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Abstract 

Objective In order to facilitate the tracing of infectious diseases in a small area and to effectively carry out disease 
control and epidemiological investigations, this research proposes a novel spatiotemporal model to estimate effective 
reproduction number(Re)for infectious diseases, based on the fundamental concept of contact tracing.

Methods This study utilizes the incidence of hand, foot, and mouth disease (HFMD) among children in Bishan 
District, Chongqing, China from 2015 to 2019. The study incorporates the epidemiological characteristics of HFMD 
and aims to construct a Spatiotemporal Correlation Discrimination of HFMD. Utilizing ARC ENGINE and C# program-
ming for the creation of a spatio-temporal database dedicated to HFMD to facilitate data collection and analysis. The 
scientific validity of the proposed method was verified by comparing the effective reproduction number obtained 
by the traditional SEIR model.

Results We have ascertained the optimal search radius for the spatiotemporal search model to be 1.5 km. Upon 
analyzing the resulting Re values, which range from 1.14 to 4.75, we observe a skewed distribution pattern from 2015 
to 2019. The median and quartile Re value recorded is 2.42 (1.98, 2.72). Except for 2018, the similarity coefficient r 
of the years 2015, 2016, 2017, and 2019 were all close to 1, and p <0.05 in the comparison of the two models, indicat-
ing that the Re values obtained by using the search model and the traditional SEIR model are correlated and closely 
related. The results exhibited similarity between the Re curves of both models and the epidemiological characteristics 
of HFMD. Finally, we illustrated the regional distribution of Re values obtained by the search model at various time 
intervals on Geographic Information System (GIS) maps which highlighted variations in the incidence of diseases 
across different communities, neighborhoods, and even smaller areas.

Conclusion The model comprehensively considers both temporal variation and spatial heterogeneity in disease 
transmission and accounts for each individual’s distinct time of onset and spatial location. This proposed method 
differs significantly from existing mathematical models used for estimating Re in that it is founded on reasonable 
scientific assumptions and computer algorithms programming that take into account real-world spatiotemporal 
factors. It is particularly well-suited for estimating the Re of infectious diseases in relatively stable mobile populations 
within small geographical areas.
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Introduction
 The effective reproduction number  (Re) is an essential 
indicator for evaluating the scale and predicting the trend 
of infectious disease outbreaks [1]. Researchers use it to 
characterize the transmission behavior of a disease, while 
policymakers use it to develop effective mitigation strate-
gies [2–4]. Unlike the basic reproduction number  (R0),  Re 
is better suited to practical situations as it represents the 
average number of secondary cases that may be produced 
by the primary case during its infectious period, and can 
therefore more accurately quantify a disease’s transmis-
sion capabilities [5, 6]. Common methods for obtaining 
the effective reproduction number include contact trac-
ing [7], infectious disease transmission models and algo-
rithms [8, 9], and estimation through exponential growth 
rates [10].

In recent years, effective mathematical modeling has 
become an influential method and scientific basis for the 
study of infectious disease management [11–13]. Such 
models are instrumental in simulating epidemic spread 
and predicting development trends. By constructing 
mathematical models, we can gain a better understand-
ing of the characteristics and rules governing epidemic 
transmission, and provide a practical basis for scien-
tific prevention and control. Such models also allow for 
timely formulation of response plans, swift action, and 
ultimately effective reduction of the harm caused by epi-
demics to protect public health and safety [14]. When it 
comes to obtaining  Re in the mathematical modeling of 
infectious disease dynamics, the most commonly used 
method is the classical effective reproduction number 
prediction based on SEIR models [15–17]. However, in 
recent years, there have been numerous research findings 
based on Bayesian inference methods using infectious 
disease outbreak dynamics [18, 19], the construction of 
infectious disease transmission matrices [20], and com-
puter simulations to predict  Re [21]. For example, in 
recent years, there have been many research achieve-
ments in obtaining Re through the construction of differ-
ential equations and network mathematical models, such 
as approaches incorporating degree correlation [22, 23], 
weighted network models [24], and delayed differential 
equation models [25, 26]. However, due to the variabil-
ity of infectious parameters and the diversity of network 
topologies, it is challenging to obtain accurate values 
that match the actual situation. Overall, there are several 
prevalent issues in the current methodologies for con-
structing  Re. For instance, one common challenge is the 

uncertainty associated with parameter estimations. The 
parameters utilized in the effective reproduction num-
ber model are derived through estimation procedures, 
which can be susceptible to uncertainties and errors. 
Another issue lies in the simplification of model assump-
tions. Many models rely on simplified assumptions, such 
as steady contact rates or fixed rates of epidemic spread. 
These assumptions may deviate from the actual scenario, 
potentially compromising the accuracy of  Re estimations. 
Moreover, a significant limitation is the inadequate con-
sideration of spatial and temporal dynamics in disease 
transmission models. The transmission dynamics of 
actual epidemics are often influenced by spatial factors 
like geography and population movements, which are not 
comprehensively integrated into the existing models.

Moreover, the contact tracing method [27], which 
is the most basic method used by primary disease con-
trol personnel to obtain Re, is suitable for community 
or regional infectious disease outbreaks. This method 
involves identifying possible contacts, tracing the pos-
sible sources and transmission chains of infection, and 
interrupting disease transmission as quickly as possible 
to minimize Re. In this paper, the fundamental principle 
of contact tracing was incorporated into spatiotemporal 
mathematical modeling of an infectious disease. Using 
hand, foot and mouth disease (HFMD) in children as a 
case study, we explored a spatiotemporal infectious dis-
ease model based on computer programming and simu-
lated infectious disease dynamics to calculate the  Re. This 
model was built upon the specific temporal and spatial 
positioning of each individual case and utilized a search 
calculation method, thus accommodating temporal vari-
ability and spatial imbalance.

Data and methods
Data sources
The data of HFMD cases in Bishan District of Chongqing 
from May 2015 to December 2019 were selected that 
including gender, age, onset time, diagnosis time, resi-
dential address, preschool institution address and contact 
information. The data source was Bishan District Center 
for Disease Control and Prevention (China Information 
System for Disease Control and Prevention [28]).

Study design
Development of a spatial‑temporal database
We utilized ARC ENGINE and C# for the programming 
and development of HFMD spatio-temporal database 
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and analysis software-PIADS. This system is equipped 
with a spatio-temporal database feature that can overlay 
various factors’ properties, enabling advanced analysis 
and search. The software’s analysis functions provide a 
solid foundation for detailed examination of the spatio-
temporal factors surrounding HFMD.

For now, we mainly included attribute data for basic 
information, temporal information, and spatial location 
information in the spatio-temporal database, and will add 
information for infectious disease  Re impact factors in 
the future.

Algorithm and program implementation for spatiotemporal 
correlation discrimination of HFMD
In the case of HFMD, we proposed a time-related judg-
ment function for HFMD. To compare the time correla-
tion between two cases, the onset time of the i-th case 
is denoted as ti1 , the time of diagnosis as ti2 the incuba-

tion period astq and the period of post-onset infection as 
tg . Similarly, for the j-th case, its onset time is denoted as 
tj1 . The time correlation discriminant function of the i-th 
case can be expressed as follows:

further simplification results in

ert{}  refers to the time-dependent set of cases, with 
tg = 1 ( week )under natural conditions where isolation 
measures are not implemented immediately after diagno-
sis of HFMD. In cases where isolation measures are taken 
immediately after diagnosis of HFMD, tg = t2 − t1 , where 
t2 is the time of diagnosis and t1 is the time of onset. Tak-
ing into consideration the infectious incubation period of 
the child, the time window of infectivity for the first gen-
eration of cases is tg + tq . The average incubation period 
of HFMD is 3–5 days, and patients typically seek medical 
attention 1–2 days after onset of symptoms. Therefore, 
the window period for infectivity in the first generation 
of cases is approximately 1 week.

In addition, a spatial correlation discriminant function 
is proposed. To compare the spatial correlation between 

(1)
tj1 − ti1 − tq ≤ tq + tg∃ ert{}

tj1 − ti1 − tq > tq + tg ∄ ert{}

(2)
{

tj1 − ti1 ≤ tg∃ ert{}
tj1 − ti1 > tg ∄ ert{}

two cases, the one with the earlier onset time is desig-
nated as the first-generation case, and the one with the 
later onset time is considered susceptible. Let(xi, yi) rep-
resent the spatial coordinate of the i first-generation case 
and ( xj , yj ) represent the spatial coordinate of the suscep-
tible person. ξ denotes the distance of influence of infec-
tious dynamics. The discriminant function for assessing 
spatial correlation between these two cases is as follows:

As shown above, err{} refers to the distance-dependent 
collection of cases.

When both temporal correlation and spatial correla-
tion criteria are simultaneously met, it is considered that 
there is a high likelihood of an infection chain between 
the two. The relationship between the first and second 
generation cases is thus determined as follows:

 A
{

B1, B1 · · · Bη

}

  denotes the collection of second-
generation cases derived from case A of the first gen-
eration. B n represents the NTH second-generation case 
arising from case A of the first generation, and n corre-
sponds to the number of second-generation cases origi-
nating from case A of the first generation.

By formulating a spatio-temporal correlation discrimi-
nant function and integrating it with the spatio-temporal 
database and analysis system for HFMD, it is possible to 
develop a search algorithm and program for analyzing the 
spatio-temporal correlation of infectious diseases. Essen-
tially, this method entails contact tracing through time-
space correlation searches, enabling the identification of 
both primary and secondary cases and subsequently cal-
culating the average infection period (Re) of the primary 
cases. These represent pivotal stages in the establishment 
of a spatio-temporal correlation search model.

Implementation of the SEIR Model  Re algorithm 
and procedure
In order to verify the scientific validity of this method, we 
introduce the classic SEIR model  Re calculation formula 
for comparison. The formula is shown as follows:

(3)
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Where r is the growth rate, b1, b2 are the removal 
rates of the latent population and the infected popula-
tion, respectively. The incubation period and the infec-
tion period can be respectively referred to as: TE = 1

b1
 , 

T1 =
1
b2

 Thus, we can derive the following formula:

Based on the formula above, we programmed and devel-
oped on the HFMD spatiotemporal database. Assum-
ing that cases are removed (i.e. recovered) one week after 
infection, we calculated the SEIR model’s effective repro-
duction number (Re) by dividing the daily increase in cases 
by the number of people currently infected (i.e. cumulative 
infections minus removed cases).

Result
Determining the optimal search radius for a search model
Based on the aforementioned spatiotemporal search 
model, we selected cases of Hand, Foot, and Mouth 
Disease during its peak season (April to June) and used 
spatial discriminant values of distances 0.5  km, 1.0  km, 
1.5  km, 2.0  km, 2.5  km, 3.0  km, and 3.5  km. Through 
computer calculations, we obtained specific  Re values for 
each case under the prescribed conditions. Taking the 
mean of these  Re values yields the following:

From Fig. 1, it can be observed that the data for each 
year shows the fastest increase around a radius of 1.5 km. 
As the search radius continues to increase, the growth 
rate of  Re begins to decline. The optimal critical value for 
the search model is the point at which the search radius 
reaches the maximum  Re while ensuring that the search 
range for first-generation cases does not overlap. When 
 Re reaches a certain threshold, the search ranges begin to 
overlap, resulting in a slower increase in  Re as the radius 
goes beyond 1.5 km.

(6)Re = (1+ rTE)(1+ rT1)

In addition, we can analyze the search model prin-
ciple and determine that when the search radius is half 
the average distance between first-generation cases, the 
search range for first-generation cases can achieve maxi-
mum coverage with minimal overlap, in accordance with 
the optimal search radius for the model. For example, 
during the peak season from April to June, we can obtain 
the number of first-generation cases for the i-th infec-
tious day, denoted as ni, and the distances between each 
pair of them, using computer programming. The average 
distance for the i-th day can be calculated as:

In the equation, 
−

Direpresents the mean distance 
between first-generation cases for day i, c2ni represents 
the sample size of the distances between first-generation 
cases for day i, dj represents the jth distance between 
first-generation cases for day i, and ni represents the 
number of first-generation cases for day i.

The average value of the mean distance on peak days is:

Where
−
−

Di is the average value of the mean distance 
between first-generation cases during peak days. m rep-
resents the number of days during the peak period.

The average distance between first-generation and sec-
ondary cases from 2015 to 2019 during the months of 
April to June is illustrated in the figure below. (Fig. 2). The 
cumulative distribution function of distance between first-
generation and secondary cases from 2015 to 2019 during 
the same period is represented in the figure below (Fig. 3).

(7)
−

Di=

∑ c2ni
j dj

c2ni

(8)
−
−

Di=

∑

m
i

∑ c2ni
j dj

m

Fig. 1 Re values obtained with different search radius during the peak periods from 2015 to 2019
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The optimal search radius is half the mean distance 
between first-generation cases on a daily basis during the 
peak period.

Where Radiusopt is the optimal search radius.

(9)Radiusopt =

∑

m
i

−

Di

2m

By calculation, We obtained the average distance and 
optimal search radius for first-generation cases during 
the peak period from 2015 to 2019 (Fig. 4). The optimal 
search radius is approximately 1.5 km, aligning with the 
prior conclusion. Therefore, it is advisable to suggest 
1.5 km as the optimal search radius for spatiotemporal 
search models.

Fig. 2 Average distance between first-generation and secondary cases during peak periods from 2015 to 2019

Fig. 3 Cumulative distribution function of the distance samples between first-generation and secondary cases during peak periods from 2015 
to 2019
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The  Re value obtained from a spatiotemporal data search 
model
The figure below (Fig. 5A) reveals that the fluctuation of 
the  Re value of HFMD in children, ranging between 1.14 
and 4.75 from 2015 to 2019. Additionally, Fig.  5B illus-
trates a skewed distribution of the  Re reconstructed by 
the search model, with a median of 2.42 and a quartile 
range of (1.98, 2.72). The figure presents a scatterplot 
with statistical indicators, where the central line repre-
sents the median and the upper and lower quartiles are 
indicated respectively.

The  Re value obtained through programming calculation 
based on the SEIR model
Based on the aforementioned SEIR model and program-
ming algorithm, daily  Re values can be obtained. By 

aggregating the daily values within a month, we obtain 
the monthly Re value. The specific results are as follows 
(Fig. 6A):

The scatterplot with statistics was utilized to demon-
strate (Fig. 6B). It can be observed that the SEIR model 
for HFMD in children had Re values fluctuating between 
1.48 and 4.34 from 2015 to 2019, indicating a normal 
distribution with a mean and standard deviation of 
2.88 ± 0.56.

Comparison of  Re values between search model and SEIR 
model
The two sets of curves in the following figure respectively 
represent the  Re values of spatiotemporal Search models 
and SEIR model (Fig. 7).

As shown in the figure, during the period from 2015 
to 2019, the two sets of curves exhibited similar trends 

Fig. 4 Average distance between first-generation cases and optimal search radius during peak periods from 2015 to 2019

Fig. 5 (A) Monthly bar chart depicting  Re values from 2015 to 2019, generated using spatiotemporal data search model (B) Scatter plot of monthly 
 Re values based on search model
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and roughly matched the “bimodal” trend of HFMD 
incidence, with the first peak occurring from April to 
June and the second peak appearing later, from October 

to December, with the second peak lower than the first 
peak. Except for 2018, the curve changes in other years 
showed a trend of simultaneous increase and decrease.

Fig. 6 (A) Bar chart of monthly  Re values from 2015 to 2019 based on SEIR model and programming algorithm (B) Scatter plot of monthly Re values 
based on SEIR model

Fig. 7 Trend graph of  Re values of spatial-temporal search model and Re calculation based on SEIR model through computer programming 
from 2015 to 2019
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We set the  Re values obtained by the two methods at 
the same point in time on a monthly basis as the data for 
correlation analysis (Fig. 8). The results showed that the 

2015 search model did not follow a normal distribution 
and Spearman correlation coefficient was used, while 
Pearson correlation coefficient was used for other data 

Fig. 8 Linear regression analysis graph of the correlation between  Re values of search model and SEIR model from 2015 to 2017
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that followed a normal distribution. Except for 2018, the 
similarity coefficient r of the years 2015, 2016, 2017, and 
2019 were all close to 1, and p < 0.05, indicating that the 
 Re values obtained by using the search model and the 
traditional SEIR model are correlated and closely related 
(Table 1).

Differential expression of  Re of search models on GIS map
To illustrate the differential expression of  Re obtained by 
search models on the time and spatial axes, we randomly 
selected spatial-temporal data of cases from the commu-
nity of Bicheng and Biquan during the period of May 14, 
2016 to July 14, 2016, which includes the spatial location 
and  Re value of each case. Using a period of two weeks as 
a unit, we plotted the kernel density map of  Re. The spe-
cific results are as follows (Fig. 9):

As time passes, the distribution range and color depth 
of the regional  Re values shift, indicating an increasing, 
decreasing and then increasing trend in disease transmis-
sion during the period. The color depth represents the 
magnitude of  Re values, and the search model is capa-
ble of demonstrating the variability in the spread of the 
epidemic during the same time period within the region. 
The black cross symbol denotes the distribution of cases, 
and it can be seen that the number of cases in a given 
area does not necessarily correspond to the magnitude of 
 Re values.

As such, it is not appropriate to solely use the mean 
of  Re values to represent the development of regional 
epidemics. The reality is that there are variances in the 
prevalence of diseases in different communities, neigh-
borhoods, and even smaller areas. Similarly, the number 
of local cases cannot represent the trend of the develop-
ment and spread of the disease.

Discussion
We base our evaluation of the severity of infectious dis-
eases mainly on  R0 and case fatality rate [29, 30] How-
ever, in practice, we have tools such as vaccination and 
quarantine to intervene in the progression of the disease. 
As a result,  Re is a more accurate representation of the 
actual situation than R0. Additionally, the search model’s 
setting of isolating first-generation cases at home after 
diagnosis and rendering them non-infectious is also in 
alignment with this.

In epidemiological investigations of infectious diseases, 
 R0 and  Re are commonly acquired using various meth-
ods such as contact tracing, infectious disease dynamic 
model calculations, and estimation of exponential growth 
rates. Contact tracing is based on real case tracking data, 
but is only applicable to the early stages of infectious dis-
ease transmission. As the transmission chain expands, 
it becomes difficult to establish a comprehensive data 
collection system to complete this work. For example, 
during the COVID-19 pandemic, we can observe China 
collecting individuals’ health information and travel tra-
jectories through mobile applications to screen and mon-
itor individuals who may potentially be infected with the 
coronavirus. This approach requires the mobilization of 
significant social resources and is typically suitable for 
nationwide or large-scale infectious disease outbreaks. 
Additionally, the different socioeconomic status, demo-
graphics, healthcare resources, and lifestyles across 
regions lead to variations in the intensity and character-
istics of disease transmission, resulting in regional dif-
ferences in Re [31]. The Re obtained through traditional 
mathematical modeling mostly pertains to the overall 
situation of larger regions (provinces, cities, counties) 
[32–34]. However, it is equally essential to understand 

Table 1 Correlation analysis of monthly re-value of hand, foot and mouth disease from 2015 to 2019

Year Test for normal distribution Correlation Tabular results

KS distance P value Passed normality 
test(alpha = 0.05)

Spearman r/
Pearson r

P (two-tailed) Significant 
(alpha = 0.05)

2015 Search 0.2676 0.0176 No 0.7671 0.0049 Yes

SEIR 0.1808 > 0.1000 Yes

2016 Search 0.1970 > 0.1000 Yes 0.8426 0.0006 Yes

SEIR 0.1570 > 0.1000 Yes

2017 Search 0.1482 > 0.1000 Yes 0.7569 0.0044 Yes

SEIR 0.1989 > 0.1000 Yes

2018 Search 0.1689 > 0.1000 Yes 0.5533 0.0620 No

SEIR 0.1331 > 0.1000 Yes

2019 Search 0.2097 > 0.1000 Yes 0.8658 0.0003 Yes

SEIR 0.1403 > 0.1000 Yes
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the transmission dynamics of smaller geographic levels, 
especially at the local level (communities, streets), to for-
mulate targeted prevention and control strategies.

From the perspective of research methodology, the 
fundamental premise of this study is rooted in contact 
tracing, using HFMD as a case study. Combining the fact 
that HFMD outbreaks mostly occur in childcare facilities 
or communities, susceptible children are mainly active 
within the community or within the community-to-
childcare facility range during the latent and infectious 

periods. It is assumed that confirmed cases are searched 
within a reasonable activity radius around the residence 
of the primary case, and individuals who meet the con-
ditions for transmission chain formation in terms of 
time and space are considered as secondary cases. This 
setting is a scientific assumption based on actual situ-
ations and real data. The advantage of this study lies in 
the stable model, straightforward computation, and easy 
implementation. It is suitable for assessing and predict-
ing legally notifiable infectious disease outbreaks among 

Fig. 9 The spatial distribution and regional variances of  Re values as acquired through search model
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scattered children and preschool children, whose activ-
ity ranges are relatively fixed. Local public health depart-
ments can all achieve this goal. Furthermore, as it is based 
on scientific assumptions and calculations conducted on 
the basis of real data for each actual case, the resulting Re 
value can not only reflect the overall situation, but also 
can be the Re value of a community or a housing estate, 
which can reflect the regional differences in the epidemic 
at the same time period and make differential judgments 
on the epidemic trend of different communities.

From the perspective of model construction, this study 
extracts individual time and space factors from a large 
amount of actual case data from the disease control 
center. By utilizing GPS coordinates and computer pro-
gramming calculations, the model is constructed based 
on two key factors: time nodes and spatial radius. The 
selection of time nodes takes into account the average 
incubation period and infectious period of HFMD, with 
the transmission interval between primary and second-
ary cases set at 2 weeks. The spatial radius is determined 
by setting the model’s optimal critical value as the search 
radius that simultaneously meets two conditions: reach-
ing the maximum Re as the search radius continues to 
increase and ensuring that the search ranges of the first-
generation cases do not overlap. Through comparison of 
the computational results, a spatial radius of 1.5 km was 
ultimately chosen as the optimal value, aligning with the 
characteristics of the daily activity range of local scattered 
children and preschool children. The Re values obtained 
from the 2015 to 2019 search models are all greater than 
1, indicating a continuous transmission and epidemic 
trend of HFMD, which is also consistent with the actual 
situation. By plotting the Re kernel density maps, the 
regional differences in Re obtained by the search model 
can be reflected. Disease control and prevention depart-
ments can obtain the specific situation of the epidemic 
in different neighborhoods and different blocks, which 
facilitates fine-tuning epidemic control and prediction. 
In addition, we can see that the magnitude and trend of 
 Re obtained with the spatio-temporal search mode and  Re 
obtained with the classical SEIR model are in good agree-
ment except for 2018. Similarly, in the similarity analy-
sis, apart from 2018, the similarity coefficient r for the 
remaining four years is close to 1 (p < 0.05). Given that 
there is a strong correlation and a relatively close rela-
tionship between them, this provides further verification 
of the scientific validity of the model. The discrepancy in 
2018 may be related to the following reasons: the num-
ber of HFMD cases throughout 2018 showed a signifi-
cant increase compared to 2015 (1557), 2016 (2701), and 
2017 (1395), reaching a total of 3507 cases for the year. 
The distribution throughout the year was uneven, with 

only around 20 cases per month in January to March, 
while peak periods in June-July and November reached 
500–650 cases per month. This uneven distribution may 
be the fundamental reason for the large difference in 
obtaining Re values, especially during January to March 
in 2018. Therefore, we can speculate that the mecha-
nisms for obtaining Re in the two models lead to differ-
ences when the case distribution is extremely uneven. 
However, this highlights the necessity of exploring the 
search model, as it can reflect the differences in temporal 
and spatial distribution as well as local and overall differ-
ences. Its limitations are as follows: like most models of 
infectious disease, it cannot distinguish between invisible 
infection or transmission caused by a carrier; Second, the 
data comes from data reported by the Centers for Disease 
Control and Prevention. Underreporting or unnormal-
ized treatment cases can lead to increased errors in the 
model calculation results.
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