy change. 
We derived the analysis set by replicating the data pre-
processing by Stühler et al. [7]. This included quality 
criteria to ensure complete, valid, and consistent obser-
vations, and designing of therapy timelines (SM Table 
S2). We applied the same eligibility criteria to identify the 
targeted population and removed therapy cycles start-
ing before the foundation of OFSEP (2011) rather than 
that of NTD (2008) (SM Table S3). Figure  1 shows the 
OFSEP versus NTD study data time ranges alongside the 

approval dates of the included DMTs, for informative 
purposes only.

Variables
We used 11 predictors and assessed all covariates before 
or at baseline (the start of the index therapy). A therapy 
cycle represents the period a patient spends on a specific 
DMT and is defined by a combination of start date, end 
date, and a DMT (Fig. 2). We defined and coded all vari-
ables in accordance with the NTD models (SM Figure S1 
and Table S4). Current and index therapy cycles represent 
two DMTs forming a treatment switch, with their respec-
tive durations, where a decision to switch to another 
DMT is made for a patient on current therapy. The index 
therapy cycle follows the current therapy cycle and is 
the treatment actually switched to by the study sample. 
Effectiveness outcomes are measured during the index 
therapy cycle. Other included predictors were age, gen-
der, the baseline Expanded Disability Status Scale (EDSS), 
the time since the last relapse, the number of relapses in 
the previous year, the time since MS onset, and finally the 
clinical site. The DMTs received previous to the index 
therapy cycle were taken into account not only as cur-
rent therapy and its duration, but also the number of all 
prior DMTs taken, and whether these were second-line. 

Fig. 1 Time ranges of OFSEP (in main and sensitivity analysis sets) versus NTD study data and the European Medicines Agency approval timeline of 6 
included disease modifying therapies

 

https://www.ofsep.org/fr/etudes/extval-phrend
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The outcomes of interest were the number of on-therapy 
relapses and CDP occurrence during index therapy. CDP 
occurrence was defined according to the NTD working 
group based on the elevation of several EDSS measure-
ments. It is at least a 0.5 (if baseline EDSS > 5.5) or 1 point 
increase in EDSS during the therapy, which was sustained 
by no decrease for the next 3 months and confirmed by 
the next EDSS measurement between 3 months after the 

EDSS increase and up to 12 months after the end of the 
therapy. Therapy cycles with no baseline or on-therapy 
EDSS measurements were classified as CDP-free. The 
confirmatory EDSS measurement had to be at least 3 
months after a relapse (SM Figure S2).

Fig. 2 Example patient timelines demonstrating the study design. RD relapse distance, RC relapse count, OD onset distance, baseline EDSS Expanded 
Disability Status Scale. DC previous DMTs count, SL previous second-line DMT. Current and index therapies indicate a treatment switch. a: Timeline of a pa-
tient from the training set and variable assessment windows relative to the index therapy cycle, the start date of which is the baseline (T0). The outcomes 
were assessed during the index therapy. b: Timeline of a new patient from the test set with the predicted outcomes under the next possible therapy given 
their actual characteristics. The baseline denotes the time of treatment switch
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Sample size
The sample size calculation assumed similar discrimina-
tive performance as the NTD models. It used the out-
come rates and test set C-indices as reported by Stühler 
et al. [7] in their Table S1.2 and their Table 7. The two-
sided significance level was set to 5% and the power to 
90% to test the alternative (C-index of 0.65) against the 
null-hypothesis (C-index of 0.6). Assuming that 25% of 
the study population experienced a relapse, the respective 
sample size was 1663 [17]. Also, assuming that 15% of the 
study population experienced a CDP, the sample size was 
2618 to test the alternative (C-index of 0.6) against the 
null-hypothesis (C-index of 0.55) (SM Table S5).

Statistical analysis methods
Missing data
We described missing data in the transferred and analysis 
datasets. Incomplete data was expected given the obser-
vational nature of the data source. We performed a com-
plete case analysis similar to Stühler et al. [7].

Model development and validation
We fitted hierarchical Bayesian GLMs to the OFSEP data 
using the R package Rstanarm [18, 19]. The negative 
binomial distribution models the number of on-therapy 
relapses, the binomial distribution models CDP occur-
rence. A random intercept quantifies potential variabil-
ity among centres. The duration of the follow-up was 
accounted for by the logarithm of index therapy duration 
(offset). All categorical variables were coded as nominal 
and the reference level for each variable was specified 
in Table S4. The model priors were weakly informative 
(default settings). Model diagnostics (see SM Box S1) 
ensured sampler convergence and reliable parameter 
estimation. Comparison of the model coefficient’s preci-
sion used the median absolute deviations (MAD). The 
absolute magnitude of the posterior model coefficients 
determines the predictor importance.

We split the data on January 1, 2017 based on the 
therapy start date. This specific date was chosen to have 
enough patients (approximately 60%/40%) having taken 
the 6 DMTs and to allow for comparable follow-up 
times in both datasets, as this can impact the outcome 
incidence. Temporal validation respects non-random 
variation between model development (training) and val-
idation (test) datasets and validates the model on future 
(more recent) patients [20]. Ongoing therapy cycles were 
censored on the date of a patient’s last clinical assessment 
(EDSS measurement) occurring before the data extrac-
tion date. Therefore, we censored the observations in the 
training set on the date of the patients’ last EDSS mea-
surement before the split date. This prevents data leak-
age by temporal overlap between training and test sets. 
Random selection of one therapy cycle per patient before 

splitting the data ensured independence of the training 
and test sets. We also internally evaluated the model per-
formance via 10-fold cross-validation within the training 
set using out-of-sample predictions. We standardized 
continuous predictors using only the mean and standard 
deviation calculated in the training set [21].

Model performance
We assessed calibration and discrimination of both 
models by summarizing the mean and outcome-free 
proportions of posterior predictions for each patient 
while assuming an average centre effect (i.e., null ran-
dom effect). We plotted calibration curves and estimated 
their intercept and slope. As Stühler et al. [7], we divided 
the predictions into 20 equally-populated bins and plot-
ted the average observed versus predicted outcomes for 
every bin overall and per DMT. We assessed the models’ 
ability to discriminate those with and without the out-
come by C-indices. The mean squared error (MSE) and 
the relative percentage of root MSE (RMSE%) assessed 
the overall model fit.

There were few methodological differences between 
our and Stühler et al. [7] approach (SM Table S6). Data 
processing and analyses were performed in R, ver-
sion 4.2.2. (SM Box S2). We used TRIPOD checklist for 
reporting (SM Table S7).

Sensitivity analyses
We checked the robustness of our findings to a differ-
ent sample size split (approximately 80%/20%), follow-up 
time, and a more recent test set by temporally splitting 
the data on another date: July 1, 2019. We also repeated 
the model-building and validation processes with non-
Bayesian fixed effects GLMs. As for the Bayesian analysis, 
we modelled CDP occurrence with a binomial distribu-
tion and the number of relapses with a negative binomial 
distribution.

Results
Patient population
In the transferred dataset, approximately 1% of the val-
ues were missing separately for the variables therapy start 
date, therapy end date, and EDSS measurement (along-
side its associated date). In the analysis set, 38% of the 
therapy cycles were missing baseline EDSS (SM Table 
S8). After applying the inclusion criteria (Fig.  3), the 
analysis set (n = 9285) was split into training and test sets, 
with 5517 and 3768 patients, respectively.

The OFSEP training set (Table  1) consisted of 4155 
(75%) female patients. At baseline, 1843 (33%) patients 
were aged between 31 and 40. As index therapy, 1381 
(25%) patients received fingolimod and 556 (10%) 
patients received natalizumab. A total of 2411 (44%) 
patients had a baseline EDSS of 1.5 or less. A total of 
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Fig. 3 Participant flowchart from the transferred to the analysis dataset. DMT disease-modifying therapy; EDSS Expanded Disability Status Scale.aPeriods 
during which the patient received no therapy;bPeriods during which therapy cycles of different DMTs were overlapping labeled as “OtherDMT”.
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2870 (52%) were not taking any DMT (current therapy is 
“NoDMT”) prior to their index therapy.

OFSEP training, test, and NTD training sets [7] con-
tained at least 556, 284, and 281 therapy cycles for each 
DMT. The case-mix between the OFSEP training, OFSEP 
test, and NTD datasets compared well except for few 
characteristics. The median index therapy duration in the 
NTD population was longer: 1.92 compared to 1.37 years 
in the OFSEP training population, because of the cen-
soring and temporal splitting of the OFSEP data. More 
patients in the OFSEP training population compared 

to the NTD population received teriflunomide as index 
therapy (17% versus 13%), had a baseline EDSS equal to 4 
or higher (18% versus 15%), and had previously received 
second-line therapy (19% versus 12%).

The distribution of index therapy differed between 
OFSEP training and test datasets for teriflunomide (17% 
versus 25%) and interferon beta1 (16% versus 8%). The 
distribution of current therapy also differed for dimethyl 
fumarate (3% versus 9%), teriflunomide (1% versus 8%), 
glatiramer acetate (11% versus 6%) and interferon-beta1 
(22% versus 12%). Median current therapy duration was 

Table 1 Overview of predictors at baseline in the OFSEP training, test, and NTD training populations
Predictor Category Training (N = 5517)

median (interquartile range; 
range) or count (%)

Test (N = 3768)
median (interquartile range; 
range) or count (%)

NTDa (N = 3119)
median (interquar-
tile range; range) or 
count (%)

Current therapy durationb 2.03 (4.26; 0.01–46.96) 1.63 (3.34; 0.04–51.82) 2.07 (4.2; 0.02–35.36)
Index therapy duration 1.37 (1.6; 0-5.91) 1.29 (1.83; 0-4.87) 1.92 (2.83; 0.08–9.39)
Onset distancec 7.5 (10.27; 0.5-54.96) 5.79 (9.6; 0.5-51.83) 6.38 (9.03; 0.10-47.18)
Relapse count 0 (1; 0–5) 0 (1; 0–4) 0 (1; 0–6)
Age 30 or younger 916 (17) 728 (19) 593 (19)

31 to 40 1843 (33) 1382 (37) 967 (31)
41 to 50 1724 (31) 974 (26) 1029 (33)
51 or older 1034 (19) 684 (18) 530 (17)

Current therapy dimethyl fumarate 150 (3) 333 (9) 94 (3)
fingolimod 89 (2) 136 (4) 62 (2)
glatiramer acetate 595 (11) 244 (6) 374 (12)
interferon beta1 1227 (22) 443 (12) 811 (26)
natalizumab 519 (9) 139 (4) 125 (4)
teriflunomide 67 (1) 290 (8) 62 (2)
NoDMT 2870 (52) 2183 (58) 1591 (51)

DMT count 0 1435 (26) 1177 (31) 717 (23)
1 2057 (37) 1325 (35) 1528 (49)
2 1149 (21) 729 (19) 561 (18)
3 or more 876 (16) 537 (14) 312 (10)

Baseline EDSS 1.5 or less 2411 (44) 2040 (54) 1466 (47)
2 to 2.5 1336 (24) 898 (24) 749 (24)
3 to 3.5 759 (14) 434 (12) 437 (14)
4 to 10 1011 (18) 396 (11) 468 (15)

Female 4155 (75) 2864 (76) 2339 (75)
Index therapy dimethyl fumarate 1086 (20) 738 (20) 686 (22)

fingolimod 1381 (25) 767 (20) 780 (25)
glatiramer acetate 663 (12) 538 (14) 405 (13)
interferon beta1 901 (16) 284 (8) 593 (19)
natalizumab 556 (10) 488 (13) 281 (9)
teriflunomide 930 (17) 953 (25) 405 (13)

Relapse distance less than 0.25 407 (7) 234 (6) 530 (17)
0.25 to 0.99 1961 (36) 1175 (31) 998 (32)
1 to 2.99 1561 (28) 1173 (31) 530 (17)
3 or more 1588 (29) 1186 (31) 749 (24)

Second-line therapyd 1051 (19) 518 (14) 374 (12)
OFSEP Observatoire Francais de la sclérose en plaque; NTD NeuroTransData; DMT disease-modifying therapy; EDSS Expanded Disability Status Scale; Continuous 
variables (in years) summarized by median (interquartile range; range); categorical variables by count (%);aCounts derived from summary measures, bThe high 
maximum duration of current therapy is due to therapy-free periods (“NoDMT”) before the index therapy (SM Figures S3 and S4).cOnset distance in this study is the 
time from disease onset till start of index therapy as compared to Diagnosis distance in Stühler et al., (7) which is based on time from MS diagnosis.dAs in Stühler et 
al. (7) alemtuzumab, cyclophosphamide, fingolimod, mitoxantrone, natalizumab, ocrelizumab, and rituximab



Page 8 of 13Sakr et al. BMC Medical Research Methodology          (2024) 24:138 

higher in the training population compared to the test 
population (2.03 versus 1.63 years), as well as the propor-
tion of patients with baseline EDSS equal to 4 or higher 
(18% versus 11%) and the onset distance respectively (7.5 
versus 5.79 years), which may be an artefact caused by 
the temporal split.

The proportion of relapse-free patients (Table  2) was 
higher in the OFSEP test population (84%) compared to 
the OFSEP training population (77%), but the proportion 
of CDP-free patients was similar (92% and 91% respec-
tively). The outcome rates were higher in the NTD data-
set with the proportion of CDP-free patients at 84%, the 
median number of relapses at 0.

Model diagnostics
Using the identical variable coding and modelling 
approach as NTD, we compared the precision of the 
regression coefficients by MADs. A high Spearman cor-
relation between the MADs from our and the NTD 

models (CDP: 0.96, Relapse: 0.98) demonstrated high 
agreement in precision ranking. The predictor current 
duration and its interactions with current therapy cate-
gories, especially with teriflunomide, had large MADs in 
both models and both datasets (OFSEP and NTD), indi-
cating general uncertainty in their estimation (SM Tables 
S9 to S11).

Model performance
The data for building our models was very informative: 
56 degrees of freedom, with 23 and 9.1 events per vari-
able for the relapse and CDP outcomes respectively in 
the training set. We present in Table  3 an overall com-
parison of the predicted and observed mean number 
of relapses and proportion with CDP. In the cross-val-
idation, the mean predicted number of relapses was 
higher than the observed 0.49 (range 0 to 42.2) and 0.33 
(range 0 to 6) respectively. Whereas for CDP, the pre-
dicted proportion with CDP (mean) was close to the 

Table 2 Overview of outcomes in the OFSEP training, test, and NTD training populations
Outcome Training (N = 5517)

median (interquartile range; range) or 
count (%)

Test (N = 3768)
median (interquartile range; range) or 
count (%)

NTDa (N = 3119)
median (interquar-
tile range; range) 
or count (%)

CDP-free 5005 (91) 3449 (92) 2620 (84)
Relapse-free 4225 (77) 3177 (84) Not reported
Number of relapses 0 (0; 0–6) 0 (0; 0–4) 0 (1; 0–7)
OFSEP Observatoire Francais de la sclérose en plaque; NTD NeuroTransData; CDP confirmed disease progression; Number of relapses summarized by median 
(interquartile range; range), the rest by count (%).aDerived from Stühler et al. [7]

Table 3 Performance measures of the OFSEP and NTD models
Outcome Performance measure (95% CI) OFSEP 

cross-validationa

N = 5517

OFSEP
temporal validation
N = 3768

NTD
cross-validationa

N = 3119

NTD ran-
dom-split 
validation
N = 314

CDP Calibration intercept -0.096 (-0.192 to-0.001) -0.079 (-0.198 to 0.04) Not reported Not reported
Calibration slope 0.802 (0.705 to 0.899) 1.097 (0.948 to 1.246) Not reported Not reported
C-index 0.737 (0.718 to 0.757) 0.777 (0.754 to 0.798) 0.582 (0.580 to 0.584)c 0.554
MSEb 0.081 0.072 0.125 0.131
RMSE% 99% 99% 96%d Not reported
Predicted proportion with CDP (range) 0.1 (0 to 0.72) 0.09 (0 to 0.56) Not reported Not reported
Observed proportion with CDP (range) 0.09 (0 or 1) 0.08 (0 or 1) 0.16 (0 or 1) Not reported

Relapse Calibration intercept -0.01 (-0.079 to 0.06) -0.386 (-0.479 to -0.293) Not reported Not reported
Calibration slope 0.615 (0.557 to 0.673) 0.501 (0.41 to 0.593) Not reported Not reported
C-index 0.7 (0.684 to 0.715) 0.639 (0.616 to 0.661) 0.646 (0.645 to 0.647)c 0.608
MSE 1.294 0.326 0.755 0.784
RMSE% 158% 113% 99%d Not reported
Mean predicted number of relapses 
(range)

0.49 (0 to 42.2) 0.32 (0 to 4.4) Not reported Not reported

Mean observed number of relapses 
(range)

0.33 (0 to 6) 0.20 (0 to 4) 0.43 (0 to 7) Not reported

OFSEP Observatoire Francais de la sclérose en plaque; NTD NeuroTransData; CDP confirmed disease progression; CI confidence interval; MSE mean squared error; 
RMSE% relative percentage of the root mean squared error.aThe reported measures are estimated from out-of-sample predictions.bEquivalent to the Brier score for 
binary outcomes.c95% CI anddRMSE% calculated respectively from the standard errors and outcome summaries reported by Stühler et al. [7]. They split the data 
randomly into training (90%) and test (10%) sets. We split the data on 2017 into training and test sets. 10-fold cross-validations in both studies were performed in 
training sets.
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observed proportion with CDP 0.1 (range 0 to 0.72) and 
0.09 (range 0 or 1) respectively. In the temporal valida-
tion, the mean predicted number of relapses was 0.32 
(range 0 to 4.4) compared to the observed of 0.2 (range 
0 to 4), and lower in relapse-free patients (0.3) than in 
those who relapsed (0.435). For 79% of the patients, the 
model predicted a relapse-free therapy cycle (observed 
84%). CDP-free therapy cycles were predicted for 91% 
of the patients (observed 92%). The predicted individual 
CDP risk was similar to the observed one with 0.09 and 
0.08 respectively. It ranged from 0.0 to 0.56 (mean of 
0.084 in patients without and 0.159 in those with CDP 
occurrence).

For the relapse outcome (Table 3), the cross-validation 
revealed a higher error (MSE 1.294) but also a higher dis-
criminatory power (C-index 0.7, 95%CI 0.684 to 0.715) 
in the OFSEP model compared to the NTD model (MSE 
0.755 and C-index 0.646, 95%CI 0.645 to 0.647), and an 
RMSE of 158%. The MSE (0.326), RMSE (113%) and the 
C-index (0.639, 95%CI 0.616 to 0.661) were lower in tem-
poral validation of the OFSEP model compared to its 
cross-validation. The performance in the random-split 
validation of the NTD model had also been worse than 
its performance in cross-validation (MSE 0.784, C-Index 
0.608). The calibration curve in the temporally-split test 
set had an intercept of -0.386 (95%CI -0.479 to -0.293) 
and a slope of 0.501 (95%CI 0.41 to 0.593), hinting at 
miscalibration.

For the CDP outcome, the cross-validation perfor-
mance of the OFSEP model was better than that of NTD 
both in terms of error (MSE 0.081 versus 0.125) and dis-
crimination (C-index 0.737, 95%CI 0.718 to 0.757 ver-
sus 0.582, 95%CI 0.580 to 0.584). The OFSEP model also 
performed much better in temporal validation (MSE 
0.072; C-index 0.777, 95%CI 0.754 to 0.798) compared to 
the NTD model in random-split validation (MSE 0.131; 
C-index 0.554). The RMSE was 99% in both validations. 
The calibration curve in the temporally-split test set was 
close to ideal with an intercept of -0.079 (95%CI -0.198 to 
0.04) and a slope of 1.097 (95%CI 0.948 to 1.246).

Overall and DMT-specific calibration plots from cross-
validation (Figs. 4 and 5) showed a similar trend to those 
reported for the NTD models (Fig. 3 in Stühler et al. [7]). 
We could not compare the calibration plots from test set 
validation (SM Box S3 and Figures S5-S8) that were not 
reported for the NTD models. Our relapse model over-
predicted the number of relapses for patients with more 
observed relapses, both overall and per DMT. The CDP 
model had good overall calibration.

Sensitivity analyses
When the data was split in 2019, the training and test 
sets contained 8159 and 1236 patients, respectively (SM 
Tables S12 to S14). Compared to the main analysis, the 

median index therapy duration was longer in the training 
(1.74 versus 1.37 years) whereas shorter in the test (0.77 
versus 1.29 years) populations. Both outcomes were more 
frequent in the training population. The calibration of the 
CDP model in the 2019 test set was worse than that of 
the main analysis, showing moderate predictions com-
pared to the observed outcome probability (calibration 
slope 1.778) but it had higher discrimination (C-index 
0.833). The 2019 test set performance of the relapse 
model was slightly better than in the main analysis. The 
non-Bayesian fixed effect GLMs performed similarly to 
the hierarchical Bayesian models for both outcomes but, 
as expected, estimated in absolute values much larger 
coefficients mainly for the predictors with high MADs in 
the main analysis: current therapy, current duration, and 
their interaction terms (SM Figures S9, S10, and Table 
S15).

Discussion
Focusing on the model’s accuracy (calibration and dis-
crimination) and generalisability (reproducibility and 
transportability) is key to evaluating the performance of 
prediction models [22, 23]. In our study, we developed 
and validated models according to the processes and cri-
teria described by Stühler et al. [7] on an independent 
and representative dataset from a French MS registry and 
assessed their accuracy and generalizability by a temporal 
split of the data at hand. Because Stühler et al. [7] pre-
sented black box models without details of their internal 
structure, we replicated the model-building with assis-
tance from the NTD working group.

For the replication, we used predictors (content and 
coding) identical to the NTD models and reconstructed 
as loyally as possible all aspects of the data pre-process-
ing and modelling. Finally, we implemented identical per-
formance measures. While NTD assessed performance 
using a random data split, we validated our models by a 
deterministic temporal split. This mimics a realistic situ-
ation where a model is intended to be applied to future 
patients. A random split ignores the time structure like 
changes over time in the severity of the disease, aspects 
of care, diagnostic criteria to detect the disease, and 
availability and acceptance of newer treatments. A tem-
poral split of an existing dataset is considered a form of 
external validation, whereas a random split is considered 
to be an internal validation scheme (20).

Our replication study showed that the developed 
OFSEP relapse model was miscalibrated in both the 
cross- and test set validation schemes. In terms of dis-
crimination, the OFSEP relapse model performed bet-
ter than the NTD model in both validation schemes 
(C-index OFSEP 0.7 and 0.639 versus NTD 0.646 and 
0.608). The developed OFSEP CDP model showed good 
calibration and discrimination both in the patient set it 
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was developed in and in more recently treated patients. 
Also, the discriminative performance of the OFSEP 
CDP model was better than its NTD counterpart in the 
respective validations (C-index OFSEP 0.737 and 0.777 
versus NTD 0.582 and 0.554). The NTD working group 
regularly improves their models by incremental learning. 
They used quarterly updates of the NTD database with 
new patients [24] and reported changes in the C-indices 
overtime, which we interpreted as convergence to our 
C-indices. Therefore, our report is not able to compare 
the OFSEP results to the current (based on the learning 
from new data) but to the starting NTD models.

Furthermore, we could not validate the exact NTD 
models because the predictor weights were not 

published, and we cannot assume similarity to estimated 
model coefficients from our study. We only know that we 
used the same predictors and modelling approach. Based 
on reported MADs, we could compare the precision of 
the model coefficients and implicitly the information 
content of the data with the respective prognostic fea-
tures. We observed similar structures reflected by high 
correlation, implying similar ranking. Nevertheless, 
we caution against the interpretation of the predictor 
importance assessment presented in Table S9, because 
it is based solely on the absolute values of the variables’ 
coefficients. A sensitive method such as permutation 
importance would take into account how each predictor 
impacts the models’ performance (i.e. MSE).

Fig. 4 Calibration plots of the relapse model in the training set. Shown is the mean observed versus mean predicted number of relapses per prediction 
bin using out-of-sample-predictions: panel a: Overall (N = 275 or 276 patients per bin), panel b: for each DMT. DMF dimethyl fumarate; FTY fingolimod; GA 
glatiramer acetate; IF interferon beta1; NA natalizumab; TERI teriflunomide
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Our main contribution to the validation of the NTD 
strategy is the demonstration that their modelling 
approach worked in temporal split validation, which 
increases the case-mix heterogeneity between the train-
ing and test populations [25]. Thus, our results support 
the relevance of the NTD modelling approach for new 
patients encountered in clinical practice.

Our sensitivity analysis showed that the predictive 
ability of the non-Bayesian fixed-effects GLMs were 
nearly identical to the complex hierarchical Bayesian 
models. This confirms an often made finding that com-
pared to complex models, standard approaches may give 

predictions of comparable quality by allowing a much 
simpler model communication and implementation [26].

This is the first external validation study for the rep-
licated NTD models. To our knowledge, this is also the 
first time that any prediction model for MS patients was 
validated by an independent author team other than the 
creators of the respective model. A recent systematic 
review of prognostic prediction models in patients with 
MS [4] (accepted for publication) found that external 
validation studies are rare, and research activities should 
concentrate more on rigorously validating the existing 
prognostic instruments rather than developing new ones.

Fig. 5 Calibration plots of the confirmed disease progression (CDP) model in the training set. Shown is the mean observed versus mean predicted pro-
portion of CDP per prediction bin using out-of-sample-predictions: panel a: Overall (N = 275 or 276 patients per bin), panel b: for each DMT. DMF dimethyl 
fumarate; FTY fingolimod; GA glatiramer acetate; IF interferon beta1; NA natalizumab; TERI teriflunomide
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We had to make technical assumptions to replicate 
the coarsely described model-building and validation 
process. Despite this drawback, the findings from both 
studies align to a great extent. We did not explore the net 
benefit of our models. Nor did we investigate the robust-
ness of the CDP definition, where patients with missing 
EDSS measurements were interpreted as CDP-free.

The large and representative sample, and the demon-
stration of geographical and temporal transportability 
of the CDP model and of the discriminative ability of the 
relapse model are the strengths of our study. The inter-
pretability of the statistical methods and the easy applica-
bility of the models in clinical practice were the strengths 
of the NTD models which also apply to the models in 
our study. This replication study is also a recalibration 
because we used the same predictors as in the NTD 
models but re-estimated respective coefficients using a 
different dataset. The miscalibration of the relapse model 
at internal validation hints at potential model misspecifi-
cation, e.g., missing important predictors.

The analyses performed by NTD and by us describe 
the association between treatment and outcome in spe-
cific patient groups. It is conceivable that our models 
may naively be used to predict therapy effects in patient 
groups that have never received the therapy in ques-
tion. We could identify such subgroups that were not 
considered for certain treatments in the OFSEP data. It 
is unclear if the same is the case in the NTD data. We 
would also like to caution against interpreting the asso-
ciation analyses causally: the proposed treatment does 
not necessarily cause the optimal possible effect. With 
the concise set of factors used in the models, there may 
even exist unobserved time-dependent confounding [27].

Conclusion
We built association-based prediction models following 
the NTD modelling strategy and assessed their quality in 
the French OFSEP population. We found comparable and 
sometimes superior performance in our results. There-
fore, the NTD modelling strategy was in principle rep-
licable. Yet, we could not assess whether the application 
of the exact NTD models to the OFSEP data (full trans-
portability) would perform similarly. Further research on 
the NTD modelling strategy could involve recalibration 
to new patients, simplification of the modelling method, 
updating with other common predictors, such as from 
magnetic resonance images, and assessment of the effect 
of differences in predictor measurement between our 
study and the clinical setting before its use, which could 
impact the model’s performance at application [28]. We 
implemented the NTD model-building idea in a new 
healthcare setting which proved to be successful but 
pointed to potential limitations.
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