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Abstract 

Background  Childhood stunting is a major indicator of child malnutrition and a focus area of Global Nutrition Tar-
gets for 2025 and Sustainable Development Goals. Risk factors for childhood stunting are well studied and well known 
and could be used in a risk prediction model for assessing whether a child is stunted or not. However, the selection 
of child stunting predictor variables is a critical step in the development and performance of any such prediction 
model. This paper compares the performance of child stunting diagnostic predictive models based on predictor vari-
ables selected using a set of variable selection methods.

Methods  Firstly, we conducted a subjective review of the literature to identify determinants of child stunting in Sub-
Saharan Africa. Secondly, a multivariate logistic regression model of child stunting was fitted using the identified 
predictors on stunting data among children aged 0–59 months in the Malawi Demographic Health Survey (MDHS 
2015–16) data. Thirdly, several reduced multivariable logistic regression models were fitted depending on the predic-
tor variables selected using seven variable selection algorithms, namely backward, forward, stepwise, random forest, 
Least Absolute Shrinkage and Selection Operator (LASSO), and judgmental. Lastly, for each reduced model, a diag-
nostic predictive model for the childhood stunting risk score, defined as the child propensity score based on derived 
coefficients, was calculated for each child. The prediction risk models were assessed using discrimination measures, 
including area under-receiver operator curve (AUROC), sensitivity and specificity.

Results  The review identified 68 predictor variables of child stunting, of which 27 were available in the MDHS 
2016–16 data. The common risk factors selected by all the variable selection models include household wealth index, 
age of the child, household size, type of birth (singleton/multiple births), and birth weight. The best cut-off point 
on the child stunting risk prediction model was 0.37 based on risk factors determined by the judgmental variable 
selection method. The model’s accuracy was estimated with an AUROC value of 64% (95% CI: 60%-67%) in the test 
data. For children residing in urban areas, the corresponding AUROC was AUC = 67% (95% CI: 58–76%), as opposed 
to those in rural areas, AUC = 63% (95% CI: 59–67%).

Conclusion  The derived child stunting diagnostic prediction model could be useful as a first screening tool to iden-
tify children more likely to be stunted. The identified children could then receive necessary nutritional interventions.
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Background
Child malnutrition remains a public health burden in 
most developing countries, particularly in Sub-Saharan 
Africa (SSA) and South Asia. An important measurement 
of childhood malnutrition is stunting, which is defined as 
poor linear growth, indicated by height for age less than 
-2 standard deviations from the World Health Organi-
zation (WHO) 2006 child growth standards median [1] 
SSA has the highest burden of stunted children with over 
one-third of children in 2019 [2]. Worldwide, over 3.1 
million children die annually, either directly or indirectly, 
because of malnutrition and many more suffer from 
impaired growth as a result of malnutrition [3]. The prob-
lem of childhood stunting is a focus of some global ini-
tiatives including the Global Nutrition Targets for 2025 
and the Sustainable Development Goals for Zero Hunger 
[4]. The World Health Organization (WHO) considers 
stunting a public health problem when the prevalence of 
stunting among children under five years of age is greater 
than 20% [5]. The prevalence of child stunting was 39% 
in 2019, thus placing Malawi as a country with a huge 
health problem regarding child stunting [6].

Childhood stunting affects child morbidity and mor-
tality adversely resulting in poor childhood develop-
ment and educational performance and increases the 
risks of infections, which may contribute negatively to 
adult health and economic productivity [7, 8]. Timely and 
accurate detection of children who are most likely to be 
stunted may ensure the prevention of detrimental health 
outcomes. It may help in delivering tailor-made interven-
tions for the optimum use of available resources. Achiev-
ing this goal necessitates the development of diagnostic 
or clinical prediction models, also known as clinical pre-
diction rules, prognostic models, or risk scores, depend-
ing on the study’s aim and design. Prognostic prediction 
models are designed to calculate the probabilities of spe-
cific patient outcomes over time by considering a variety 
of clinical and non-clinical factors. Diagnostic prediction 
models estimate an individual’s probability of having a 
specific health condition (often a disease) at a given time 
[9, 10]. The aim is to tailor policy decisions to meet the 
needs of individuals [11–13].

A risk prediction model is a mathematical tool that 
combines different predictor variables to estimate the 
probability of occurrence of an outcome of interest [14, 
15]. The determination of specific parameter values for 
the predictor variables, derived from data the model has 
not seen (the training data), is crucial for calculating a 
risk score. For prediction models, the choice of the mod-
elling approach is guided by the nature of the predicted 
outcome. A linear regression method is employed when 
dealing with continuous outcomes. However, when the 
outcome of interest is binary, as in the case of predicting 

stunting status (stunted or not), a logistic regression 
model is employed. This logistic regression model effec-
tively assesses the likelihood of a binary outcome occur-
ring based on the given set of predictor variables. A 
Cox proportional hazards regression model is used for 
a scenario where the outcome is related to the timing of 
an event, like the occurrence of a particular event over 
time enabling predictions about the timing of particular 
events of interest. For count data, a Poisson or negative 
binomial model has been proposed [16].

Regression modelling faces challenges like overfitting 
and non-convergence, mainly when dealing with large 
datasets containing numerous variables. Variable selec-
tion methods have been developed to address these issues 
to identify a concise set of influential predictors from a 
larger pool. Standard methods, including backward elim-
ination, forward selection, and stepwise selection, are 
preferred due to their straightforward algorithms [17]. 
Recent advancements have introduced penalised selec-
tion procedures such as the least absolute shrinkage and 
selection operator (LASSO) and adaptive LASSO. These 
have gained popularity for enhancing model prediction 
and inference by simplifying the model. Moreover, tree-
based methods like Random Forests and Boruta have 
been employed to improve accuracy in selecting the most 
relevant variables from a vast pool, addressing limitations 
observed in test-based variable selection procedures [18]. 
Alternative approaches, such as the firefly algorithm, 
are employed for counting and skewed outcomes using 
Poisson or Negative Binomial and gamma distribution, 
respectively [16, 19]. Various simulation studies have 
demonstrated the effectiveness of these variable selection 
methods under different conditions [18, 20, 21]. Applying 
these methodologies to a survey-based study in Malawi, 
this paper aims to use the variable selection approaches 
to identify the best predictors that can be used to develop 
and validate a child stunting diagnostic prediction model.

Determinants of stunting are well-known and stud-
ied. However, few studies in Sub-Saharan Africa have 
developed and validated risk-predictive models to iden-
tify children likely to be stunted [22]. One such study 
was conducted by Hasegawa et al. [23], who developed a 
screening tool to predict malnutrition among young chil-
dren in Zambia [24]. The study, however, used data col-
lected from a restricted area (one health facility) from a 
rural location, limiting the model’s generalizability. The 
Lives Saved Tool is another predictive model used to 
estimate the impact of specified changes in key interven-
tions on stunting among children under five years [25]. 
The Lives tool falls short of predicting which children 
are stunted or not. Hanieh et al. [25], also developed and 
externally validated an early life predictive model to pre-
dict the risk of stunting in preschool children in Vietnam 
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at three years of age. This stunting prediction model has 
limitations as it was developed and validated in a rural 
setting, leaving out urban locations and other areas. Also, 
the prediction was not based on all ages below five years.

Malawi is a developing country and suffers a shortage 
of skilled community health workers (HW) and resources 
to timely detect stunting among children. Thus, model-
ling techniques emerge as valuable tools that could aid 
community health workers in promptly identifying chil-
dren at risk of stunting. This would inform the formula-
tion of proper policies to overcome the challenge of child 
stunting. Numerous studies have previously been con-
ducted to identify predictors of stunting in Sab-Saharan 
Africa, specifically in Malawi however, very few studies 
have been conducted to combine these predictors into 
a mathematical model to predict stunting. This study 
aimed to derive and validate a diagnostic  risk (score) 
model that could help identify children who are stunted 
in Malawi using a nationally representative cross-sec-
tional sample.

Variable selection methods
Using variable selection algorithms, namely forward 
selection, backward elimination, stepwise selection; 
LASSO; random forest, and judgmental selection, differ-
ent sets of variables were selected from the list of candi-
date predictors to identify relevant predictors of stunting. 
The research used more than one variable selection 
method to compare the predictive ability of each model 
fitted using the different sets of variables selected by dif-
ferent methods. The following sections provide a brief 
description of the methods used.

Least Absolute Shrinkage and Selection Operator (LASSO)
LASSO is a linear  regression analysis  method that 
reduces both the sum of squares of errors and the sum of 
the absolute values of regression coefficients. The regres-
sion coefficient ̂β , is determined by minimizing the fol-
lowing formula:

β represents the vector of regression coefficients.
yi is the observed response for the i-th observation.
Xi is the vector of predictor variables for the i-th 

observation.
λ is the regularization parameter that controls the value 

of the penalty term.
LASSO is an algorithm that has a built-in variable 

selection method. The use of LASSO as a feature selec-
tion technique can be seen from the fact that decreasing 

minβ
1

2

n

i=1
yi − XT

i β + �
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the values of � in the equation below leads to shrinkage 
of regression coefficients and some of these even become 
zero.

Random forest
Boruta [26], is a non-linear Random Forest (RF)-based 
variable selection method. It performs feature selection 
by identifying important features from many potential 
predictors. It is based on the random forest process. Ran-
dom shuffling of the original variables creates shadow 
features. Variable importance for each shadow feature is 
computed and the highest score becomes the threshold 
for selection. The shadow features are permuted at ran-
dom for each new RF iteration. A hit is defined as the 
number of times a variable has a higher relevance score 
than maximal importance of random variables. Using the 
properties of binomial distribution with probability of 
success p = 0.5, it is easy to argue that for N number of 
RF shuffles, the expected number of hits is E(N) = 0.5N, 
while the standard deviation is 0.25N. If the importance 
of the original feature is higher than the threshold, the 
variable is kept in the model, otherwise, it is discarded. 
The method comes to a halt when only the most impor-
tant variables remain in the test or when the maximum 
number of iterations with some uncertain features has 
been reached. The Boruta algorithm was implemented in 
the random forest’s R package (Boruta).

Forward, backward and stepwise selection methods
Forward selection starts with an empty model and adds 
variables one at a time. At each step, the algorithm eval-
uates all potential predictors and selects the one that 
results in the greatest increase in a chosen criterion, 
Akaike Information Criterion (AIC). Backward elimina-
tion begins with a model that incorporates all potential 
predictor variables. At each step, the method evaluates 
the impact of removing each variable and selects the one 
whose removal results in the least deterioration in the 
chosen criterion. Stepwise selection alternates between 
forward and backward steps. At each step, it evaluates 
both adding and removing variables and chooses the 
action that optimizes the selected criterion.

The AIC is used as a stopping rule for the forward, 
backward, and stepwise variable selection methods. AIC 
is given as;

Where K is the number of estimated parameters in the 
candidate model and L

(

̂β

)

 is the estimate from the log-
likelihood function. AIC quantifies the comparative 
information content of a model by utilizing maximum 

AIC = 2K − 2lnL
(

̂β

)
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likelihood estimates and counting the number of param-
eters involved in the model, as indicated in the above-
mentioned formula. It is employed to assess and 
distinguish various potential models, helping in the iden-
tification of the best-fit model that is consistent with the 
given data. It is also used as a stopping rule in variable 
selection methods. The model giving the smallest AIC 
over the set of models considered is selected as the best 
model.

Judgement variable selection method
Numerous methods for variable selection have been 
proposed; however, there is no consensus on a single 
approach that consistently performs well under all cir-
cumstances. Therefore, for each dataset, the technique 
for variable selection should be carefully chosen [27]. In 
statistical analysis, prior knowledge derived from scien-
tific literature is considered the primary basis for deter-
mining the inclusion or exclusion of covariates. However, 
such information may not always be accessible for all 
research questions [28]. The judgement variable selection 
method relies on field expertise acquired through review-
ing relevant literature and consulting with experts.

Data source
The study used data on under-five children extracted 
from the 2015–16 Malawi Demographic and Health Sur-
vey (MDHS). The MDHS is a nationally representative 
survey conducted by the National Statistical Office in col-
laboration with the demographic health survey program 
funded by the United States Agency for International 
Development (USAID). The MDHS collected up-to-date 
information on mothers’ demographic and health infor-
mation on child nutrition. The MDHS collected anthro-
pometric data for the under-five children in selected 
households. The study analyzed data on 5149 children 
who had a stunting outcome. Details of the sampling pro-
cedure for the MDHS can be obtained in the 2015–16 
MDHS report [29].

Outcome and predictor variables
The outcome variable of this study was stunting and 
was calculated based on the anthropometric indicator 
(height-for-age) among under-five children. The height-
for-age z-score of the children was calculated using 
growth standards published by the WHO in 2006 [1]. 
The height-for-age z-score is a metric used to assess lin-
ear growth retardation and cumulative growth deficits 
in children. Children with height-for-age Z-score below 
minus two standard deviations (-2SD) from the median of 
the WHO reference population were considered stunted 
[30]. To identify determinants of childhood stunting, 
we conducted a subject review of the available literature 

PubMed and Google scholar databases was conducted 
for relevant articles between August to December 2021 
to see what has been studied and found about the deter-
minants of childhood stunting in sub-Saharan Africa. 
Several searches were performed with the search terms 
“Determinants of stunting AND Africa” or “Risk factors 
of stunting AND Africa” or “Predictors of stunting AND 
Africa”. All duplicate articles and those not done in Sub-
Saharan Africa were eliminated from the results.

Statistical methods
All model development and analysis were performed 
with R software (Version 3.6.2, R Foundation). The data 
were randomly partitioned into a training set (80%) and 
a testing set (20%). Six multivariate logistic regressions 
were trained using the sets of variables selected by the six 
variable selection algorithms on the training set (80%), 
and the models were validated on the remaining test set 
(20%). Another logistic regression model was also fitted 
based on the risk factors commonly selected by all vari-
able selection algorithms. These models were compared 
for their discriminative ability and predictive perfor-
mance. The R package glmnet statistical software (R 
Foundation) was used to perform the logistic regression. 
The probability cut-off points (discriminative value) that 
define positive and negative test results were estimated 
using the SpEqualSe criterion implemented in the Opti-
malCutpoints package in R using the training data set 
(80%). SpEqualSe criterion is the method for computing 
the optimal cut-off point, which minimizes the absolute 
deference of sensitivity and specificity [31]. Most often, 
research studies utilize a default cut point of 0.5 [23, 32, 
33]. For comparison purposes, For the sake of compari-
son, the study also used the cut-off point of 0.5 derived 
from the Bayes rule. The estimated probability cut-off 
points were then utilized to derive several performance 
measures, including the Area under the Operating Curve 
(AUROC). The AUROC was employed as a metric for 
assessing the model’s discriminative ability. In the for-
mation of the receiver operating characteristic (ROC) 
curve at various thresholds, the “true positive rate” (TPR) 
was plotted against the “false positive rate.” AUC values 
range from 0.50 to 1. A greater AUC indicates a higher 
predictive capacity. A model with an AUC of 1.0 is a per-
fect discriminator, 0.90 to 0.99 is considered excellent, 
0.80 to 0.89 is good, 0.70 to 0.79 is fair, and 0.51 to 0.69 
is considered poor. Sensitivity was calculated using the 
following formula: Sensitivity = True Positives / (True 
Positives + False Negatives). Specificity was calculated 
using the following formula: Specificity = True Negatives 
/ (True Negatives + False Positives).



Page 5 of 12Mkungudza et al. BMC Medical Research Methodology          (2024) 24:175 	

Results
Distribution of stunting in the data set
Overall, the prevalence of child stunting was 35.6% (95% 
CI: 34.2% -36.9%). In the training set, the prevalence was 
35.9% (34.4%—37.4%) and 34.5% (95% CI: 31.5%—37.6%) 
in the testing data set.

Potential predictor variables
The study reviewed 28 papers and identified 68 potential 
predictors of child stunting from various sources, includ-
ing [30, 34, 35] particularly in the context of Sub-Saharan 
Africa, with 27 found in the Malawi Demographic and 
Health Survey (MDHS). Additional sources are provided 
in the Appendix section. The predictive variables for 
child stunting identified in the MDHS included demo-
graphic factors; mother’s education level, ethnicity, child’s 
age, type of residence, child’s gender, household head’s 
age, marital status, number of under-five children in the 
household, mother’s age, mother’s body mass index, fam-
ily size, religion, and region. Economic factors; household 
wealth index and mother’s occupation. Obstetric and 
child morbidity variables; childbirth weight, birth order, 
mode of delivery, diarrhoea episodes, child anaemia 
level, preceding birth interval, place of delivery, number 
of births, type of delivery assistance, cough or fever epi-
sodes, and distance to the nearest health facility.

Predictor selection
Boruta (Random Forest) selected 10 variables, which 
are; the type of birth (single/multiple), age of the child, 
wealth index, birth weight of the child, location (rural/
urban), distance to health facility, age of household head, 
birth order, body mass index of the mother and size of 
the household (see Fig. 1). In Fig. 1, the confirmed impor-
tant variables are those shown in green and those in red 
represent variables that are not important.

The variables selected by LASSO included location, 
wealth index, maternal age, age of household head, age of 
the child, household size, body mass index of the mother, 
distance to a health facility, number of under-five chil-
dren, religion, maternal education, type of birth, birth 
order of the child, region, diarrhoea, maternal occupa-
tion, anaemia, delivery assistance, sex of the child, and 
sex of household head, (see Table S1).

The risk factors selected by backward, forward, and 
stepwise variable selection algorithms are indicated in 
Table 1.

All variable selection methods selected five common 
factors: household wealth index, child age, household 
size, type of birth (singleton/multiple births), and birth 
weight. The top five most important variables according 
to variable importance ranking in the best model were 
the age of a child, birth weight of a child, type of birth, 
wealth index, and sex of the child (see Fig. 2).

Fig. 1  Selected variables: Random Forest, Boruta. (birth_typ = birth type, age_childgrp = age of child, wealth_index = wealth index, brth_
weightgrp = child birth weight, location = location, dist_facility = distance to a health facility, birth_order = birth order, age_hhgrp = age of household 
head, BMI_GRP = body mass index, fam_size = family size, agegrp1 = mother’s age, place_deliver = place of delivery, Numb_under5 = number of under five 
children, meducation = mother’s education level, del_assistance = delivery assistance, marital_status = marital status, child_sex = sex of child, sex_hh = sex 
of household head, religion_cat = religion of mother, anemic_grp = anemia, mode_del = mode of delivery, occu_cat = mother’s occupation, cough_
fever = cough/fever) 
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Model evaluation and performance
The best cut-off point was at probability (stunting) 
equal to 0.37. The model based on risk factors deter-
mined by judgment outperformed the other models 
AUC = 64% (95% CI: 60%-67%) and 65% (95% CI: 64%-
67%) in the testing set and training set, respectively 
(Tables  2 and 3). Based on the risk factors identified 
commonly by all variable selection methods, the pre-
dictive performance was 62% (95% CI: 59.0%-66.0%). 
The sensitivity indicates that 61% of the children, 
who were stunted, were correctly classified as being 
stunted and the specificity of 60% indicates that chil-
dren who were not stunted were correctly classified as 
not being stunted. PPV for all the models were high 

for the cutoff points of 36% and 37% ranging between 
0.71 to 0.74 (Tables  2 and 3). In the study, the perfor-
mance estimates based on the cutoff point of 0.5 for 
the test data do well in terms of specificity but all have 
some poor sensitivity and low PPV’s ranging between 
0.40 to 0.57 (see Table  4). The estimated cutoff points 
for each model seek an equilibrium between sensitivity 
and specificity. This is important for this study as the 
interest is in detecting a stunted child than finding a 
non-stunted child. Hence, more attention is on the sen-
sitivity than the specificity.

Calibration plots illustrating the analysis results for 
each model are presented in Fig.  3. The calibration 
performance varied across models, with some models 

Table 1  Variables selected by automated methods

Backward Forward Stepwise

Age of child Age of child Age of child

Type of birth Birth weight Birth weight

Wealth index Type of birth Type of birth

Body mass index of the mother Wealth index Wealth index

Maternal education Body mass index of the mother Body mass index of the mother

Sex of the child Ethnicity Ethnicity

Number of under-five children Sex of the child Sex of the child

Diarrhoea maternal occupation maternal occupation

Distance to a health facility Distance to a health facility Distance to a health facility

Household size Location Location

Delivery assistance Diarrhoea Diarrhoea

Age of household head Number of under-five children Number of under-five children

Marital status

Fig. 2  Variable importance plot for the best model (Judgement model)
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demonstrating good calibration at specific probabil-
ity ranges, as indicated by the calibration slopes and 
gradients, while others showed poor discrimination. 

For instance, the judgment model showed good cali-
bration for predicted probabilities between 0.3 and 
0.4, whereas the LASSO model performed well for 

Table 2  Model performance measures using estimated cutoff points on the training set

Model 1 was constructed using the variables selected by backward variable selection algorithms. Model 2 was constructed using the variables selected by forward 
variable selection algorithms. Model 3 was constructed using the variables selected by stepwise variable selection algorithms. Model 4 was constructed using the 
variables selected by random forest variable selection algorithms. Model 5 was constructed using the variables selected by LASSO variable selection algorithms. 
Model 6 was constructed using the variables selected by judgment. Model 7 was constructed using the variables that were common to the 6 models

PPV Positive Predictive Value, NPV Negative Predictive Value

Cut point AUC (95% CI) Sensitivity Specificity Misclassification 
error

Accuracy NPV PPV

Model 1 0.36 0.66(0.64–0.68) 0.62 0.62 0.39 0.61 0.74(0.72–0.76) 0.45(0.43–0.47)
Model 2 0.36 0.66(0.65–0.68) 0.62 0.62 0.38 0.62 0.74(0.72–0.76) 0.45(0.43–0.47)
Model 3 0.36 0.66(0.65–0.68) 0.62 0.62 0.38 0.62 0.74(0.72–0.76) 0.45(0.43–0.47)
Model 4 0.37 0.65(0.64–0.67) 0.61 0.61 0.39 0.61 0.73(0.72–0.76) 0.42(0.40–0.44)
Model 5 0.37 0.67(0.65–0.69) 0.63 0.63 0.37 0.63 0.73(0.71–0.75) 0.44(0.42–0.47)
Model 6 0.37 0.65(0.64–0.67) 0.61 0.60 0.39 0.61 0.74(0.72–0.75) 0.45(0.42–0.47)
Model 7 0.37 0.64(0.62–0.66) 0.60 0.61 0.39 0.61 0.72 (0.70–0.75) 0.42 (0.39–0.45)

Table 3  Model performance measures using estimated cutoff points on the test data

Model 1 was constructed using the variables selected by backward variable selection algorithms. Model 2 was constructed using the variables selected by forward 
variable selection algorithms. Model 3 was constructed using the variables selected by stepwise variable selection algorithms. Model 4 was constructed using the 
variables selected by random forest variable selection algorithms. Model 5 was constructed using the variables selected by LASSO variable selection algorithms. 
Model 6 was constructed using the variables selected by judgment. Model 7 was constructed using the variables that were common to the 6 models

PPV Positive Predictive Value, NPV Negative Predictive Value

Cut-off point AUC (95% CI) Sensitivity Specificity Misclassification 
error

Accuracy PPV NPV

Model 1 0.36 0.63(0.59–0.66) 0.57 0.59 0.42 0.58 0.73 (0.67–0.78) 0.37 (0.33–0.40)
Model 2 0.36 0.62(0.59–0.66) 0.57 0.59 0.42 0.58 0.74 (0.69–0.78) 0.40 (0.36–0.43)
Model 3 0.36 0.62(0.59–0.66) 0.57 0.59 0.42 0.58 0.74 (0.69–0.78) 0.40 (0.36–0.43)
Model 4 0.37 0.62(0.59–0.66) 0.58 0.61 0.40 0.60 0.74 (0.69–0.78) 0.39 (0.36–0.043)
Model 5 0.37 0.62(0.59–0.67) 0.54 0.62 0.41 0.59 0.72 (0.68–0.76) 0.40 (0.37–0.45)
Model 6 0.37 0.64(0.60–0.67) 0.61 0.60 0.40 0.60 0.74 (0.71–0.78) 0.44 (0.40–0.48)
Model 7 0.37 0.62(0.59–0.66) 0.59 0.59 0.41 0.59 0.71 (0.69–0.76) 0.41(.038–0.47)

Table 4  Model performance measures using a cutoff point of 0.5 on test data

Model 1 was constructed using the variables selected by backward variable selection algorithms. Model 2 was constructed using the variables selected by forward 
variable selection algorithms. Model 3 was constructed using the variables selected by stepwise variable selection algorithms. Model 4 was constructed using the 
variables selected by random forest variable selection algorithms. Model 5 was constructed using the variables selected by LASSO variable selection algorithms. 
Model 6 was constructed using the variables selected by judgement. Model 7 was constructed using the variables that were common to the 6 models

PPV Positive Predictive Value, NPV Negative Predictive Value

Cut point AUC (95% CI) Sensitivity Specificity Misclassification 
error

Accuracy PPV NPV

Model 1 0.5 0.63(0.59–0.66) 0.34 0.81 0.35 0.65 0.40 (0.35–0.45) 0.68 (0.65–0.72)

Model 2 0.5 0.59(0.56 -0.63) 0.27 0.83 0.37 0.64 0.41 (0.34–0.48) 0.67 (0.64–0.70)

Model 3 0.5 0.59(0.56 -0.63) 0.27 0.83 0.37 0.64 0.41 (0.34–0.48) 0.67 (0.64–0.70)

Model 4 0.5 0.57(0.53 -0.61) 0.25 0.8 0.39 0.61 0.45 (0.38–0.53) 0.68 (0.64–0.71)

Model 5 0.5 0.62(0.59–0.66) 0.18 0.91 0.34 0.66 0.46 (0.38–0.54) 0.68 (0.64–0.71)

Model 6 0.5 0.64(0.60–0.67) 0.17 0.93 0.33 0.67 0.57 (0.47–0.66) 0.68 (0.65–0.71)

Model 7 0.5 0.63(0.59–0.66) 0.15 0.93 0.34 0.66 0.48 (0.39–0.55) 0.68(0.65–0.70)
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probabilities ranging from 0.2 to 0.3.The selected model 
has provided a predictive tool that displays a good abil-
ity to discriminate between stunted children and those 
not stunted, particularly in children residing in urban 
areas (AUC = 67% (95% CI: 58–76%) in children living 
in urban versus AUC = 63% (95% CI: 59–67) in children 
living in rural areas) (Table 5).

Figure  4 presents the receiver operating characteristic 
curve for the models. The findings of this study show that 
the six prediction models have a better discrimination 
ability compared to a random classifier as indicated by 
the ROC curves in Fig. 3.

Discussion
The study set out to develop and validate a child stunting 
prediction score based on the best predictive model in 
Malawi. The study aimed to develop a model that could 
accurately classify a child as stunting using important 
factors available in the data. The model was based on pre-
dictor variables obtained from fitting a multivariate logis-
tic regression model to child stunting using data from 
the 2015–16 Malawi Demographic and Health Survey 
(MDHS). Using six variable selection methods, namely 
backwards, forward, stepwise, Boruta based on the ran-
dom forest, LASSO, and judgment, we identified nine 
easily measured key predictors of child stunting.

The best-performing model was based on the predic-
tors selected using the judgment method, and these 
included the age of the child, the weight of the child at 
birth, type of birth, sex of the child, wealth index cate-
gory of the household, number of under-five children in 
the household, location, and maternal education. The dis-
criminative ability of our model was different for the type 

Fig. 3  Calibration plots for the fitted models

Table 5  Performance of the selected model after adjusting for sex and residence

Sex of a child Residence

Female Male Urban Rural

AUC (95% CI) 0.64 (0.59–0.70) 0.63 (0.58 -0.68) 0.67(0.58–0.76) 0.63 (0.59–0.67)

Sensitivity (%) 0.86 0.79 0.62 0.7

Specificity (%) 0.26 0.27 0.59 0.45

Fig. 4  Comparing discrimination of the models fitted using variables selected by the different methods
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of residence of a child. Our model has shown better pre-
dictive performance for children residing in urban areas 
than those living in rural areas. The discriminative per-
formance of our model was better than that of Hasegawa 
et  al. [23] (AUC = 0.67, 95% CI: 0.64, 0.69), which used 
data from one health facility. The predictors of stunting 
identified by our best-performing model were consist-
ent with existing knowledge of determinants of stunting, 
such as child demographics and wealth indicators.

Our study demonstrated that the best-performing pre-
dictive model was based on variables selected using the 
judgmental variable selection method. In contrast, other 
studies focusing on childhood stunting in Bangladesh and 
Rwanda have reported that the gradient-boosting classi-
fier, followed by the random forest algorithm, achieved 
the lowest classification error in predicting stunting [22, 
36, 37]. Some studies have also used the logistic and pro-
bit models for stunting prediction due to their common 
usage in predicting binary outcomes [38]. Other machine 
learning methods, such as Elastic net, regularized ran-
dom forests and gradient-boosted feature selection, have 
been shown as the most effective methods for predict-
ing stunting and other binary outcomes [39]. These help 
remove less important variables from large datasets with 
numerous variables for the derived models.

The performance of our final diagnostic risk  model 
for child stunting was comparatively lower than that 
reported in other studies that developed risk prediction 
models for child stunting [40, 41]. According to the lit-
erature, numerous factors are associated with stunting; 
however, our study was limited to variables available in 
the dataset. A similar study by Haque et  al. [42], which 
utilized a randomized cluster design to predict child 
stunting, also found that the predictive performance of 
their models, including logistic and probit regression and 
non-parametric decision trees, was suboptimal. They 
attributed this to the absence of crucial factors such as 
environmental and biological variables in their data [42]. 
Of note, our study calculated the metrics for assessing 
the performance of the predictive model using cut-points 
derived based on the SpEqualSe method implemented 
in the OptimalCutpoins package in R [31]. This 
method is based on the principles of balancing sensitiv-
ity and specificity with the assumption that the costs of 
false positives and false negatives are equal. The study 
acknowledges that other methods are used in choosing 
the probability cut points- such as Youden’s Index (J). 
The Youden’s Index (J) is defined as the sum of sensitiv-
ity and specificity minus one (Jc = SEc + SPc- 1). Xu et al., 
[43] used Youden’s Index to determine the optimal value 
for predicting Acute Kidney Injury (AKI) in their model 
[44]. Both methods are data-driven and produce similar 
estimates. However, using the data-driven methods of 

choosing optimal cut points in studies with small sample 
sizes may identify inaccurate optimal cutoff points and 
overstate accuracy estimates [45]. Using pre-specified 
cutoff points when available would improve the validity 
of a classification model [46]. These pre-specified cutoff 
points are the ones that are predetermined by using pre-
vious studies, and they are always not available. Our study 
used a big sample size, which might have avoided what 
Bhandari et al., [45] observed. By using the model’s opti-
mal cutoff point, the research assesses the performance 
of a model at one point, but it is important to assess the 
performance of a model at different cutoff points.

The strength of our approach is that from a large range 
of candidate predictors from nationally representative 
data (MDHS), the research was able to identify a small 
set of key variables routinely measured at the primary 
healthcare level in many countries or that could be eas-
ily obtained. Even though factors affecting stunting that 
have been reported in the literature vary by many attrib-
utes such as type of study, region, sample size, and the 
ones mentioned above, considerable key findings have 
emerged that provide support for predictive variables 
that our model has identified.

The study had some limitations. Firstly, some variables 
were not captured in the MDHS, and some had miss-
ing values, as such, they were not used in developing 
our predictive model which may have affected the accu-
racy of our diagnostic predictive model. In addition, the 
study did not consider the clustering and weighting of 
the MDHS data, which may have affected the estimated 
probabilities of being stunted by not being representative. 
Although the majority of the variables employed were 
binary, maintaining a linear relationship between the 
log odds of stunting and the binary indicator points, it is 
important to note the potential for non-linear relation-
ships with the log odds of stunting for certain categori-
cal variables with more than two levels. Perhaps a major 
limitation of this study was the use of cross-sectional 
data, which restricts our ability to establish temporal 
relationships between predictors and stunting. The pre-
dictors (for instance socio-economic status) and the out-
come (stunting) were collected at the same time, it was 
not possible to determine if the exposures preceded the 
outcome. Due to the cross-sectional nature of the data 
that we used, the model we have produced is a diagnos-
tic prediction model  to identify children their current 
stunting status. However, it could be used on children 
who are not yet stunted to calculate their risk of being 
stunted in the future. Future research with prospective 
cohort designs is needed to develop accurate prognostic 
models for stunting. The study did not consider least-
angle regression (LARS) due to its complexity in imple-
mentation in R as another variable selection method for 
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nonlinear models as another variable selection method 
for nonlinear models, which is considered a limitation of 
this study. Another limitation is that the study assumed a 
logistic link function provides a better predictive model. 
However, the study could have used a probit link function 
or complementary log–log link function. Lastly, the liter-
ature search was limited to PubMed and Google Scholar, 
while other databases such as Web of Science and Scopus 
could have been utilized and would have provided addi-
tional studies on child stunting in Sub-Saharan Africa.

Conclusion
The study has shown the viability of deriving child stunt-
ing  diagnostic models that could be used to  assess cur-
rent child stunting status. Timely identification of 
children that are more likely to be stunted may help pre-
vent the future impact of stunting and alleviate the dis-
ease burden in low-resource settings.
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