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Abstract 

When different researchers study the same research question using the same dataset they may obtain different 
and potentially even conflicting results. This is because there is often substantial flexibility in researchers’ analytical 
choices, an issue also referred to as “researcher degrees of freedom”. Combined with selective reporting of the smallest 
p‑value or largest effect, researcher degrees of freedom may lead to an increased rate of false positive and overop‑
timistic results. In this paper, we address this issue by formalizing the multiplicity of analysis strategies as a multiple 
testing problem. As the test statistics of different analysis strategies are usually highly dependent, a naive approach 
such as the Bonferroni correction is inappropriate because it leads to an unacceptable loss of power. Instead, we 
propose using the “minP” adjustment method, which takes potential test dependencies into account and approxi‑
mates the underlying null distribution of the minimal p‑value through a permutation‑based procedure. This proce‑
dure is known to achieve more power than simpler approaches while ensuring a weak control of the family‑wise error 
rate. We illustrate our approach for addressing researcher degrees of freedom by applying it to a study on the impact 
of perioperative paO2 on post‑operative complications after neurosurgery. A total of 48 analysis strategies are con‑
sidered and adjusted using the minP procedure. This approach allows to selectively report the result of the analysis 
strategy yielding the most convincing evidence, while controlling the type 1 error—and thus the risk of publishing 
false positive results that may not be replicable.
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Introduction
In recent years, the scientific community has become 
increasingly aware that there is a high analytical vari-
ability when analysing empirical data, i.e. there are 
plenty of sensible ways to analyse the same dataset for 
addressing a given research question, and they may 
yield (substantially) different results [1, 2]. If combined 
with selective reporting, this variability may lead to an 
increased rate of overoptimistic results, e.g.—depend-
ing on the context—false positive test results and infla-
tion of effect sizes [3–5], or, beyond the context of 
testing and effect estimation, to exaggerated measures 
of predictive performance [6] or clustering validity [7].

Hoffmann et  al. [8] outline six sources of uncertainty 
that are omnipresent in empirical sciences and lead to 
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variability of results in empirical research regardless 
of the considered discipline, namely sampling, meas-
urement, model, parameter, data pre-processing, and 
method uncertainty. Failure to take these various uncer-
tainties into account may lead to unstable, supposedly 
precise, but overoptimistic and thus potentially unrepli-
cable results. Most importantly, model, parameter, data 
preprocessing and method uncertainties lead to the ana-
lytical variability mentioned above. In this context, Sim-
mons et  al. [3] denote the flexibility researchers have 
regarding the different aspects of the analysis strategy as 
“researcher degrees of freedom”.

While it is clear that selective reporting of the “most 
favorable results” out of a multitude of results is a ques-
tionable research practice that invalidates statistical 
inference, it is less clear how researchers should deal with 
their degrees of freedom in practice. In this study, we sug-
gest to tackle this issue from the perspective of multiple 
testing. More precisely, for analyses based on hypothesis 
testing we formalize researcher degrees of freedom as a 
multiple testing problem. We further propose to use an 
adjustment procedure to correct for the over-optimism 
resulting from the selection of the lowest p-value out of a 
variety of analysis strategies.

As the results of different analysis strategies addressing 
the same research question with the same data are usu-
ally highly dependent, a naive approach such as the Bon-
ferroni correction is inappropriate. It would indeed lead 
to an unacceptable loss of power. Instead, we propose 
resorting to the single-step “minP” adjustment method 
[9, 10] and discuss its use in this context. The power 
achieved by the minP procedure is typically larger than 
with simpler approaches while ensuring a weak control 
of the family-wise error rate. This is because the proce-
dure is based on the distribution of the minimal p-value, 
which is obviously affected by the level of correlation 
between the tests.

The minP procedure has the major advantage that it 
has a relatively intuitive principle, as illustrated by the 
following example. In a comment on a study by Mathews 
et  al. [11] claiming that breakfast cereal intake before 
pregnancy is positively associated with the probability 
to conceive a male fetus, Young et al. [12] reinterpret the 
small p-value of 0.0034 obtained in the original article. 
They notice that Mathews et al. [11] did not only analyse 
the association between fetal sex and the consumption 
of breakfast cereals, but also many other food items—a 
typical case of multiple testing. Based on the analysis of 
permuted data (i.e. data with randomly shuffled fetal sex 
status), Young et al. [12] argue that “one would expect to 
see a p-value as small as 0.0034 approximately 28 percent 
of the time when nothing is going on”. Implicitly, they 
apply the minP procedure for adjusting the smallest raw 

p-value of 0.0034 to 0.28 in this context where multiple 
tests are performed to investigate multiple food items. 
Our suggestion consists of translating this approach into 
the context of the analytical researcher degrees of free-
dom towards addressing the statistical factors of the rep-
lication crisis.

The minP procedure as used in the example by Young 
et  al. [12] and considered in this paper is based on an 
approximation of the null distribution of the minimal 
p-value through a permutation-based procedure. We 
note, however, that such a permutation-based procedure 
is not always possible, and that resorting to theoretical 
asymptotical results on the distribution of the minimal 
p-value (or maximal statistic) is more appropriate in 
some cases, as will be discussed later.

The goal of this paper can be seen as building bridges 
between two scientific communities. On one hand, the 
metascientific community has long recognized that the 
replication crisis in science is partly related to multiplic-
ity issues, but has to date neither formalized the issue in 
terms of multiple testing nor applied known adjustment 
procedures for reducing the occurrence of false positive 
results. On the other hand, the multiple testing com-
munity is increasingly developing theoretically founded 
general approaches to multiple testing taking into 
account the dependence of the tests; see Ristl et al. [13] 
for a recent important milestone. These approaches are 
however not yet routinely used to adjust for researcher 
degrees of freedom in practice. The reasons are manifold. 
The lack of communication between the two communi-
ties and the methodological complexity of these meth-
ods certainly play an important role. Another reason is 
that these approaches, even if increasingly efficient and 
general, do not address all types of analyses but only 
regression models, and require assumptions regarding 
the data format that may not always be fulfilled in prac-
tice. In this context, the present paper aims to formalize 
and demonstrate the use of minP to adjust for researcher 
degrees of freedom in simple situations not only involv-
ing linear models, while hopefully creating a common 
basis fostering communication between the two commu-
nities towards the development (by statistical research-
ers) and routine use (by applied data analysts) of more 
complex approaches. This paper aims to establish an easy 
approach designed to prevent the detection of false-posi-
tive findings in the context of fishing expeditions.

The rest of this paper is structured as follows. Prob-
lems related to researcher degrees of freedom are out-
lined in more detail in Background: researcher degrees 
of freedom  section, including potential approaches for 
handling it in practice that were proposed in the litera-
ture. As a motivating example, Motivating example sec-
tion presents a study on the impact of perioperative 
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partial arterial pressure ( paO2 ) on post-operative com-
plications after neurosurgery that uses routinely collected 
real-world data. Our suggested approach is described 
in Method  section, while Illustration  section shows its 
results on the example dataset and Discussion  section 
briefly discusses limitations of the approach and possible 
extensions. Furthermore, we have added a brief tutorial 
to our GitHub repository to make the method’s dissemi-
nation and application simple and understandable1.

Background: researcher degrees of freedom
Overview
When analysing biomedical data, researchers are often 
confronted with a number of decisions that may appear 
trivial at first view, but often have a considerable impact 
on study results. Which confounders should we adjust 
for? How should we handle missing values and outliers? 
Should we log-transform a continuous variable? What 
about categorical variables with categories that include 
no more than a handful of patients? Should these small 
categories be merged? Is a parametric or non-paramet-
ric test more appropriate? The term “researcher degrees 
of freedom” [3] denotes, in a broad sense, this flexibility 
arising from the many analytical choices researchers face 
when analysing data in practice.

In most cases, neither theory nor precise practical 
guidance from the literature can reliably point research-
ers to the “best way” to analyse their data. Model selec-
tion techniques based, e.g., on the Akaike Information 
Criterion (AIC) and diagnostic tools (e.g., to assess 
whether a variable is normally distributed) may be help-
ful in some cases. However, they most often do not 
provide definitive clear-cut answers to all the arising 
questions. Furthermore, the choice of these techniques is 
itself affected by uncertainty: there usually exist several 
suitable variants of them. For example, should we prefer 
the AIC or the Bayesian Information Criterion (BIC) for 
model selection? Should we use a QQ-plot or apply a test 
(if yes, which one and at which level?) to assess normality 
of a variable?

Combined with selective reporting, researcher degrees 
of freedom can lead to an increased rate of false posi-
tive results, inflation in effect sizes, and overoptimistic 
results [3–5, 8]. The terms “p-hacking” and “fishing for 
significance” have been used in the context of hypoth-
esis testing to denote the selective reporting of the most 
significant results out of a multitude of results arising 
through the multiplicity of analysis strategies. The result-
ing optimism is however not limited to the context of 
hypothesis testing. “Fishing expeditions” (also termed 

“cherry-picking” or “data dredging”) are common issues 
in all types of analyses beyond hypothesis testing [7].

The multiplicity of possible analysis strategies particu-
larly affects studies involving electronic health records and 
administrative claims data, which currently raise hopes 
and promises of “real-world” evidence and personalized 
treatment regimes. With data that have not been primar-
ily collected for research purposes, uncertainties related 
to the analysis strategies may indeed be even more pro-
nounced compared to the analysis of classical observational 
research data. In the last few years, contradictory results 
have been published in this setting, which can be viewed 
as a consequence of the uncertainties in a broad sense. See 
for example the conflicting results on infectious complica-
tions associated with laparoscopic appendectomies [14–17] 
and on the association between cardiovascular disease and 
marijuana consumption [18, 19]. In both cases, different 
teams of researchers used the same data set to answer the 
same research question and found contradictory results 
which can be explained by seemingly trivial choices.

Partial solutions and related work
There are a number of approaches that have been pro-
posed to deal with uncertainty regarding the analysis 
strategy and are preferable to the selective reporting of 
the preferred results.

A natural approach is to fix the analysis strategy in 
advance, i.e. prior to running the analyses, to avoid 
obtaining multiple results in the first place. For more 
transparency, this may be done within a publicly avail-
able pre-registration document [20–22], thus prevent-
ing result-dependent selective reporting [23]. This type 
of pre-registration is the standard for clinical trials [24]. 
However, even in the strictly regulated context of clini-
cal trials, there is some controversy about the ques-
tion whether statistical analysis plans of clinical trials 
are detailed enough [25] to prevent potential selective 
reporting. Fixing the analysis strategy in advance tends to 
be even more difficult for exploratory research questions 
and for complex data sets and research questions.

The opposite approach consists of transparently 
acknowledging uncertainty and reporting the variety 
of results obtained with the considered analysis strate-
gies. This concept has been proposed in different vari-
ants in the last decade: it encompasses, e.g., the vibration 
of effect framework [26, 27], multiverse analyses [28] 
and the specification curve analysis [29, 30]. With these 
approaches, the multiple reported results might be con-
flicting, sometimes yielding a confusing picture and a 
paper without clear-cut take-home message. In other 
words, the pitfalls of selective reporting are obviously 
avoided, but this comes at a high price in terms of inter-
pretability and clarity.1 https:// github. com/ mmax- code/ resea rcher_ dof

https://github.com/mmax-code/researcher_dof


Page 4 of 11Mandl et al. BMC Medical Research Methodology          (2024) 24:152 

Finally, let us mention the approach of conducting vari-
ous analyses, selecting the preferred results but—instead 
of reporting it in a cherry-picking fashion—publishing it 
only if it can be qualitatively confirmed by running the 
exact same analysis on independent “validation” data 
[31]. This is the approach Ioannidis [32] indirectly rec-
ommends when claiming “Without highly specified a 
priori hypotheses, there are hundreds of ways to analyse 
the dullest dataset. Thus, no matter what my discovery 
eventually is, it should not be taken seriously, unless it can 
be shown that the same exact mode of analysis gets simi-
lar results in a different dataset.” This approach, however, 
requires to set apart (or subsequently obtain) a validation 
dataset of adequate size. This might not always be pos-
sible, and even in cases where it is possible, splitting the 
data may imply a substantial loss of power compared to 
the analyses that would have been performed using the 
totality of the data [31].

In the context of analyses strongly affected by uncer-
tainties where none of these simple approaches seems 
applicable, we suggest an alternative approach based on 
multiple testing correction. More specifically, we view 
researcher degrees of freedom from a multiple testing 
perspective and propose to apply correction for multiple 
testing to the preferred result to reduce the risk of type 
1 error, as outlined in Researcher degrees of freedom as 
a multiple testing problem and Controlling the Family-
Wise Error Rate (FWER) sections.

Motivating example
Data
As a motivating example, we use a current research pro-
ject on the effect of partial arterial pressure of oxygen 
(paO2) during craniotomy on post-operative complica-
tions among neurosurgical patients. This study is based 
on a routinely collected dataset from a Munich Univer-
sity Hospital preprocessed as described in Becker-Penn-
rich et al. [33].

While the irreversible damage to the brain caused by 
reduced levels of oxygen in the blood (hypoxemia) has 
been the topic of extensive research, the potential harm 
caused by an increased amount of oxygen (hyperoxemia) 
is comparatively not well understood. The dangers of 
over-supplementation of oxygen during surgical pro-
cedures are still debated among anesthesiologists and a 
topic of current research [34, 35].

The dataset under consideration was extracted from 
routine clinical care data of n = 3, 163 surgical proce-
dures performed on lung healthy neurosurgical patients. 
Vital data was measured at several timepoints during sur-
gery for each surgical procedure. As outlined in Becker-
Pennrich et al. [33], measuring paO2 continuously is not 
feasible, in contrast to other vital parameters. To obtain 

a reliable assessment of hyperoxemia during the surgi-
cal procedure, the paO2 values thus have to be imputed 
using a surrogate model based on proxy variables that 
can be measured continuously using non-invasive 
techniques. Becker-Pennrich et  al. [33] suggest to use 
machine learning methods for this purpose and identify 
random forest, and regularized linear regression as well-
performing candidates.

In this paper, we consider the assessment of the effect 
of paO2 on the binary outcome defined as the occurrence 
of post-operative complications after surgery. Even if we 
ignore model choice issues arising from the selection of 
a set of potential confounders, this analysis is character-
ized by a large number of uncertain choices. They are 
described in more detail in Researcher degrees of free-
dom  section along with the options considered in our 
illustrative study in Illustration section.

Researcher degrees of freedom
In our study, we focus on the following choices, depicted 
in the form of a decision tree in Fig. 1: (i) missing value 
imputation, (ii) surrogate model for the unobserved 
paO2-values, (iii) parameter choice approach, (iv) aggre-
gation procedure, and (v) coding of the exposure variable 
paO2 and testing method. Uncertainty (ii) is discussed in 
more details by Becker-Pennrich et al. [33]. In this study, 
we use the data preprocessed as described in Becker-
Pennrich et al. [33] resulting from the different surrogate 
modelling strategies.

Uncertainties (i) to (iv) can be seen as preprocessing 
uncertainty in the terminology of Hoffmann et  al. [8]. 
For the missing value imputation (i) the two considered 
options are to either drop or impute the missing values 
using multiple imputation in the ’mice’ package [36]. For 
surrogate modelling of the unobserved paO2-values (ii) 
we either use random forest or a regularized general lin-
ear model, either using the default parameter values or 
the parameter values obtained through tuning via ran-
dom search using predefined tuning spaces (iii) as imple-
mented in the ’mlr3’ package [37].

After obtaining a prediction of unobserved paO2 val-
ues through surrogate modelling, for each surgery the 
paO2 measurements are aggregated to a single value over 
multiple measurements for a single patient: either the 
mean or the median (iv). Finally (v), we either consider 
paO2 as a continuous variable and use a logistic regres-
sion model to assess its effect on the binary outcome, 
we dichotomize it using the clinically meaningful cutoff 
value of 200mmHg, or we categorize it into a three-cat-
egory variable using the clinically meaningful cutoff val-
ues of 200mmHg and 250mmHg and use Fisher’s exact 
test. The latter choice can be seen as referring both to 
preprocessing and method uncertainty, since the choice 
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of the test is related to the transformation of the variable 
paO2.

All in all, we consider a total of 48 specifications of the 
analysis strategy: 2 (missing values) × 2 (surrogate model) 
× 2 (parameter choice) × 2 (aggregation) × 3 (method) = 48.

Method
Researcher degrees of freedom as a multiple testing 
problem
In the remainder of this paper, we will focus on analyses 
that consist of statistical tests. We consider a researcher 
investigating a—possibly vaguely defined—research 
hypothesis such as “paO2 has an impact on post-oper-
ative complications”, as opposed to the null- and alter-
native hypotheses of a formal statistical test, which 
are precisely formulated in mathematical terms. From 
now on, we assume that the research hypothesis the 
researcher wants to establish corresponds to the formal 
alternative hypothesis of the performed tests.

In this context, the term “analysis strategy” refers to 
all steps performed prior to applying the statistical test 
as well as to the features of the test itself. The following 
aspects can be seen as referring to preprocessing uncer-
tainty in the terminology by Hoffmann et al. [8]: transfor-
mation of continuous variables, handling of outliers and 
missing values, or merging of categories. Aspects related 
to the test itself refer to model and method uncertainty 
in the terminology of Hoffmann et al. [8]. They include, 
for example, the statistical model underlying the test, the 
formal hypothesis under consideration, or the test (vari-
ant) used to test this null-hypothesis.

In the context of testing, an analysis strategy can be 
viewed as a combination of such choices. Obviously, 
different analysis strategies will likely yield different 

p-values and possibly different test decision (reject 
the null-hypothesis or not). Applying different analy-
sis strategies successively to address the same research 
question amounts to performing multiple tests. From 
now on, we denote m as the number of analysis strat-
egies considered by a researcher. The null-hypotheses 
tested through each of the m analyses are denoted as 
Hi
0 , i = 1, . . . ,m.
These null-hypotheses and the associated alternative 

hypotheses can be seen as—possibly different—math-
ematical formalizations of the vaguely defined research 
hypothesis—“paO2 has an impact on post-operative 
complications” in our example. One may decide to for-
malize this research hypothesis as “ H0 : the mean paO2 
is equal in the groups with and without post-operative 
complications versus H1 : the mean paO2 is not equal 
in these two groups”. But it would also be possible to 
formalize it as “ H0 : the post-operative complication 
rates are equal for patients with paO2 < 200mmHg and 
those with paO2 ≥ 200mmHg” versus “ H1 : the post-
operative complication rates are not equal for patients 
with paO2 < 200mmHg and those with paO2 ≥ 200

mmHg”. Analysis strategies may thus differ in the 
exact definition of the considered null- and alternative 
hypotheses.

They may, however, also differ in other aspects, some 
of which were mentioned above (for example the han-
dling of missing values or outliers). If two analysis strat-
egies i1 and i2 (with 1 ≤ i1 < i2 ≤ m ) consider exactly 
the same null-hypothesis, we have Hi1

0 = H
i2
0  . Of course, 

it may also happen that the research hypothesis is not 
vaguely defined but already formulated mathematically 
as null- and alternative hypotheses, and that the m analy-
sis strategies thus only differ in other aspects such as the 

Fig. 1 Overview of the different researcher degrees of freedom. All in all 48 specifications were analyzed. Green depicts the data pre‑processing 
decisions while brown depicts the method choices
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handling of missing values or outliers. In this case the m 
null-hypotheses would all be identical.

Regardless whether the hypotheses Hi
0 ( i = 1, . . . ,m ) 

are (partly) distinct or all identical, a typical researcher 
who exploits the degree of freedom by “fishing for sig-
nificance” performs the m testing analyses successively. 
They hope that at least one of them will yield a significant 
result, i.e. that the smallest p-value, denoted as p(1) , is 
smaller than the significance level α . If it is, they typically 
report it as convincing evidence in favor of their vaguely 
defined research hypothesis. It must be noted that in this 
hypothetical setting the researcher is not interested in 
identifying the “best” model or analysis strategy but only 
in reporting the lowest p-value that supports the hypoth-
esis at hand.

Considering this scenario from the perspective 
of multiple testing, it is clear that the probability to 
thereby make at least one type 1 error, denoted as 
Family Wise Error Rate (FWER), is possibly strongly 
inflated. In particular, even if all tested null-hypothe-
ses are true, we have a probability greater than α that 
the smallest p-value p(1) is smaller than α ; this is pre-
cisely the result researchers engaged in fishing for sig-
nificance will report. This problem can be seen as one of 
the explanations as to why the proportion of false posi-
tive test results among published results is substantially 
larger than the considered nominal significance level of 
the performed tests [5].

A related concept that has often been discussed 
in the context of the replication crisis is “HARKing”, 
standing for Hypothesing After Results are Known 
[38]. Researchers engaged in HARKing also perform 
multiple tests, but to test (potentially strongly) differ-
ent hypotheses rather than several variants of a com-
mon vaguely defined hypothesis. While related to the 
concept of researcher degrees of freedom, HARKing is 
fundamentally different in that the rejection of these 
different null-hypotheses would have different (scien-
tific, practical, organizational) consequences. In the 
sequel of this article, we consider sets of hypotheses 
that can be seen as variants of a single vaguely defined 
hypothesis, whose rejections would have the same con-
sequences in a broad sense.

Controlling the Family‑Wise Error Rate (FWER)
Following the formalization of researcher degrees of free-
dom as a multiple testing situation, we now consider the 
problem of adjusting for multiple testing in order to con-
trol the FWER. More precisely, we want to control the 
probability P(Reject at least one trueHi

0) to make at least 
one type 1 error when testing H1

0 , . . . ,H
m
0  , i.e. the FWER.

More precisely, we primarily want to control the FWER 
in case all null-hypotheses are true. Imagine a case where 

some of the null-hypotheses are false and there is at 
least one false positive result. On one hand, if p(1) is not 
among the falsely significant p-values, the false positive 
test result(s) typically do(es) not affect the results ulti-
mately reported by the researchers (who focus on p(1) ). 
This situation is not problematic.

On the other hand, if p(1) is falsely significant, H (1)
0  

is wrongly rejected, and strictly speaking a false posi-
tive result (“p(1) < α ”) is reported. However, some of 
the m− 1 remaining null-hypotheses, which are closely 
related to H (1)

0  (because they formalize the same vaguely 
defined research hypothesis), are false. Thus, reject-
ing H (1)

0  is not fundamentally misleading in terms of the 
vaguely defined research hypothesis. As assumed at the 
end of Researcher degrees of freedom as a multiple test-
ing problem  section, the rejection of H (1)

0  has the same 
consequence as the rejection of the hypotheses that are 
really false.

For example, in a two-group setting when studying a 
biomarker B, we may consider the null-hypotheses “ H1

0 : 
the mean of B is the same in the two groups” and “ H2

0  : 
the median of B is the same in the two groups”. H1

0 and 
H2
0  are different, but both of them can be seen as vari-

ants of “there is no difference between the two groups 
with respect to biomarker B”, and rejecting them would 
have similar consequences in practice (say, further con-
sidering biomarker B in future research, or—in a clinical 
context—being vigilant when observing a high value of B 
in a patient).

If biomarker B features strong outliers, the result of 
the two-sample t-test (addressing H1

0 ) and the result of 
the Mann-Whitney test (addressing to H2

0  ) may differ 
substantially. However, rejecting H2

0  if it is in fact true 
and only H1

0 is false would not be dramatic (and vice-
versa). This is because, if H1

0 is false, there is a difference 
between the two groups, even if not in terms of medians. 
The practical consequences of a rejection of H1

0 and a 
rejection of H2

0  are typically the same (as opposed to the 
HARKing scenario).

To sum up, in the context of researcher degrees 
of freedom, false positives have to be avoided pri-
marily in the case when all null-hypotheses are true. 
In other words, we need to control the probability 
P(Reject at least one trueHi

0| ∩
m
i=1 H

i
0) to have at least 

one false positive result given that all null-hypotheses are 
true, i.e. we want to achieve a weak control of the FWER. 
Various adjustment procedures exist to achieve strong or 
weak control of the FWER; see Dudoit et al. [39] for con-
cise definitions of the most usual ones (including those 
mentioned in this section).

The most well-known and simple procedure is certainly 
the Bonferroni procedure. It achieves strong control of 
the FWER, i.e. it controls P(Reject at least one trueHi

0) 
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under any combination of true and false null hypotheses. 
This procedure adjusts the significance level to α̃ = α/m ; 
or equivalently it adjusts the p-values pi ( i = 1, . . . ,m ) to 
p̃i = min(mpi, 1) . However, the Bonferroni procedure 
is known to yield low power in rejecting wrong null-
hypotheses in the case of strong dependence between 
the tests. The so-called Holm stepwise procedure, which 
is directly derived from the Bonferroni procedure, has 
a better power. However, the Holm procedure adjusts 
the smallest p-value p(1) exactly to the same value as the 
Bonferroni procedure. It implies that, if none of the m 
tests lead to rejection with the Bonferroni procedure, it 
will also be the case with the Holm procedure. The latter 
can thus not be seen as an improvement over Bonferroni 
in terms of power in our context, where the focus is on 
the smallest p-value p(1).

The minP‑procedure
The permutation-based minP adjustment procedure 
for multiple testing [9] indirectly takes the depend-
ence between tests into account by considering the dis-
tribution of the minimal p-value out of p1, . . . , pm . This 
increases its power in situations with high dependencies 
between the tests, and thus makes it a suitable adjust-
ment procedure to be applied in the present context. In 
the general case it controls the FWER only weakly, but as 
outlined above we do not view this as a drawback in the 
present context.

The rest of this section briefly describes the single-step 
minP adjustment procedure based on the review article 
by Dudoit et  al. [39]. The following description is not 
specific to researcher degrees of freedom considered in 
this paper. However, for simplicity we further use the 
notations ( pi , Hi

0 , for i = 1, . . . ,m ) already introduced 
in Researcher degrees of freedom as a multiple testing 
problem section in this context.

In the single-step minP procedure, the adjusted p-val-
ues p̃i , i = 1, . . . ,m are defined as

with Pℓ being the random variable for the unad-
justed p-value for the ℓth null-hypothesis Hℓ

0 [39]. The 
adjusted p-values are thus defined based on the distri-
bution of the minimal p-value out of p1, . . . , pm , hence 
the term “minP”. In the context of researcher degrees 
of freedom considered here, the focus is naturally on 
p̃(1) = P min1≤ℓ≤m Pℓ ≤ p1 | ∩

m
i=1H

i
0 .

In many practical situations, including the one con-
sidered in this paper, the distribution of min1≤ℓ≤m Pℓ 
is unknown. The probability in Eq. (1) thus has to be 
approximated using permuted versions of the data that 

(1)p̃i = P

(

min
1≤ℓ≤m

Pℓ ≤ pi | ∩
m
i=1H

i
0

)

,

mimic the global null-hypothesis ∩m
i=1H

i
0 . More pre-

cisely, the adjusted p-value p̃i is approximated as the 
proportion of permutations for which the minimal 
p-value is lower or equal to the p-value pi observed 
in the original data set. Obviously, the number of per-
mutations has to be large for this proportion to be 
estimated precisely. In the example described in Moti-
vating example  section involving only two variables 
(paO2 and post-operative complications), permuted 
data sets are simply obtained by randomly shuffling one 
of the variables. More complex cases will be discussed 
in Discussion section.

Illustration
Study design
The study aims at illustrating the use and behavior of 
the minP-based approach when used to adjust for the 
multiplicity arising through researcher degrees of free-
dom. We use the original as well as permuted versions 
of the paO2 data set. The 48 specifications of the anal-
ysis strategy outlined in Motivating example  section 
are successively applied. P-values are either left unad-
justed, or adjusted using the Bonferroni procedure, or 
adjusted using the recommended minP procedure with 
1000 permutations. All analyses are performed for dif-
ferent sample sizes. Subsets of each considered size 
are randomly drawn from the original data set without 
replacement.

The study consists of two distinct parts. In the first 
part, we assess the family-wise error rate (FWER) for 
different sample sizes with the three approaches (no 
adjustment, Bonferroni adjustment, and minP adjust-
ment). For this purpose, we generate data without asso-
ciation between the two variables of interest (paO2 and 
the outcome “post-operative complications”) by using a 
paO2 covariate vector drawn without replacement from 
the true dataset but randomly generating the binary out-
come variable from a binomial distribution ( p = 0.5 ) 
to break the association between the outcome and 
paO2. This procedure is repeated 1000 times for every 
n ∈ {100, 200, 300, 500, 2000, 3000} . For each run, we 
calculate unadjusted, minP-adjusted, and Bonferroni-
adjusted p-values as outlined above and check whether 
there is at least one false positive, i.e. whether at least one 
of the respective p-values of the 48 specification is signifi-
cant at the 5% level. The proportion of the 1000 runs for 
which this happens yields an estimate of the FWER of the 
three approaches.

In the second part, the original data set is analysed. 
Based on medical knowledge we expect a strong rela-
tionship between paO2 and the outcome to be present, 
but do not formally know the truth. For each of the three 
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approaches (no adjustment, Bonferroni adjustment, and 
minP adjustment), we calculate the proportion of sig-
nificant p-values at the 1%, 5% and 10% level among the 
48 specifications. This was repeated 1000 times for each 
sample size n ∈ (50, 100, 150, 200, 250, 300) . As in our 
example study, the association becomes highly significant 
for larger sample sizes and all p-values are then very close 
to zero, we only focus on these small sample sizes here. 
The code for reproducing the analyses can be found on 
GitHub2.

Results
Figure  2 shows the estimated FWER for different sam-
ple sizes along with the Newcombe confidence intervals 

[40]. In the absence of adjustment, false-positive results 
appear to be present in at least one of the 48 specifica-
tions for about 70% of the data sets of size n = 100 and 
76% of the data sets of size n = 3000 , which aligns with 
the results of Simonsohn et al. [30]. If we adjust the p-val-
ues using the minP-approach (green), the 5% level is held 
for all considered sample sizes. As expected the Bonfer-
roni adjustment (blue) is more conservative: the con-
fidence intervals for FWER, which do not include 0.05, 
only overlap with those of the minP procedure for a sam-
ple size of n = 3000.

Figure  3 presents the proportion of significant p-val-
ues at the 1%, 5% and 10% level over the 48 specifica-
tions for the three approaches and different sample 
sizes. These proportions are averaged over 1000 runs. 
As we expect a highly significant association between 

Fig. 2 FWER with Newcombe confidence intervals (computed over 1000 simulation runs) for different sample sizes without an association 
between post‑operative complications and paO2. Dashed red line indicates 5% significance level

Fig. 3 Proportion of significant results for all 48 specifications for α ∈ (0.01, 0.05, 0.1) and sample size n ∈ (50, 100, 150, 200, 250, 300, 500) . Line 
colors indicate results based on unadjusted (red), minP‑adjusted (green) and Bonferroni‑adjusted (blue) p‑values

2 https:// github. com/ mmax- code/ resea rcher_ dof

https://github.com/mmax-code/researcher_dof
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the two variables of interest, we focus on small sample 
sizes only. The observed trend is not surprising: For all 
n ∈ (50, 100, 150, 200, 250, 300, 500) it holds that

(where the overline stands for the average over 1000 runs 
and α ∈ (0.01, 0.05, 0.1) ), i.e. more significant results 
appear for the unadjusted p-values compared to the 
adjusted p-values. Furthermore, the Bonferroni approach 
is more conservative than the minP-adjustment.

Discussion
In this work, we described a framework for performing 
valid statistical inference in the presence of researcher 
degrees of freedom through adjustment for multiple 
testing. Our results on simulated data and in an applica-
tion concerning paO2 and post-operative complications 
suggest that the minP procedure is appropriate for this 
purpose. They are in line with known general principles 
related to (multiple) testing: (i) the minP procedure is 
less conservative than the Bonferroni procedure—espe-
cially when the hypotheses are strongly dependent—and 
thus better suited in the context of the adjustment for 
researchers degree of freedom, (ii) both are appropriate 
to avoid type 1 error inflation, and (iii) statistical power 
grows with increasing sample size, which is the reason 
why the attractive alternative to our approach—the two-
stage split approach discussed below—is not a panacea.

The use of permutation-based procedures has already 
been recommended by Simonsohn et al. [30] to address 
researcher degrees of freedom. There are, however, fun-
damental differences between this approach and ours. 
Simonsohn et al. [30] address the problem of researcher 
degrees of freedom by specifying all plausible specifica-
tions (analysis strategies in our terminology) and ulti-
mately evaluating the joint distribution of the estimated 
effects of interest across these model specifications. This 
evaluation is done graphically through the so-called 
specification curve, but also through a permutation test 
addressing null-hypotheses such as “the median effect 
across the specifications is zero”.

This approach, while similar to ours at first view and 
interesting, is different in several aspects. Firstly, per-
mutations are used by Simonsohn et al. [30] as part of a 
permutation-based test and not within a multiple testing 

48
∑

i=1

1(piunadjusted < α)/48 >

48
∑

i=1

1(piminP < α)/48 >

48
∑

i=1

1(pibonferroni < α)/48,

adjustment procedure. Our suggestion is precisely to for-
malize the multiplicity of analysis strategies as a multiple 
testing problem—and to benefit from various methodo-
logical results obtained in the field, for example on the 
weak control of the FWER through the minP procedure. 
That said, minP adjustment can be viewed as a simple 
permutation test for the test statistic “minimal p-value”, 
hence the apparent similarity with the permutation test 
for the median effect.

Secondly, and more importantly, the focus on the 
median effect makes the procedure by Simonsohn et  al. 
[30] sensitive to misspecifications that do not model the 
data properly and thus fail to show an effect even if there 
is one. Imagine a fictive example where one runs 99 fully 
inappropriate analyses yielding non-significant results 
and one meaningful analysis that identifies a highly sig-
nificant (truly existing) effect. The true median effect is 
zero, and the permutation test by Simonsohn et al. [30] 
will certainly not reject the null. In contrast, with our 
approach the truly existing effect is likely to be detected 
by the meaningful analysis. This is because the minP pro-
cedure focuses on the minimal p-value, which is very 
small in this fictive example. This focus on the minimal 
p-value better accounts for the fact that, in practice, one 
would often include some analysis strategies that are in 
fact inappropriate to detect the effect of interest. It also 
better reflects the common p-hacking practice that con-
sists of selecting and reporting the smallest p-value. 
However, our approach raises a number of questions that 
may be addressed in future research.

Firstly, the specification of an appropriate permuta-
tion procedure taking the data and the specificity of the 
research question into account is not always easy/pos-
sible. Let us consider the following example: the null-
hypothesis of interest is that the means of a variable are 
equal in two groups, while the variances may be differ-
ent in the two groups. By permuting the group labels, one 
also inevitably enforces equality of the variances, which is 
a stronger assumption than the null-hypothesis of inter-
est [39]. Defining a permutation scheme that reflects the 
global null-hypothesis ∩m

i=1H
i
0 may also be intricate in the 

case of multivariable regression models involving con-
founders in addition to the exposure of interest whose 
effect on the dependent variable is to be investigated. On 
the one hand, permuting only the exposure of interest 
will destroy the association between this exposure and 
confounders. On the other hand, permuting the outcome 
will not only destroy the association between exposure 
variable and dependent variable, but also the associa-
tion between the confounders and the outcome. In prin-
ciple, none of these simple permutation procedures are 
suitable. Both enforce more than the considered null-
hypothesis of no effect of the exposure on the outcome. 
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Complex alternative permutation procedures may be 
preferred [41, 42]. Alternatively, if all analysis strategies 
are based on marginal generalized estimating equation 
models, one may resort to asymptotical results on the 
distribution of the maximally selected statistic to derive 
adjusted p-values, thus avoiding time-consuming and 
methodologically complex permutation procedures; see 
for example Ristl et al. [13]. Even though this approach is 
extremely powerful for most cases and has the advantage 
that it can also adjust confidence intervals for multiplic-
ity, it comes at the cost of some assumptions that are not 
applicable in our case (restrictions regarding the input 
data and focus on parametric tests).

Secondly, it would be interesting to investigate the 
behavior of our suggested approach compared to the 
validation approach mentioned in Partial solutions and 
related work  section, that consists of splitting the data 
into two parts, applying all candidate analysis strategies 
to the first part, and validating the preferred result by 
applying the analysis strategy that was used to obtain it 
to the second part of the data. Both this splitting pro-
cedure and the adjustment for multiple testing sug-
gested in this paper imply a loss of power compared 
to the unadjusted analysis one would perform with 
the selected analysis strategy on the whole dataset. 
Researchers may prefer to run analyses on the whole 
dataset without arbitrary splitting, which may be seen 
as an argument in favor of our adjustment approach. 
However, the concept of validation using independent 
data may also seem attractive. Importantly, this con-
cept has the advantage that type 1 error inflation would 
be avoided even by researchers who are not yet aware 
of the dangers of researcher degrees of freedom or not 
willing (or able) to make a transparent list of the m 
tests that they conducted in the course of the project. 
Preference for one or the other approach is a matter 
of perspective. But the power resulting from these two 
approaches may yield a decisive argument in favor for 
one of them. Note that one might also combine the two 
approaches by applying the minP procedure in the first 
stage and proceeding with the second stage only if its 
results are promising.

Thirdly, one may also think about possible ways to 
make our approach more reliable in  situations where 
researchers tend to “fool themselves” [43] and “forget” 
some of the hypothesis tests they performed, thus pre-
venting full control of the type 1 error. Our approach 
may be particularly useful in combination with study 
registration including the elaboration of a detailed plan 
of the different analysis strategies to be applied before 
seeing any result—a concept that should in our view be 
more widely adopted in empirical scientific research for 
various reasons [23].

Finally, note that our paper should not be understood 
as a plea for the use of p-values in general. We merely 
claim that, if statistical testing is used and several analysis 
variants are performed, it certainly makes sense to adjust 
for multiplicity before interpreting these p-values. Our 
approach allows to selectively report the results of the 
analysis strategy yielding the most convincing evidence, 
while controlling the type 1 error—and thus the risk of 
publishing false positive results that may not be replica-
ble. In future research, this approach could in principle be 
extended beyond the context of hypothesis testing. Pro-
vided a meaningful permutation scheme can be defined, 
minP-type approaches allow in principle to assess whether 
quantitative results of any type (such as, e.g., a cross-val-
idated error [6] or a cluster similarity index [7]) selected 
out of many analysis variants may be the result of chance.
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