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Abstract 

Background Prediction models are often externally validated with data from a single study or cohort. However, 
the interpretation of performance estimates obtained with single-study external validation is not as straightforward 
as assumed. We aimed to illustrate this by conducting a large number of external validations of a prediction model 
for functional outcome in subarachnoid hemorrhage (SAH) patients.

Methods We used data from the Subarachnoid Hemorrhage International Trialists (SAHIT) data repository (n = 11,931, 
14 studies) to refit the SAHIT model for predicting a dichotomous functional outcome (favorable versus unfavorable), 
with the (extended) Glasgow Outcome Scale or modified Rankin Scale score, at a minimum of three months after dis-
charge. We performed leave-one-cluster-out cross-validation to mimic the process of multiple single-study external 
validations. Each study represented one cluster. In each of these validations, we assessed discrimination with Harrell’s 
c-statistic and calibration with calibration plots, the intercepts, and the slopes. We used random effects meta-analysis 
to obtain the (reference) mean performance estimates and between-study heterogeneity  (I2-statistic). The influence 
of case-mix variation on discriminative performance was assessed with the model-based c-statistic and we fitted 
a “membership model” to obtain a gross estimate of transportability.

Results Across 14 single-study external validations, model performance was highly variable. The mean c-statistic 
was 0.74 (95%CI 0.70–0.78, range 0.52–0.84,  I2 = 0.92), the mean intercept was -0.06 (95%CI -0.37–0.24, range -1.40–
0.75,  I2 = 0.97), and the mean slope was 0.96 (95%CI 0.78–1.13, range 0.53–1.31,  I2 = 0.90). The decrease in discrimina-
tive performance was attributable to case-mix variation, between-study heterogeneity, or a combination of both. 
Incidentally, we observed poor generalizability or transportability of the model.

Conclusions We demonstrate two potential pitfalls in the interpretation of model performance with single-study exter-
nal validation. With single-study external validation. (1) model performance is highly variable and depends on the choice 
of validation data and (2) no insight is provided into generalizability or transportability of the model that is needed 
to guide local implementation. As such, a single single-study external validation can easily be misinterpreted and lead 
to a false appreciation of the clinical prediction model. Cross-validation is better equipped to address these pitfalls.

Keywords Intracranial Aneurysm, Logistic Regression, Validation Study, Prognosis, Subarachnoid Hemorrhage

*Correspondence:
Jordi de Winkel
j.dewinkel@erasmusmc.nl
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-024-02280-9&domain=pdf


Page 2 of 11de Winkel et al. BMC Medical Research Methodology          (2024) 24:176 

Background
Clinical prediction models are used to predict the prob-
ability of a disease or an outcome conditional on a set of 
patient characteristics. As clinical prediction models are 
meant to facilitate clinical decision-making, it is para-
mount that the prognostic estimates are valid and pre-
cise. Unreliable risk estimates could give rise to faulty 
decision-making and thus patient harm [1]. For example, 
in vascular neurology we use the PHASES score (Popu-
lation, Hypertension, Age, Size, Earlier Subarachnoid 
Hemorrhage, Site). The PHASES score is a clinical pre-
diction model used to predict the 5-year rupture risk in 
patients with an unruptured intracranial aneurysm [2]. 
The risk of rupture predicted by the PHASES score is 
balanced with the risk of intervention to determine opti-
mal management [3]. Misclassification could result in 
withholding preventive aneurysm treatment in high-risk 
patients or unnecessary treatment-related harm in low-
risk patients. To investigate accuracy and precision of the 
prognostic estimates, validation is performed.

Two types of validation are distinguished: internal 
validation and external validation. Internal validation 
assesses the robustness of the model and the degree 
of overfitting (i.e., modeling random noise within the 
development data). External validation is used to inves-
tigate model performance in independent data that 
was not involved in model development. Model per-
formance is expressed in terms of discrimination – the 
ability to distinguish patients likely to experience the 
outcome of interest from those who are not – and cali-
bration – the agreement between the predicted and 
observed risk.

External validation is usually conducted in a study 
with data from a single center of a certain period, from 
a certain geographical area, and consisting of patients 
selected based on specific criteria. This method is called 
“single-study external validation”. The model perfor-
mance obtained through this type of validation is often 
thought to represent model performance that can be 
expected in the population. However, this interpretation 
is not as straightforward as assumed. It is highly debat-
able whether (a single) single-study external validation 
provides true insight into the validity and accuracy of 
the risk predictions and there are several pitfalls to con-
sider when interpreting its results [4]. There is an alterna-
tive, hybrid, internal–external cross-validation approach 
available for clustered data that might better address 
these pitfalls. Clustered data consists of multiple sources 
differing in multiple dimensions (e.g., geographical areas, 
studies, periods, etc.). In this approach, each cluster is 
left out once to validate the model in to obtain cluster-
specific performance estimates.

Because the number of model development and vali-
dation studies is rising exponentially accurate critical 
appraisal of such studies is becoming increasingly impor-
tant. Here, we conducted a large number of single-study 
validations of a prediction model for functional out-
come in aneurysmal subarachnoid hemorrhage (aSAH) 
patients to illustrate potential pitfalls leading to misinter-
pretation of model performance.

Methods
Study population and model development
We used data from The Subarachnoid Hemorrhage Inter-
national Trialists (SAHIT) data repository, an individual 
participant meta-analysis registry (Supplementary Mate-
rial 1). The SAHIT data repository consisted of eleven 
randomized controlled trials (RCTs) [5–16] and ten 
prospective observational hospital registries (n= 13,046) 
[17–21]. Patient enrolment took place in four continents 
over 30 years (1983–2012). From the SAHIT data reposi-
tory, we selected studies that determined functional out-
come with the (extended) Glasgow Outcome Scale ((e)
GOS) or modified Rankin Scale (mRS) with a minimum 
follow-up of 3  months (n = 11,931). We excluded nine 
data sources (Supplementary Material 2).

The GOS was dichotomized into favorable and unfa-
vorable (defined as a GOS 4–5 versus GOS 1–3, or eGOS 
4–8 versus 1–3, respectively). The GOS ranges from 
one to five, with five being no symptoms and one death. 
The eGOS is a more detailed nine-level version of the 
GOS. If the GOS scores were not available we used the 
mRS or eGOS scores. The mRS is a 7-level scale ranging 
from zero, no symptoms to six, death. We dichotomized 
the mRS into 0–3, favorable, and 4–6, unfavorable. All 
functional outcome scales are commonly used in stroke 
research [22, 23]. Conversion algorithms were described 
in Supplementary Material 3. Missing data were handled 
by using multiple imputation by chained equations. We 
assumed data were missing at random [24].

We refitted the previously published SAHIT (neuroim-
aging) model using identical data and predictors and sim-
ilar modeling strategies as in the original development 
study [25]. The purpose of this study was not to develop a 
new or better model. In the SAHIT model, age, aneurysm 
location, aneurysm size, World Federation of Neurologi-
cal Surgeons (WFNS) grade on admission, premorbid 
hypertension, and CT Fisher grade were used as predic-
tors of functional outcome [26, 27]. We dichotomized 
the WFNS grade into I-III and IV-V and categorized 
aneurysm location into anterior cerebral artery, anterior 
communicating artery, internal cerebral artery, middle 
cerebral artery, posterior communicating artery, and pos-
terior circulation.
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Model performance
We assessed discrimination with Harrell’s c-statistic and 
the model-based c-statistic [28]. We compared Harrell’s 
c-statistics at single-study and cross-validation validation 
with the internally validated optimism-corrected Har-
rell’s c-statistic obtained via bootstrapping (benchmark). 
Next, to quantify to which extent the case-mix variation 
influences the discriminative performance at validation 
we evaluated the difference between Harrell’s c-statistic 
and the model-based c-statistic. This difference is attrib-
utable to case-mix variation. We assessed calibration 
graphically with calibration plots and numerically with 
the intercept and the slope. To facilitate understanding 
of the study, we have included a detailed explanation of 
all performance measures that are discussed in this study 
(Supplementary Material 4).

Validation
We performed two types of validation to assess model 
performance: leave-one-cluster-out internal–exter-
nal cross-validation (henceforth cross-validation) and 
single-study external validation. With cross-validation, 
each cluster (representing one study or registry) is alter-
natingly left out of model development to assess model 
performance [29]. The split in the data is non-random 
because existing heterogeneity between clusters is uti-
lized (by study, geographical area, period). To mimic 
the process of multiple single-study external validations, 
we assessed model performance, obtained via cross-
validation, individually in each cluster as if they were 
predefined external validation clusters. We assessed the 
performance metrics with leave-one-cluster-out cross-
validation as with single-study external validation.

Next, we pooled the performance with random effects 
meta-analysis to obtain mean performance estimates that 
serve as a reference value for overall external model perfor-
mance [30]. We used the  I2-statistic to describe the degree 
of variability in model performance that is attributable to 
between-cluster heterogeneity. All statistical analyses were 
performed with R software (version 3.6.3, R Foundation 
for Statistical Computing) using the rms (version 6.2.0) 
[31], mice (version 3.13.0) [32], Hmisc (version 4.5.0) [33], 
metamisc (version 0.2.5) [34], CalibrationCurves (version 
0.1.2) [35], metafor (version 3.4.0) [36], and PredictionTools 
(version 0.1.0) [37] packages. We adhered to the Trans-
parent Reporting of a multivariable prediction model for 
Individual Prognosis or Diagnosis checklist (TRIPOD) 
statement (Supplementary Material 5) [38].

Transportability
We assessed the relatedness of the derivation and valida-
tion clusters by fitting a logistic regression “membership 

model” [29]. This model predicts a patient being part of 
the development (0) or validation (1) cluster and includes 
all predictors and the outcome. A high c-statistic of the 
membership model (easy discrimination) means that the 
development and validation clusters are not related and a 
low c-statistic (hard discrimination) vice versa. By jointly 
assessing Harrell’s c-statistic and the c-statistic of the mem-
bership model we obtain a gross estimate of the generaliz-
ability and transportability of the model. Generalizability is 
the reproducibility in a similar population and transport-
ability is the reproducibility in a different but related popu-
lation. Transportability is important because many models 
will be applied to populations that differ from the original 
study population. To illustrate, observing a high member-
ship model c-statistic and a high Harrell’s c-statistic means 
that even though there was a lot of heterogeneity between 
clusters the model still discriminated well.

Results
Baseline characteristics
In the overall SAHIT data repository, the mean age was 
53 years (SD 13, Table 1), 80% of patients presented in a 
favorable clinical condition (WFNS grade I-III, n = 8869), 
and 38% had premorbid hypertension (n = 2884). In 
5% of patients, no hemorrhage was detected on the CT 
scan (Fisher grade 1, n = 493), 21% had a Fisher grade 2 
(n = 2050), 39% had a Fisher grade 3 (n = 3762), and 35% 
had a Fisher grade 4 (n = 3440). Most ruptured aneu-
rysms were smaller than 13 mm (84%, n = 7314) and 88% 
had a ruptured intracranial aneurysm located in the ante-
rior circulation (n = 9081). Eighty percent of patients had 
a favorable functional outcome at a minimum of 3-month 
follow-up (range 60–92%, n = 8537).

Cluster‑specific baseline characteristics
We observed large heterogeneity in baseline character-
istics between individual clusters (between-study het-
erogeneity). The proportion of patients presenting in 
unfavorable clinical condition (WFNS IV-V) ranged 
from 0% (IHAST) to 78% (HHU) and the proportion of 
aneurysms larger than 13 mm from 6% (MAPS) to 26% 
(Tirilazad). In the Tirilazad cluster and ISAT clusters, 
no posterior communicating artery aneurysms (PCOM) 
were included, in the Tirilazad cluster no anterior com-
municating artery aneurysms (ACOM), and in EPO/Sta-
tin no anterior cerebral artery aneurysms. Conversely, in 
the Conscious-I, EPO/Statin, I-HAST, MAPS, MASH1/2, 
and Utrecht clusters the majority (> 50%) of aneurysms 
were located at the ACOM and PCOM sites. Both the 
mean age and the proportion of hypertension were simi-
lar across clusters. Favorable functional outcome ranged 
from 60% (Chicago) to 92% (MAPS).
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Table 1 Baseline characteristics

Variable Full cohorta

(n = 11,931)
Concious‑1
(n = 413)

Chicago
(n = 75)

EPO/Statin
(n = 160)

HHU
(n = 60)

IHAST
(n = 1000)

IMASH
(n = 327)

ISAT
(n = 2143)

Age – n (%) 11,931 (100) 413 (100) 75 (100) 160 (100) 60 (100) 1000 (100) 32 (100) 2143 (100)

 Year – mean (SD) 53 (13) 51 (11) 51 (16) 55 (13) 56 (10) 52 (13) 57 (13) 52 (12)

WFNS grade – n (%) 11,144 (93) 413 (100) 75 (100) 160 (100) 60 (100) 1000 (100) 327 (100) 2112 (99)

 I-III 8869 (80) 313 (76) 44 (59) 112 (70) 13 (22) 1000 (100) 209 (64) 2018 (96)

 IV-V 2275 (20) 100 (24) 31 (41) 48 (30) 47 (78) 0 118 (36) 94 (4)

Premorbid hypertension – n (%) 7609 (64) 413 (100) 75 (100) NR NR 1000 (100) 327 (100) NR

 Yes (%) 2884 (38) 172 (42) 38 (51) NR NR 398 (40) 198 (61) NR

CT Fisher grade – n (%) 9745 (82) 408 (99) 75 (100) 160 (100) 60 (100) 1000 (100) 327 (100) 2129 (99)

 1 493 (5) 4 (1) 5 (7) 11 (7) 0 54 (5) 2 (1) 114 (5)

 2 2050 (21) 85 (21) 12 (16) 8 (5) 2 (3) 342 (34) 24 (7) 360 (17)

 3 3762 (39) 35 (9) 58 (77) 17 (11) 9 (15) 474 (47) 262 (80) 902 (42)

 4 3440 (35) 284 (70) 0 124 (78) 49 (82) 130 (13) 39 (12) 753 (35)

Aneurysm size – n (%) 8719 (73) NR NR NR 60 (100) 996 (100) NR 2143 (100)

 < 13 mm 7314 (84) NR NR NR 56 (93) 878 (88) NR 2078 (97)

 ≥ 13 mm 1405 (16) NR NR NR 4 (7) 118 (12) NR 65 (3)

Aneurysm location – n (%) 9980 (90) 413 (100) NR 143 (89) 60 (100) 999 (100) NR 2143 (100)

 ACA 1952 (20) 22 (5) NR 0 2 (3) 37 (4) NR 536 (25)

 ACOM 2020 (20) 160 (39) NR 51 (36) 18 (30) 354 (35) NR 549 (26)

 ICA 1962 (20) 46 (11) NR 8 (6) 3 (5) 81 (8) NR 492 (23)

 MCA 1840 (18) 69 (17) NR 37 (26) 21 (35) 206 (21) NR 303 (14)

 PCOM 899 (9) 66 (16) NR 32 (22) 8 (13) 237 (24) NR 0

 Posterior 1307 (13) 50 (12) NR 15 (11) 8 (13) 84 (8) NR 263 (12)

Functional outcome – n (%) 10,653 (89) 413 (100) 73 (97) 160 (100) 60 (100) 1000 (100) 327 (100) 2068 (97)

 Favorable 8537 (80) 325 (79) 44 (60) 101 (63) 49 (82) 871 (87) 213 (65) 1790 (87)

 Unfavorable 2216 (20) 99 (21) 29 (40) 59 (37) 11 (18) 129 (13) 114 (35) 278 (13)

Variable Full cohorta

(n = 11,931)
Leeds
(n = 117)

MAPS
(n = 228)

MASH1/2
(n = 1484)

D‑SAT
(n = 439)

SHOP
(n = 1500)

Tirilazad
(n = 3552)

Utrecht
(n = 433)

Age – n (%) 11,931 (100) 117 228 1484 439 1500 3552 433

 Year – mean (SD) 53 (13) 57 (9) 52 (13) 56 (13) 51 (15) 55 (15) 52 (13) 55 (13)

WFNS grade – n (%) 11,144 (93) 105 (90) NR 1483 NR (100) 1431 (95) 3551 (100) 427 (99)

 I-III 8869 (80) 87 (83) NR 1138 (77) NR 854 (60) 2751 (77) 330 (77)

 IV-V 2275 (20) 18 (17) NR 345 (23) NR 577 (40) 800 (23) 97 (23)

Premorbid hypertension – n (%) 7609 (64) NR 226 (99) 207 (14) 439 (100) 1441 (96) 3481 (98) NR

 Yes (%) 2884 (38) NR 85 (38) 57 (28) 162 (37) 696 (48) 1147 (33) NR

CT Fisher grade – n (%) 9745 (82) 104 (94) NR 207 (14) 312 (71) 1434 (96) 3529 (99) NR

 1 493 (5) 3 (3) NR 1 (1) 19 (6) 206 (14) 74 (2) NR

 2 2050 (21) 45 (43) NR 22 (11) 79 (25) 315 (22) 756 (21) NR

 3 3762 (39) 39 (38) NR 43 (21) 182 (58) 695 (49) 1046 (30) NR

 4 3440 (35) 17 (16) NR 141 (68) 32 (10) 218 (15) 1653 (47) NR

Aneurysm size – n (%) 8719 (73) NR 228 (100) 159 (11) 435 (99) 1176 (78) 3522 (99) NR

 < 13 mm 7314 (84) NR 214 (94) 143 (90) 331 (76) 1020 (87) 2594 (74) NR

 ≥ 13 mm 1405 (16) NR 14 (6) 16 (10) 104 (24) 156 (13) 928 (26) NR

Aneurysm location – n (%) 9980 (90) NR 228 (100) 457 (31) 437 (100) 1224 (75) 3487 (98) 389 (90)

 ACA 1952 (20) NR 13 (6) 6 (1) 14 (3) 63 (5) 1256 (36) 3 (1)

 ACOM 2020 (20) NR 80 (35) 184 (40) 119 (27) 332 (27) 0 173 (45)

 ICA 1962 (20) NR 36 (16) 38 (8) 46 (11) 134 (11) 1046 (30) 32 (8)

 MCA 1840 (18) NR 22 (10) 89 (20) 88 (20) 209 (17) 711 (20) 85 (22)

 PCOM 899 (9) NR 54 (24) 79 (17) 87 (20) 268 (22) 0 68 (18)

 Posterior 1307 (13) NR 23 (10) 61 (13) 83 (19) 218 (18) 475 (14) 28 (7)
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Discrimination
The predictor effects were described in Supplementary 
Material 6. The internally validated, optimism-corrected 
Harrell’s c-statistic was 0.77 (95% CI 0.76–0.79, Table 2). 
We observed a large variability in discriminative perfor-
mance when evaluating the c-statistics at single-study 
external validation. Model discrimination ranged from 
(very) poor, comparable to a coin flip, in the IMASH clus-
ter (0.52, 95% CI 0.45–0.59), to moderate in the Leeds 
cluster (0.66, 95% CI 0.52–0.79), and the ISAT clusters 
(0.68, 95% CI 0.65–0.71), to excellent in the Conscious-1 
(0.78, 95% CI 0.72–0.83), the D-SAT (0.80, 95% CI 0.75–
0.85), and the SHOP clusters (0.84, 95% CI 0.82–0.86). 
The pooled mean c-statistic with cross-validation was 
0.75 (95% CI 0.70–0.78). The  I2-statistic was 0.92, indicat-
ing that the proportion of the total variability in the c-sta-
tistic was to a large extent explained by between-study 
heterogeneity.

We observed a substantial decrease in discriminative 
performance in 6 clusters compared to the optimism-
corrected c-statistic (benchmark) and the pooled mean 
c-statistic (reference for overall external performance). 
Specifically, in the Leeds, IMASH, and Chicago clusters, 
this decline can be attributed to case-mix variation (Har-
rell’s 0.66, 0.52, and 0.76 versus model-based 0.76, 0.78, 
and 0.73, respectively). In the HHU and IHAST clus-
ters, the drop is due to miscalibration (Harrell’s 0.73 and 
0.71 versus model-based 0.71 and 0.68, respectively) and 
in the ISAT cluster it is explained by a combination of 
case-mix variation and miscalibration (Harrell’s 0.68 and 
model-based 0.70).

Calibration
Again, we observed large variability in the calibration 
with single-study external validation across clusters. 
Calibration ranged from poor in the HHU cluster with 
an intercept of -1.40 (95% CI -2.08–-0.71, Fig.  1A-N) 

and slope of 1.17 (0.16–2.17) to excellent in the CON-
SCIOUS-I, IHAST, ISAT, MASH1/2, and D-SAT clusters. 
The pooled mean intercept was -0.06 (95% CI -0.37–0.24) 
and the pooled mean slope was 0.96 (95% CI 0.78–1.17) 
with cross-validation. For both the intercept  (I2 = 0.97) 
and the slope  (I2 = 0.90), the  I2-statistic indicated that 
the degree of total variability was largely explained by 
between-study heterogeneity.

Transportability
In most clusters the membership models’ c-statistics were 
moderately high (IHAST, IMASH, ISAT, MAPS, DSAT, 
SHOP, and Utrecht, all between 0.70–0.80, Table  3) or 
high (CONSCIOUS-I, Chicago, EPO/Statin, HHU, and 
Tirilazad, all above 0.80). Despite this, the discrimina-
tive performance remained satisfactory indicating good 
transportability of the model. In other words: even in 
distinctly different study populations the model discrimi-
nated well between high-risk and low-risk patients. There 
was one exception to this generalization. In the Leeds 
cluster the derivation and validation samples were similar 
(membership model c-statistic 0.69), but the discrimina-
tive performance was unsatisfactory indicating poor gen-
eralizability of the model (Supplementary Material 7).

Discussion
We used the SAHIT data repository, a large individual 
participant meta-analysis dataset, to study external valid-
ity in a large number of single-study cohorts to illustrate 
the potential pitfalls in interpreting model performance, 
of single-study external validation. Although single-study 
external validation is preferred over no at all, our analysis 
clearly illustrates two pitfalls and how this may lead to a 
false appreciation of the model.

(1) We observed that model performance was 
highly variable between cohorts. This means that the 

Table 1 (continued)

Functional outcome – n (%) 10,653 (89) 109 (93) 207 (91) 1481 (100) 435 (99) 1151 (77) 3498 (98) 433 (100)

 Favorable 8537 (80) 87 (80) 190 (92) 1083 (73) 333 (77) 755 (66) 2861 (82) 381 (88)

 Unfavorable 2216 (20) 22 (20) 17 (8) 398 (27) 102 (23) 396 (34) 637 (18) 52 (12)

Abbreviations: SD Standard deviation, ACA  Anterior cerebral artery, ACOM Anterior communicating aneurysm, ICA Internal carotid artery, MCA Middle cerebral artery, 
PCOM Posterior communicating artery, Posterior posterior circulation, mm Millimeter
a Full cohort: The randomized controlled trials are the Clazosentan to Overcome Neurological Ischemia and Infarction occurring after SAH trial (CONSCIOUS 1, 
n = 413), the Acute Systemic Erythropoietin Therapy to Reduce Delayed Ischemic Deficits following SAH, and the Effects of Acute Treatment with Statins on Cerebral 
Autoregulation in patients after SAH trials (EPO/Statin, n = 160); Heinrich Heine University Concomitant Intraventricular Fibrinolysis and Low-Frequency Rotation 
After Severe Subarachnoid Haemorrhage trial (HHU, n = 60); Intraoperative Hypothermia for Aneurysm Surgery Trial (IHAST, n = 1000); International Subarachnoid 
Aneurysm Trial (ISAT, n = 2143); Matrix and platinum science trials (MAPS, n = 228); the Magnesium Sulphate in Aneurysmal Subarachnoid Haemorrhage trials 
(MASH, n = 1484); and the Tirilazad trials (n = 3552). The observational registries are the SAH registry of the University of Chicago (n = 75); the University of Leeds 
Neurocognitive observation; the database of subarachnoid treatment of the University of Washington (D-SAT, n = 439); the subarachnoid haemorrhage outcomes 
project of Columbia University (SHOP, n = 1500); and the University Medical Center Utrecht registry (UMCU, n = 433)
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appreciation of the model is highly dependent on the 
choice of the validation data. For example, validating the 
model in the IMASH (0.52), Leeds (0.66), or the ISAT 
cluster (0.68) would indicate poor to moderate discrimi-
nation. Contrarily, the reference mean c-statistic (0.74) 
and most cluster-specific c-statistics suggest otherwise. 
There is no formal threshold for the c-statistic for imple-
mentation in clinical practice. Conversely, the model per-
formance in the SHOP cluster (0.84) was probably more 
optimistic than can be expected in the population. A 

similar problem is observed when examining the calibra-
tion of the model at external validation. In some clusters 
such as HHU, I-MASH, Leeds or SHOP calibration was 
(very) poor, but in others it was excellent. Several factors 
may explain the large variation in performance.

First, case-mix variation is known to influence discrimina-
tive performance [39, 40]. The more patients within a cluster 
are alike (homogeneous) the more difficult it is to discrimi-
nate between high and low-risk individuals. It is known that 
ISAT excluded 90% of initially screened patients leaving 

Table 2 Model performance across validation methods

Abbreviations: CI confidence interval, NI not informative
a Optimism-corrected c-statistic computed with 200 bootstrap samples
b Model validated in the cluster left out at development. Pooled performance measures obtained with random effects meta-analysis

Validation technique Performance metric

Discrimination Calibration

c‑statistic
(95% CI)

Model‑based c‑statistic 
(95% CI)

Intercept
(95% CI)

Slope
(95% CI)

Optimism-corrected c-statistica 0.77
(0.76, 0.78)

NA NI NI

Single-study external  validationb

 Conscious-1 0.78
(0.72, 0.83)

0.76 -0.10
(-0.36, 0.15)

1.12
(0.83, 1.38)

 Chicago 0.73
(0.61, 0.84)

0.77 0.75
(0.23, 1.27)

0.82
(0.31, 1.34)

 EPO/Statin 0.76
(0.68, 0.84)

0.76 0.55
(0.19, 0.91)

1.02
(0.64, 1.40)

 HHU 0.75
(0.59, 0.91)

0.71 -1.40
(-2.08, -0.71)

1.17
(0.16, 2.17)

 IHAST 0.71
(0.66, 0.76)

0.68 0.02
(-0.17, 0.21)

1.21
(0.91, 1.51)

 IMASH 0.52
(0.45, 0.59)

0.78 0.42
(0.16, 0.67)

0.10
(-0.11, 0.30)

 ISAT 0.68
(0.65, 0.71)

0.70 -0.02
(-0.15, 0.11)

0.96
(0.80, 1.12)

 Leeds 0.66
(0.52, 0.79)

0.76 -0.02
(-0.52, 0.48)

0.53
(0.05, 1.01)

 MAPS 0.81
(0.70, 0.92)

0.74 -0.91
(-1.38, -0.44)

1.25
(0.76, 1.73)

 MASH1/2 0.76
(0.73, 0.79)

0.77 0.25
(0.12, 0.37)

0.99
(0.86, 1.12)

 D-SAT 0.80
(0.75, 0.85)

0.78 0.21
(-0.04, 0.45)

1.24
(0.96, 1.51)

 SHOP 0.84
(0.82, 0.86)

0.80 0.47
(0.35, 0.59)

1.31
(1.18, 1.45)

 Tirilazad 0.76
(0.74, 0.78)

0.77 -0.38
(-0.48, -0.29)

0.91
(0.82, 1.00)

 Utrecht 0.76
(0.68, 0.83)

0.78 -1.03
(-1.34, -0.72)

0.89
(0.60, 1.17)

Leave-one-cluster-out cross-validationb

  Mean (95% CI) –  I2 0.74
(0.70, 0.78) – 92

NI -0.06
(-0.37, 0.24) – 97

0.96
(0.78, 1.13) –
90

 Range 0.52–0.84 NI -1.40–0.75 0.53–1.31
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patients with similar characteristics such as favorable prog-
nosis and aneurysms predominantly located at specific sites 
[41]. As such, in ISAT we observed a slightly higher model-
based c-statistic than Harrell’s c-statistic. Validating the 
model in the ISAT cohort alone may lead to a false conclu-
sion about the model’s discriminative performance.

Second, between-study heterogeneity can also affect 
model performance. Case-mix variation refers to the dif-
ferences between subjects within a population, while 
between-study heterogeneity refers to differences between 
study populations. Slight changes in the definition or the 

measurement of predictors and the outcome can change 
the size and direction of predictor effects [42]. Addition-
ally, predictors may affect treatment decisions downstream 
(confounding by indication) and subsequently affect patient 
outcomes. Because of this, such slight changes can lead to 
severe miscalibration and poor discrimination of a model.

With cross-validation, between-study heterogeneity 
can be used to benefit interpretation. The SAHIT regis-
try consists of data from randomized trials that have had 
stringently selected (thus homogeneous) study popula-
tions, that together, form a very heterogeneous overall 

Fig. 1 A‑M Internal-External Cross-Validation Calibration Plots. Abbreviations: C (ROC) = c-statistic or receiving operating curve
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study population. Differences in predictor and outcome 
definition or measurement and the context of the study 
period and geographical origin of the SAHIT registry can 
be used to explain variability in model performance. The 
 I2-statistics obtained with random effects meta-analysis 
confirmed that the proportion of total variability in model 
performance was largely explained by between-study 
heterogeneity.

(2) Without understanding the heterogeneity between 
the derivation and validation sample and the population we 
cannot assess the generalizability (i.e., reproducibility in a 
similar population) and the transportability (i.e., reproduci-
bility in a different but related population) of the model [43, 
44]. For example, the intended subpopulation – in which 
the model is to be applied – may have distinct differences 
from the validation sample (e.g., in the healthcare setting, 
measurement of biomarkers or imaging findings, and treat-
ment algorithms). Also, the validation may have been con-
ducted in an independent, but equally selected sample not 
representative of the population. In both cases, we do not 
obtain a valid insight into the expected model performance.

Due to overall improvements in diagnostic capabilities, 
treatment algorithms, and patients’ outcomes the validity 
of all models will eventually expire. Thus, even if a model 

performs well it will most likely not be globally and eter-
nally applicable [45]. Because of this, most models will 
need local and continuous updating. Some clinical pre-
diction models will require updating of the intercept and/
or the slope, while others may need a full re-estimation 
of the parameters. Geographical, temporal, or methodo-
logical clustering can be utilized to assess model perfor-
mance across multiple dimensions and inform updating 
efforts to fit the intended context. In addition, the mem-
bership model can be used to obtain a gross estimate of 
the relatedness of two samples.

Strengths and Limitations
This study is strengthened by the use of a large individual 
participant meta-analysis dataset to assess model perfor-
mance across multiple dimensions. Furthermore, because 
of the clustered nature of the SAHIT data repository, we 
were able to investigate between-cluster heterogeneity, 
generalizability, and transportability.

Our study is limited by the fact that in some clusters 
predictors were missing completely. We performed mul-
tiple imputation of the entire SAHIT data repository 
instead of the individual clusters. This may mean that 
between-cluster heterogeneity could be diluted and that 
model performance may be overestimated for individual 
clusters with completely missing predictor variables. The 
largest proportion of missingness for the full cohort was 
with premorbid hypertension (36%) and will not have a 
large effect on the overall conclusions of this study.

Another limitation of our study was the use of multiple 
outcome scales and varying time points of assessment. 
We chose to use the GOS at 3 months as much as possi-
ble, but not all studies assessed outcome equally. Patients 
can improve or worsen from 3 months up to 12 months, 
but we hypothesize that even though on an ordinal scale 
these changes will be substantial on a dichotomized scale 
this might be limited.

Recommendations
Insight into case-mix variation, between-cluster hetero-
geneity, generalizability, and transportability is required 
to decide if a clinical prediction model performs well 
enough for to be considered for implementation. Imple-
mentation without these insights could lead to patient 
harm due to inaccurate medical decision-making and 
possibly incentivize the development of new clinical 
prediction models instead of validating already existing 
ones, thereby contributing to research waste. Even for a 
relatively rare disease an abundance of models predict-
ing functional outcome in aSAH patients already exist 
[46–50]. Most of these models contain more or less the 
same set of predictors. The rising availability of clustered 
data from large international collaborations will open up 

Table 3 Relatedness of derivation versus validation cohorts 
with internal–external cross-validation clusters assessed by the 
membership model

The membership model assesses the outcome “membership of development 
set” (1) or “membership of validation set” (0) as a function of functional outcome 
and the predictors of functional outcome. The c-statistic represents the degree 
of relatedness between the development set and the validation set. If two 
datasets are very different this will result in easier (higher) discrimination and 
vice versa. Thus, a high c-statistic means low relatedness, and a low c-statistic 
high relatedness. The higher the relatedness the more the performance 
represents reproducibility (or generalizability). The lower the relatedness the 
more the performance could represent transportability

Cluster c‑statistics of the 
membership model

c‑statistics at derivation
(95% CI)

Conscious 1 0.80 0.78 (0.72–0.83)

Chicago 0.85 0.72 (0.61–0.84)

EPO/Statin 0.84 0.75 (0.68–0.84)

HHU 0.93 0.74 (0.59–0.91)

IHAST 0.76 0.71 (0.66–0.76)

IMASH 0.79 0.53 (0.45–0.59)

ISAT 0.70 0.68 (0.65–0.71)

Leeds 0.69 0.65 (0.52–0.79)

MAPS 0.73 0.75 (0.70–0.92)

MASH1/2 0.62 0.78 (0.73–0.79)

DSAT 0.73 0.79 (0.75–0.85)

SHOP 0.78 0.84 (0.74–0.86)

Tirilazad 0.82 0.76 (0.74–0.78)

Utrecht 0.74 0.75 (0.69–0.83)
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possibilities for leave-one-cluster-out cross-validation 
and should be utilized [51].

We advocate using cross-validation instead of single-
study external validation, but there are also disadvan-
tages to this approach. First, cross-validation requires a 
large clustered dataset with sufficient patients per clus-
ter that is usually obtained through international col-
laborations and may not always be available. Second, an 
important feature of external validation is an independ-
ent evaluation of a clinical prediction model. Usually, 
leave-one-cluster-out internal–external cross-validation 
will be conducted directly after model development and 
thus not performed independently. To aid transparency, 
regression formulas, code, and data should be made pub-
licly available.

If not available, a reasonable alternative strategy is 
conducting multiple (smaller) single-study external vali-
dations each exploring another dimension. We stress 
that a single single-study external validation cannot be 
interpreted as decisive proof of a well or poor model 
performance and that local and continuous validation is 
usually required. As a minimum, we advise evaluating 
selection criteria, recruitment dates, geographical loca-
tion, and study design of the development and the vali-
dation data to obtain a gross estimate of between-cluster 
heterogeneity.

Conclusions
Two potential pitfalls of single-study external validation 
have to be considered when interpreting such a valida-
tion study. (1) Model performance with single-study 
external validation can depend heavily on the choice of 
validation data and can thus lead to a false appreciation 
of a clinical prediction model. (2) To accurately appre-
ciate generalizability and transportability it is necessary 
to investigate heterogeneity between the derivation 
and validation data and the representativeness to the 
intended population. Thus, a single validation is not 
equipped to draw definitive conclusions about model 
performance. As an alternative leave-one-cluster-out 
internal–external cross-validation enables inspecting 
model performance across multiple settings with vary-
ing temporal, geographical, and methodological dimen-
sions and can inform more reliably about expected 
performance and whether local revision is required.
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