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Abstract 

Background  New therapeutics in oncology have presented challenges to existing paradigms and trial designs in all 
phases of drug development. As a motivating example, we considered an ongoing phase II trial planned to evalu-
ate the combination of a MET inhibitor and an anti-PD-L1 immunotherapy to treat advanced oesogastric carcinoma. 
The objective of the paper was to exemplify the planning of an adaptive phase II trial with novel anti-cancer agents, 
including prolonged observation windows and joint sequential evaluation of efficacy and toxicity.

Methods  We considered various candidate designs and computed decision rules assuming correlations 
between efficacy and toxicity. Simulations were conducted to evaluate the operating characteristics of all designs.

Results  Design approaches allowing continuous accrual, such as the time-to-event Bayesian Optimal Phase II design 
(TOP), showed good operating characteristics while ensuring a reduced trial duration. All designs were sensitive 
to the specification of the correlation between efficacy and toxicity during planning, but TOP can take that correlation 
into account more easily.

Conclusions  While specifying design working hypotheses requires caution, Bayesian approaches such as the TOP 
design had desirable operating characteristics and allowed incorporating concomittant information, such as toxicity 
data from concomitant observations in another relevant patient population (e.g., defined by mutational status).
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Background
The development of drugs in oncology has long driven 
statistical innovations for trial designs [1, 2]. The sever-
ity of the disease has led to considering drugs with non-
negligible toxicity [3, 4]. This particular benefit/risk ratio 

results in trials enrolling patients, from the early phases 
of development, rather than healthy volunteers [5]. Meth-
odological challenges have arisen over the past decades 
with new types of treatments such as immunotherapy [6]. 
Their mode of action differs from that of conventional 
cytotoxic chemotherapy, resulting in different kinetics 
in both toxicity and efficacy, often with prolonged time-
frames. Such drugs have a longer duration of treatment 
and prolonged effect after cycles, as opposed to intermit-
tent action after cycles for cytotoxic chemotherapy.

Phase II trials, notably in oncology, aim at identifying 
promising therapies while ruling out the unpromising 
as soon as possible, prior to large-scale phase III studies 
[7]. Designs for phase II trials encompass a wide range of 
approaches and sample sizes, including randomization 
with a control arm [8, 9]. We focused our work on single-
arm phase II trials only, which remain commonplace in 
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oncology. Furthermore, designs with sequential monitor-
ing of efficacy or toxicity are the choice in phase II, allow-
ing early decisions: stopping for futility or graduating 
early promising treatments [10]. However, some features 
of immunotherapy trials have challenged the existing 
sequential monitoring approaches. Specifically, immu-
notherapy usually implies long-term endpoints which 
may reduce the feasibility of frequent interim analyses  
[6, 11–13].

Also, nowadays, it is more and more common to 
perform a cohort expansion after phase I trial, giving 
potentially more information about efficacy and tox-
icity for phase II trials [14]. Moreover, sample sizes are 
often limited, and designs may include the joint evalua-
tion of efficacy and toxicity to some extent. Overall, all 
these particularities may result in the need for complex 
designs, and multiple analyses may be combined with 
caution to avoid an inflated risk of false positive [15–17]. 
Lastly, endpoints are often assessed in a shorter time 
compared to phase III trials. For efficacy, RECIST crite-
ria are allowing a standardized way of assessing the ORR 
as a categorical variable in cancer treatment, primarily 
for early phase II clinical trials [18]. These criteria were 
developed for chemotherapeutic agents, and thus for 
immunotherapies, iRECIST criteria were developed [19]. 
Similarly, the evaluation of the toxicity endpoint is stand-
ardized via classifications like NCI-CTCAE or specific 
scales for targeted toxicities.

In this paper, we took as an example the statistical plan-
ning of the single-arm phase II METIMGAST trial. Then 
we consider several design options given the specific clin-
ical settings and compare their operating characteristics 
in a simulation study. The aim is to investigate if the add-
ing of a toxicity monitoring independently from a moni-
toring design for efficacy led to desirable properties, and 
if using a design like TOP using pending patient infor-
mation could have advantages over designs using brute 
counts and to exemplify the specific challenges during 
the planning of such a trial. Lastly, we provide points for 
discussion.

Methods
Motivating example
The single-arm phase II METIMGAST trial (NCT05135845)  
assessed the combination of capmatinib and spartali-
zumab in advanced oesogastric adenocarcinoma in 
adults. Spartalizumab is an anti-PDL1 monoclonal anti-
body, and capmatinib is a tyrosine kinase inhibitor tar-
geting the c-MET receptor. The combination has in vitro 
evidence of a synergistic action of the two molecules 
[20, 21] and has recently been evaluated in lung, breast, 
and liver cancer. An adaptive design was planned (see 

later) with sequential monitoring rules for efficacy and 
toxicity with 90 patients. The two endpoints used for 
monitoring were the objective response rate (ORR) for 
efficacy in MET-negative patients (81 expected) and the 
occurrence rate of an unacceptable toxicity in the whole 
set of patients. The ORR is defined as the proportion of 
patients with partial or complete remission according 
to RECIST v1.1 criteria within 6 months after inclusion 
(that is 8 cycles of treatment); and the occurrence of an 
unacceptable toxicity event was captured within 42 days 
after inclusion (corresponding to 2 cycles of treatment), 
defined using NCI-CTCAE v5 criteria.

The planned design
The primary observation window was planned at 6 
months from inclusion, and the anticipated accrual rate 
was 5 patients per month. The trial was therefore initially 
planned using an adaptive Bayesian phase 2 design with 
sequential analyses, allowing continuous recruitment: 
the Time-to-event Optimal Phase 2 design [22], for effi-
cacy analyses in MET-negative patients, with interim at 
30 and final at 81 patients. The TOP design is derived 
from the BOP2 design [23], which is a clinical trial 
design under a Bayesian framework. It models unique 
or multiple endpoints (efficacy alone, efficacy + toxic-
ity, for example) through a multinomial distribution and 
provides decision rules to stop the trial. Posterior prob-
abilities of the probability of an endpoint being inferior 
to a prespecified critical value φ (elicited with clinicians) 
are computed at each analysis: Pr(p ≤ φ|Dn) with p the 
probability of the endpoint of interest and Dn the data 
available at interim analysis. Then, these posterior proba-
bilities are compared to a threshold for stopping decision 
rules, Pr(p ≤ φ|Dn) > Cn , where Cn takes the form of a 
power function: Cn = 1− �

n
N

γ with n the number of 
recruited patients, N the maximum number of patients, 
and � and γ 2 hyperparameters optimized before the trial. 
BOP2 design uses counts, and TOP design extends to 
long-term outcomes by taking into account the informa-
tion of pending patients via a weighting in the likelihood, 
allowing to shorten the duration of trials.

The TOP design was used for efficacy assessment only in 
METIMGAST trial. Working hypotheses on efficacy were 
the following: H0 : p0,eff ≤ 0.15 and H1 : p1,eff = 0.30 . 
The design was parameterized to ensure 90% power 
under these hypotheses, given a 5% type I error rate with 
90 patients and an accrual of 5 patients per month. The 
design’s parameters were � = 0.92/γ = 0.97 , which pro-
vided 94.76% power under H1.

Motivated by safety concerns, toxicity monitoring was 
added with more frequent looks (at 5, 10, 15, 20, 30, 40, 
50, 60, 70, 80, and 90 patients over both groups). This 
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toxicity monitoring was planned using a posterior dis-
tribution approach [24, 25] with the following decision 
rule: Pr(ptox > 0.25|Dn) > 0.95 , where ptox is the prob-
ability of unacceptable toxicity. By simulation, it was 
assessed that the addition of the proposed toxicity moni-
toring would keep power above 90% when toxicity risk 
is low ( ptox ≤ 0.20 ) and that in the case of unacceptable 
toxicity, the trial will be stopped in 49% of cases when 
ptox = 0.30 and 95% when ptox = 0.40 . Retrospectively, 
to ensure comparability with other designs, we changed 
the parameters of TOP design ( � = 0.865/γ = 0.91 ) to 
ensure a 10% type I error rate for the TOP design. By 
simulation, it was assessed that the resulting design com-
bining both stopping rules had a type I error rate of 4.43% 
under the aforementioned efficacy and toxicity rates with 
a slight positive correlation between them, and a power 
of 94.25% (2.6% and 92.5% respectively for the initial 
design).

Of note, a simple estimation of ORR was planned in 
MET-positive patients, without interim analysis, inde-
pendently of analyses in MET-negative patients.

Studied designs
The aim of the present work was to compare several 
approaches to trial design in the setting of the METIM-
GAST study, that is a single-arm phase II trial with an 
interim analysis with a futility stopping rule and allow-
ing toxicity monitoring including stopping rules as well. 
Overall, we compared the main proposal described above 
(denoted “TOPeff+PPtox ” hereafter) with four other 
approaches adapted to our clinical setting in terms of 
trial design. We evaluated designs omitting the time-to-
event information on the outcomes using two designs 
with strictly binary endpoints, and two approaches rely-
ing on variations of the TOP design. For all approaches, 
sample sizes (interim and final) for efficacy analyses were 
kept identical to the original proposal: 30 and 81 patients.

The initial METIMGAST trial aimed at evaluating 
the therapeutic effect of the capmatinib-spartalizumab 
combination, relying on the assumption of a synergistic 
activity of the drugs, rather than relying on the cMET 
inhibition itself with capmatinib. To that aim, the tar-
get population of the trial, for efficacy assessment, was 
patients without cMET-amplification, who correspond to 
the majority of patients (90%). Nevertheless, the remain-
ing 10% of patients, with a cMET amplification, were 
planned to be eligible as well for the trial, as exploratory 
analysis. Moreover, since toxicity of the combination 
was not anticipated to be dependent on cMET-ampli-
fication, observed data on the small cohort of c-MET 
positive patients were considered as informative on the 
toxicity profile of the treatment overall. The main efficacy 

analysis was planned on the expected 81 cMET negative 
patients and toxicity analyses included all 90 patients, 
cMET negative and positive. We defined 4 trial designs 
(approaches 1 to 3, and 5) consistent with these clinical 
settings, and one other (approach 4) in a simpler setting 
assuming a homogeneous trial population including only 
c-MET negative patients.

Overall, five approaches were evaluated: 

1.	 TOP design to assess the efficacy, associated with 
parallel toxicity monitoring based on a posterior 
probability rule at 5/10/15/20/30/40/50/60/70/80/90 
patients “TOPeff+PPtox”).

2.	 Simon’s 2 stage design [26] to assess the effi-
cacy, associated with parallel toxicity moni-
toring based on a posterior probability rule at 
5/10/15/20/30/40/50/60/70/80/90 patients (referred 
to as “Simon + PPtox ” in the following).

3.	 BOP2 design for efficacy [23] with interim analyses 
at 30 and 81 patients and the posterior probability’s 
approach for toxicity assessment, at the same num-
bers of patients as “TOPeff+PPtox ” (denoted “BOPeff
+PPtox ” hereafter). Because of the binary definition 
of BOP2, the accrual is suspended until all observa-
tion windows are completed.

4.	 TOP design with co-primary monitoring endpoints, 
efficacy and toxicity, with analyses at 30 and 81 patients 
for efficacy and at (5/10/15/20/30/40/50/60/70/81) 
patients for toxicity, using only MET-negative patients 
(denoted “TOPteff/tox ” below);

5.	 TOP design with co-primary monitoring endpoints, 
efficacy and toxicity, with analyses at 30 and 81 patients 
for efficacy and at (5/10/15/20/30/40/50/60/70/81) 
patients for toxicity, in MET-negative patients, but 
incorporating accumulated data from MET-positive 
patients, as it becomes available for the assessment 
of toxicity. It results an informative prior for toxicity  
rate’s posterior distribution (details in Additionnal 
file 1 section 3) derived from information on toxicity 
in MET-positive patients by assuming the homoge-
neity of toxicity regarding MET status (referred to as 
“iTOPeff/tox ” hereafter).

Design calibration
All designs were calibrated based on the probability 
of conclusion to a promising treatment under the fol-
lowing working null and alternative hypotheses with 
a positive correlation between efficacy and toxic-
ity: H0 : {p0,eff = 0.15; p0,tox = 0.30; correlation coef-
ficient between efficacy and toxicity: R = 0.21} and 
H1 : {p1,eff = 0.30; p1,tox = 0.20;R = 0.26}.
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Decision boundaries for the “TOPeff+PPtox ” and 
“BOPeff+PPtox ” were tuned following the BOP2/TOP 
procedure for efficacy [22, 23] and using the posterior 
distribution on toxicity risk [24, 25] for toxicity, under the 
above-listed hypotheses on efficacy and toxicity; parame-
ters for the BOP2/TOP efficacy decision boundaries were 
� = 0.865/γ = 0.91 (using notations from the original 
TOP paper). PPtox design was added with a stopping rule 
determined as described in “The planned design” section, 
and decision rules are of the form of maximal counts of 
toxicity to continue the trial.

The designs “TOPt
eff/tox ” and “iTOPeff/tox ” used the 

same decision boundaries formula. Calculation of � and 
γ was adapted for these approaches (see Additional file 1 
section 1 for details) and we obtained: � = 0.69/γ = 0.98 . 
They corresponded to a type I error rate of 3.79% and a 
power of 89.27%.

Lastly, for comparative purposes, we also implemented 
a Simon’s two-stage design minimizing the average sam-
ple size under p0,eff = 0.15 with the first analysis at 30 
patients and the final at 81 patients. This design calibra-
tion is described in Additional file 1 section 1. Decision 
boundaries in terms of efficacy and toxicity event counts 
are available in Additional file 1 section 4 for all designs.

Of note, when adding PPtox monitoring on top of 
an efficacy design, it is not straightforward to take into 
account the correlation between efficacy and toxicity 
since each endpoint is being handled separately in dis-
tinct independent models. In efficacy-toxicity based 
designs (TOP with co-primary endpoints), the corre-
lation is directly handled via multinomial modeling in 
design calibration. The pair of calibration parameters 
(γ , �) for the BOP2/TOP approaches may vary depending 
on the assumed correlation between efficacy and toxicity. 
In the original trial design, efficacy and toxicity were con-
sidered independent, but a probable hypothesis would be 
that efficacy and toxicity are positively correlated [27, 28].

Simulation settings
We evaluated the operating characteristics of the 
five designs under 10 scenarios of true efficacy, 
peff , and toxicity, ptox , as reported in Table  1. For 
each scenario, correlation variations were speci-
fied, exploring the range of possible correlation 
between efficacy and toxicity, from Rmin (that is when 
Pr(Eff ∩ Tox) = max(0,Pr(Eff)+ Pr(Tox)− 1) ) to Rmax 
(that is when Pr(Eff ∩ Tox) = min(Pr(Eff),Pr(Tox)) ). 
Details on the different correlations explored are avail-
able in Additionnal file 1 section 2.

For example, scenario 1 with correlation Rpos,1 corre-
sponds to {Pr(Eff ∩ Tox) = 0.08 , Pr(Eff ∩ Tox) = 0.07 , 
Pr(Eff ∩ Tox) = 0.22 , Pr(Eff ∩ Tox) = 0.63} and sce-
nario 2 to {Pr(Eff ∩ Tox) = 0.11 , Pr(Eff ∩ Tox) = 0.19 , 

Pr(Eff ∩ Tox) = 0.09 , Pr(Eff ∩ Tox) = 0.61} . For the 
sake of simplicity, results with a positive correlation 
between efficacy and toxicity ( Rpos,1 =

Rmax
3  ) are primar-

ily reported in the following section. We also presented 
the results of the 6 correlations presented in Additional 
file  1 applied to scenarios 1 and 2 to assess the risk of 
false positive conclusions under the inefficacy and toxic-
ity case, and the risk of false negative under the case of 
desirable efficacy and unacceptable toxicity. Additional 
results on the other scenarios are available in Additional 
file 1 section 5.

For each scenario, 10000 simulated trials of 90 patients 
were generated, following the desired sample size for 
METIMGAST trial, with designs calibrated for a 5% type 
I error rate. The observation windows were 180 days for 
efficacy (8 cycles of treatment) and 42 days for toxicity 
(2 cycles of treatment). The anticipated accrual rate was 
5 patients per month, that is a mean interpatient arrival 
time of 6 days. We estimated the following characteris-
tics for each candidate design: probability of conclusion 
of efficacy and acceptable toxicity (positive trial), average 
trial duration, average sample size, probability of early 
stopping. All analyses were performed on R statistical 
software version 4.0.2.

Results
Figure 1 represents the percentage of conclusions drawn 
for a promising treatment (efficacy and acceptable tox-
icity) across the 10 scenarios with a positive correlation 
between efficacy and toxicity (ranging from 0.21 to 0.33 
depending on the scenario, see Table 1 for details).

Results from scenario 1 showed that the risk of false 
positives is controlled under {p0,eff = 0.15; p0,tox = 0.30} , 
regardless of the design, with Simon + PPtox design being 
the most conservative. Scenario 2 allowed assessing the 

Table 1  Simulation scenarios, with Pr(Eff) as the true probability 
of efficacy, Pr(Tox) as the true probability of toxicity, Rmin and Rmax 
as the true minimum and maximum correlations respectively, 
given the event probabilities

Scenario Description Pr(Eff) Pr(Tox) Rmin Rmax

1 H0 0.15 0.30 -0.27 0.64

2 H1 0.30 0.20 -0.33 0.76

3 Intermediate 0.20 0.25 -0.29 0.87

4 Intermediate (2) 0.25 0.25 -0.33 1.00

5 Inefficacious 0.15 0.20 -0.21 0.84

6 Inefficacious (2) 0.10 0.15 -0.14 0.79

7 Intermediate efficacy 0.20 0.20 -0.25 1.00

8 Intermediate efficacy (2) 0.20 0.30 -0.33 0.76

9 Toxic 0.30 0.30 -0.43 1.00

10 Toxic (2) 0.40 0.35 -0.60 0.90
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power under the anticipated {p1,eff = 0.30; p1,tox = 0.20} : 
power was the greatest using the TOPeff + PPtox approach 
(94.25%); Simon + PPtox approach appears the most con-
servative (82.79%). The remaining 3 approaches have 
similar power (87.99% for BOPeff + PPtox ; 87.94% for 
iTOPeff/tox ; 87.86% for TOPt

eff/tox ). With intermediate effi-
cacy and toxicity (Sc 3 and 4), TOPeff + PPtox and BOPeff 
+ PPtox show higher rate of acceptance. Of note, for 
treatment with discordant profiles of efficacy and toxic-
ity (efficacious and toxic or not efficacious and not toxic), 
the more the rate is far from H0 , the more the risk of false 
positive decreases. When the treatment is ineffective, the 
two TOPeff/tox approaches have higher rate of false posi-
tive, while when the treatment is toxic these 2 approaches 
have lower rate of false positive.

Lastly, the approach including the update of the toxic-
ity prior using data from MET-positive patients allowed 
slightly better control of the risk of false positives com-
pared to the other TOP-only strategy.

The average number of patients per trial, the propor-
tion of early stopping, and the mean duration of a trial 
with a slight positive correlation between efficacy and 
toxicity are represented in Additional file 1 section 5.

Overall, the approach Simon + PPtox resulted in a 
higher proportion of early stopping in any scenario. Con-
sistently, the sample size was smaller with this design.

Regarding the remaining four designs, the update of 
the prior and TOPt

eff/tox strategies tend to have a greater 

proportion of early stopping (more pronounced with the 
update of the prior), consistent with a reduced risk of 
false positives and a reduced sample size.

The average duration of a trial was greater with the 
BOPeff+PPtox and Simon + PPtox designs, which was 
expected given that these designs require waiting for 
complete observation of all included patients at each 
interim analysis. For the remaining three designs, the 
duration was consistent with the mean number of 
patients per trial.

We then assessed if the approaches were robust to 
discrepancies between planning hypotheses and real-
ity in terms of correlation between efficacy and toxicity. 
Figure  2 presents the type I error rate and power when 
the correlation between efficacy and toxicity in the trial 
varies.

Even though the TOP design directly accounts for the 
correlation between efficacy and toxicity when planning 
the trial using a multinomial sampling distribution, its 
type I error rate was impacted by miss-specified corre-
lation. The approaches combining a monitoring for effi-
cacy associated with the posterior probabilities’ approach 
showed the same pattern. Specifically, for all designs, 
the type I error rate increased when the correlation was 
smaller. Power remained about constant for all designs. 
Additional results on the correlation between efficacy 
and toxicity in the different scenarios are presented in 
Additional file 1 section 5.

Fig. 1  Percentage of conclusions regarding efficacy and acceptable toxicity in the 10 scenarios with a positive correlation between efficacy 
and toxicity. Numbers in parentheses represent peff and ptox for each scenario
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Discussion
We report the comparative study of several approaches 
of trial design for a phase II clinical trial with practical 
and specific challenges. More specifically, our work was 
motivated by a phase II clinical trial evaluating a new 
combination of drugs in the treatment of oesogastric 
cancer with additional information on toxicity from con-
comitant patients. The joint evaluation of efficacy and 
safety was required due to the non-negligible toxicity 
risk of these anti-cancer agents [29, 30]. We assessed the 
operating characteristics of candidate designs and their 
robustness to departure from planned conditions and 
hypotheses.

Namely, we compared designs using standard binomial 
modelling of the study outcomes, either using Simon’s 
optimal design [26] or the Bayesian optimal design 
(BOP2 design) [23], combined with Bayesian posterior 
probability approaches for toxicity monitoring [24, 25], 
to designs incorporating time-to-event information on 
the outcomes, via a weighted likelihood, using the TOP 
design [22] (with and without informative prior from 
concomittant patients).

Overall, the TOP-design approaches showed greater 
power while controlling the type I error rate under the 
specified conditions prior to the trial, compared with 
BOP2 and Simon approaches. When considering toxicity 

monitoring, the posterior probability approach com-
bined with TOP design had more power, but also was 
more subject to false positive in case of a toxic treat-
ment. Conversely, using the TOP design for both effi-
cacy and toxicity endpoints, an overestimated correlation 
between efficacy and toxicity at the planning stage can 
lead to a higher risk of false positive. In case of designs 
combining different approaches for efficacy and toxicity 
monitoring, the type I error rate increases with an over-
estimated correlation between efficacy and toxicity, but 
taking this correlation into account when planning the 
trial is not straightforward. Lastly, the addition of con-
comittant information for toxicity evaluation allowed a 
decreased proportion of false positive trials in case of a 
toxic treatment.

We focused on binding futility and toxicity rules, so the 
type I error rate was computed according to the decisions 
that were not ignored [31]. It is often preferred non-bind-
ing rules, especially for futility [32], as they provide more 
flexibility. Future work may address whether the non-
binding strategy increases or not the type I error rate and 
if corrections are needed to control it.

The TOP approaches represent an advantageous 
choice in clinical settings requiring long-term end-
points, which is frequent in oncology [6, 33, 34]. 
Compared to more complex approaches like the 

Fig. 2  Percentage of conclusions regarding efficacy and acceptable toxicity relative to the correlation between efficacy and toxicity in the setting. 
Left panel: type I error rate; Right panel: power. (Scale is panel-specific)
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multiple-imputation one [35], TOP design would be 
simpler to implement and can save time in design cali-
bration due to the closed-form of the posterior distri-
bution. Subsequent prolonged observation windows 
[11, 13] can be challenging in designing early phase 
trials, particularly in the case of interim analyses. A 
major concern is then to determine when interim 
analyses will be performed. In the case of a design 
relying on strictly binary data for endpoints such as 
Simon’s optimal design, complete observations must be 
obtained to perform any analysis, potentially resulting 
in a waiting period with suspended inclusions over the 
course of the trial. The TOP design allows accounting 
for any available data at the time of an analysis, even 
incomplete observations, incorporating the fraction of 
available follow-up in the model via a weighted likeli-
hood. Straightforwardly, the trial may allow continu-
ous patient enrollment, and the trial duration can be 
reduced compared to a standard design. Moreover, in 
our setting, we found that the TOP approach was more 
powerful than the BOP, at the cost of a slight increase 
in the risk of false positives.

Concerning the observation window, safety monitor-
ing approaches with the posterior probability of toxic-
ity relied on binary data and therefore used complete 
toxicity observations only at the time of the enrollment 
of the next patient. In our settings, the observation win-
dow was shorter for toxicity (42 days) than for efficacy (6 
months), while the anticipated average interpatient time 
was 6 days, for accrual. Should the toxicity observation 
window be longer and/or farther from the range of the 
interpatient time, given the default assumption of a uni-
form distribution of the toxicities over time, adapting 
the posterior probability approach with a time-to-event 
component, rather than excluding incomplete observa-
tions from interim analyses, should be considered to 
avoid false positive trials in case of toxic drugs. Indeed, 
the distribution of the time to toxicity may also affect the 
design’s operating characteristics. Moreover, an overly 
long observation window for both efficacy and toxicity 
may compromise the performances of the TOP design 
and lead to more statistical and organisational complex-
ity. Future designs should avoid that and use reasonable 
observation windows to capture enough clinical informa-
tion without leading to overly long trials.

Lastly, it has been shown that in the setting of fre-
quentist approaches with efficacy stopping rule, more 
frequent looks can sometimes lead to an increased pro-
portion of positive trials and thus to an overestimation 
of the efficacy, for example [36]. In our case, although we 
used Bayesian inference, we observed a similar outcome 
given more frequent looks and decisions; specifically, 
more frequent toxicity monitoring resulted in a greater 

probability of stopping for toxicity overall (data not 
shown).

Conclusion
In our setting, we found that a design combining the TOP 
design for efficacy and posterior probability monitor-
ing for toxicity results in greater power while controlling 
the risk of false positives. In cases where extra caution is 
needed due to a drug’s toxicity profile, a TOP design with 
joint efficacy and toxicity outcomes ensures a more con-
servative approach.

Furthermore, an advantage of the joint TOP approach 
for efficacy and toxicity is that it reduces the number of 
patients and the duration of the trial compared to pos-
terior probability approaches, especially with prolonged 
toxicity observation windows.

Additionally, we found that concomitant data on tox-
icity, corresponding to a low-prevalence mutational sub-
group in our setting, could be incorporated. In the case 
of Bayesian approaches, this is done through the toxicity 
informative prior, resulting in more stringent bounda-
ries for safety assessment. Finally, one should be cautious 
about the correlation between efficacy and toxicity when 
planning a trial; however, the TOP design is more flexible 
and can accommodate different correlations if consid-
ered during planning.
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