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Can supervised deep learning architecture 
outperform autoencoders in building 
propensity score models for matching?
Mohammad Ehsanul Karim1,2* 

Abstract 

Purpose  Propensity score matching is vital in epidemiological studies using observational data, yet its estimates 
relies on correct model-specification. This study assesses supervised deep learning models and unsupervised autoen-
coders for propensity score estimation, comparing them with traditional methods for bias and variance accuracy 
in treatment effect estimations.

Methods  Utilizing a plasmode simulation based on the Right Heart Catheterization dataset, under a variety of set-
tings, we evaluated (1) a supervised deep learning architecture and (2) an unsupervised autoencoder, alongside two 
traditional methods: logistic regression and a spline-based method in estimating propensity scores for matching. 
Performance metrics included bias, standard errors, and coverage probability. The analysis was also extended to real-
world data, with estimates compared to those obtained via a double robust approach.

Results  The analysis revealed that supervised deep learning models outperformed unsupervised autoencoders 
in variance estimation while maintaining comparable levels of bias. These results were supported by analyses of real-
world data, where the supervised model’s estimates closely matched those derived from conventional methods. 
Additionally, deep learning models performed well compared to traditional methods in settings where exposure 
was rare.

Conclusion  Supervised deep learning models hold promise in refining propensity score estimations in epidemio-
logical research, offering nuanced confounder adjustment, especially in complex datasets. We endorse integrating 
supervised deep learning into epidemiological research and share reproducible codes for widespread use and meth-
odological transparency.
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Background
Challenges of estimating propensity scores based 
on parametric models: The use of propensity score 
analyses in observational data analysis has been gain-
ing popularity, thanks to its conceptual simplicity and 
the ease of diagnostic assessment [1]. However, infer-
ring causality from propensity score analysis depends 
on several empirically unverifiable assumptions [2]. 
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One critical assumption is the correct specification of 
both the propensity score and outcome models. In real-
world applications, accurately determining the correct 
model specification for the propensity score analyses is 
extremely challenging for an analyst [3]. Notably, mis-
specifying the propensity score model can substantially 
bias the estimated treatment effect [4]. When estimat-
ing propensity scores using parametric models such as 
logistic regression, analysts must precisely understand 
and specify the correct functional form of the covari-
ates, which might include quadratic, cubic terms, or 
interaction terms.

Estimating propensity scores based on conven-
tional machine learning models: A variety of machine 
learning methods offer data-driven approaches to 
determine the specification of the model for estimat-
ing propensity scores, potentially reducing the bias in 
observational studies [5, 6]. Machine learning algo-
rithms can automatically detect complex patterns and 
relationships, which traditional methods require exten-
sive knowledge about the subject area. Methods such 
as shrinkage estimators (e.g., LASSO) help in reduc-
ing dimensions and stabilizing estimates [7, 8], but 
they may still rely on strong parametric assumptions. 
More flexible approaches, such as tree-based meth-
ods (e.g., gradient boosting machines), are effective in 
handling non-linear relationships and complex vari-
able interactions [9, 10], though they may compromise 
the efficiency of treatment effect estimates [3]. Ensem-
ble learning methods have been proposed, focusing on 
model averaging [11] or optimizing predictions from a 
diverse set of parametric and nonparametric learners 
[3].

Estimating propensity scores based on deep learn-
ing models: Deep learning models, free from the con-
straints of linearity and simplicity inherent in traditional 
statistical methods, present a promising avenue for esti-
mating propensity scores, capable of capturing complex 
interactions and nonlinearities in observational data [12]. 
These models can process complex interactions and non-
linearities inherent in real-world data, crucial for accu-
rate propensity score estimation in observational studies. 
The growing availability of computational resources 
has made using these intensive models more feasible, 
increasing their application in research. Their poten-
tial in enhancing the robustness and accuracy of causal 
inference in various fields is significant, though they pose 
challenges in interpretability and model complexity. Con-
sequently, more researchers are exploring deep learning 
techniques in developing propensity scores where correct 
model-specification is an important issue [13–19]. How-
ever, the application of these methods in propensity score 
development is still limited [20], with evaluations often 

based on simplistic data generating mechanisms that do 
not fully exploit deep learning’s capabilities [14].

Supervised versus unsupervised learning archi-
tectures within deep learning models: Most machine 
learning or deep learning models used in the propensity 
score context were of supervised learning by nature. A 
recent work has proposed developing propensity score 
methods based on unsupervised learning algorithm, 
known as autoencoders [17]. An autoencoder, a neural 
network or deep learning variant of principal compo-
nent analysis, not only reduces covariate dimensions but 
also accommodates complex covariate functional forms. 
Their simulations showed that autoencoder-based pro-
pensity scores yielded lower bias and mean squared error 
(MSE) in treatment effect estimation than multivariate 
regression, although the estimates suffered from signifi-
cant under-coverage. This under-coverage, often result-
ing from discrepancies between empirical and model 
standard errors, indicates inaccuracies in variance esti-
mation based on this suggested approach. The efficacy of 
autoencoder-based methods in low-dimension settings, 
typical in epidemiological studies, remains unclear.

Aim: This study aims to compare the performances of 
treatment effect estimators based on propensity score 
matching approaches, when the propensity scores will 
be built based on the following two deep learning algo-
rithms: (1) a supervised deep learning learning algorithm 
that has a prediction focus and (2) an unsupervised deep 
learning learning (autoencoders) algorithm. For compari-
son purposes, we will also include (3) a parametric (based 
on logistic regression) and (4) a non-parametric (based 
on Multivariate Adaptive Regression Splines [MARS]) 
propensity score model, and compare their performance 
with the deep learning models. This comparison will 
be assessed via a plasmode simulation [21], inspired by 
the Right Heart Catheterization (RHC) dataset [22], 
incorporating a complex and realistic data generating 
mechanism.

To show the application of the approaches under con-
sideration beyond simulation settings, we have also 
included analyses of the Right Heart Catheterization 
cohort, and provided the complete reproducible codes 
for the practitioners. For comparison purposes, we have 
also included results from Targeted Maximum Likeli-
hood Estimation (TMLE) in this real-data application.

Methods
Data and simulation
Right Heart Catheterization dataset: We utilized the 
dataset from the ‘Study to Understand Prognoses and 
Preferences for Outcomes and Risks of Treatments’ 
(SUPPORT) [22]. Our focus was on evaluating the 
impact of RHC (binary exposure) on 1-month survival 
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(death variable; binary outcome) within this dataset. 
The dataset comprises 5,735 subjects and 50 covariates 
previously used for adjustment in similar propensity 
score-based analyses [7]. We centered and scaled con-
tinuous variables within this dataset. Detailed descrip-
tions of these covariates are available in Appendix §A.

Plasmode simulation: To rigorously evaluate the 
performance of the considered methods, we utilized a 
plasmode simulation framework, inspired by real-world 
data structures and complexities [21]. This framework, 
modeled after the empirical SUPPORT cohort study, 
uses resampling to sample from the observed covariates 
and exposure information (i.e., RHC) without modifica-
tion. It effectively replicates key aspects of a real-world 
study, offering advantages over traditional Monte Carlo 
simulations. Our plasmode simulation included 1,000 
iterations. For our base simulation scenario, we set 
the exposure (RHC) prevalence and event (death) rate 
at 30%, used a true odds ratio (OR) parameter of 0.7, 
and each simulation data had a sample size of 3,500. 
See Table 1 for the description of other scenarios under 
consideration.

True data generating mechanism used in plasmode 
simulation: The outcome variable (death) was modeled 
as a function of the exposure variable and a complex 
combination of covariates. This included main effects of 
all covariates, polynomial terms of the age variable up to 
the third order and the PaO2/FIO2 ratio up to the second 
order, a second-order interaction term between heart 
rate and mean blood pressure, and a third-order inter-
action among Glasgow Coma Score, Hematocrit, and 
Sodium. We also included the exponentiation of weight 
and the cosine of the APACHE score (see Appendix 
§B). A logistic regression model, reflecting this specified 
model, was used to generate the estimated outcomes in 
the simulation.

Performance measures: From this simulation, we 
derived several performance metrics: (1) bias, (2) aver-
age model standard error (SE; the average of estimated 
SEs obtained from a model over repeated samples), (3) 
empirical SE (the standard deviation of estimated treat-
ment effects across repeated samples), (4) MSE, (5) 

coverage probability of 95% confidence intervals, (6) bias-
eliminated coverage, and (7) Zip plot [23, 24].

Estimators under consideration
Below, we describe four estimators based on propen-
sity score matching, where model-specification dif-
fers by propensity score or exposure model estimation 
approaches. The software codes for executing each of 
the propensity score analyses strategies are described in 
details in Appendix §F.

Propensity Score Matching-based Estimators:
We have illustrated the sequential process of propen-

sity score matching analyses steps in Fig. 1. In our analy-
sis, we employed four distinct approaches to estimate 
propensity scores (step 1): logistic regression, MARS, 
supervised deep learning, and autoencoders. During 
the estimation phase, all propensity score models were 
constructed using only the main effects of the 50 covari-
ates, deliberately avoiding the complex model specifica-
tion utilized in the plasmode data generating stage. This 
approach aims to reflect real-world data analysis scenar-
ios more accurately.

After estimating the propensity scores, we applied the 
nearest-neighbor matching technique with respect to 
propensity scores without replacement, maintaining a 
1:1 ratio between treated and untreated groups (step 2). 
We implemented a caliper set to 0.2 times the standard 
deviation of the logit-transformed estimated propensity 
scores [25]. For assessing balance of the matched cohort, 
we use standardized mean difference (SMD) (step 3, 
SMD of more than 0.25 was considered as an indication 
of imbalance in the data analysis [26]). Once the matched 
cohort was formed, we estimated the treatment effect 
using a logistic regression outcome model for death (step 
4), doubly adjusted for all main effects of the covariates 
(same input variables that were used in the propensity 
score model development, not transformed in any way) 
to mitigate residual confounding [27, 28].

	(i)	 Propensity scores based on logistic regression: 
The propensity scores were estimated using logistic 
regression, a widely employed method in this con-
text [29]. This approach, in contrast to supervised 

Table 1  Simulation Scenarios for plasmode simulation based on the Right Heart Catheterization (RHC) study

Plasmode simulation scenario Exposure prevalence Outcome prevalence True odds ratio Sample size

(i) Frequent Exposure and Outcome (Base) 30% 30% 0.7 3,500

(ii) Rare Exposure and Frequent Outcome 5% 30% 0.7 3,500

(iii) Frequent Exposure and Rare Outcome 30% 5% 0.7 3,500

(iv) Large Sample Size for Base 30% 30% 0.7 5,000

(v) Null Effect for Base 30% 30% 1.0 3,500
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deep learning or autoencoder-based models, does 
not incorporate validation steps.

	(ii)	 Propensity scores based on MARS: MARS, a non-
parametric regression technique, enhances linear 
models by adding the ability to capture nonlinear 
relationships and interactions [30]. It automatically 
determines optimal placement of knots and selects 
variables, including quadratic/cubic relationships 
and up to second-order interactions, for inclu-
sion in the propensity score model. This selection 
is done using piecewise linear splines and a back-
ward pruning method to prevent overfitting. While 
cross-validation is possible with MARS, it was not 
employed in our implementation [31]. The esti-
mated propensity scores from this approach may 
not be always bounded between 0 and 1, and hence 
we applied truncation to make the estimated pro-
pensity scores between 0 and 1.

	(iii)	 Propensity scores based on Autoencoders: We 
utilized a deep learning approach employing an 
autoencoder for feature extraction. It is particu-
larly designed for dimensionality reduction and 
then feature extraction. It has a symmetric struc-
ture, and learns to compress the input data into a 
lower-dimensional representation (in the bottle-
neck layer) and then reconstructs the data from 
this representation (decoder part). See Appendix 
§C for the corresponding model architecture and 
compilation setup.

	(iv)	 Propensity scores based on supervised deep 
learning: We employed a supervised deep learn-
ing framework, utilizing a sequential model. It 
has a more traditional architecture for classifica-
tion tasks, and is primarily aimed at prediction (in 
this case, binary classification) based on the input 

features, with a focus on generalization and pre-
venting overfitting. See Appendix §D for the cor-
responding model architecture and compilation 
setup.

Fairness of the comparative analysis: It is important 
to note that the supervised deep learning model included 
design features such as dropout, regularization, normali-
zation, and kernel initialization, which were absent from 
the Autoencoder design. To address concerns regarding 
the fairness of our comparative analysis between these 
two approaches, we conducted additional experiments 
to evaluate the impact of these key design features. Spe-
cifically, we introduced two new versions: (a) a simplified 
version of the supervised deep learning model that omits 
dropout, regularization, normalization, and kernel ini-
tialization, and (b) an optimized version of the Autoen-
coder model that incorporates dropout layers with a rate 
of 0.3, L2 regularization with a penalty coefficient of 0.01, 
batch normalization layers, and the He normal initializer 
for kernel initialization, mirroring the supervised deep 
learning method.

TMLE-based Estimators:
Only for the real-world data analysis part, we have also 

used TMLE approach for comparison purposes [32, 33]. 
Once the propensity scores were estimated from each of 
the 4 above approaches under consideration (i.e., logis-
tic regression, MARS, prediction focused supervised 
deep learning and autoencoders), we have used those 
in the TMLE framework instead of the propensity score 
matching. For the outcome model, to allow more flexibil-
ity, we have used a super learner for the outcome model 
estimation with 5 fold cross-validation, and used logis-
tic regression and MARS as candidate learners [34]. We 
have obtained corresponding treatment effect estimates 

Fig. 1  Steps followed for estimating treatment effect from the propensity score analyses
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and associated 95% confidence intervals from TMLE 
approach. Since TMLE is a double robust approach, vari-
ance estimation from this approach is known to be more 
suitable particularly when model-specification is hard to 
guess.

Results
Base scenario: The statistical properties of the esti-
mated propensity scores, derived from four different 
methods evaluated in our base plasmode simulation 
studies, are presented in Table 2. Regarding bias, the per-
formance of all methods was notably similar. Although 

the average model-based standard errors (SEs) were 
comparable across all approaches, a significant variation 
was observed in the empirical SEs. The empirical SE from 
the autoencoder approach was the highest, consequently 
leading to the greatest mean squared error (MSE). A 
comparison between the average model-based SEs and 
the empirical SEs from the same methods revealed that 
the empirical SE is substantially higher than the average 
model SE for the autoencoder approach. In contrast, for 
the other methods, the empirical SE is marginally lower 
than the average model SE (refer to Fig. 2). Consequently, 
in terms of coverage probability for the 95% confidence 

Table 2  Performance measures of the 4 different propensity score matching methods from the plasmode simulation based on the 
Right Heart Catheterization (RHC) study. The results (point Estimate of performance measures, and Monte Carlo SE) are derived from 
1,000 sets of plasmode simulation data, each with a sample size of 3,500

Here, PS propensity score based on logistic regression, AE propensity scores based on Autoencoders, DL propensity scores based on supervised deep learning, 
MARS Propensity scores based on Multivariate Adaptive Regression Splines, SE Standard Error, MSE Mean Squared Error, Coverage Coverage for nominal 95% 
Confidence Interval. Arrows indicate the direction of the change in performance measures relative to the PS method: ↑ indicates an increase, and ↓ indicates a 
decrease

Performance measure PS AE DL MARS

Bias -0.0041 (0.0027) 0.0073 (0.0055)↑ -0.0023 (0.0029)↑ -0.0035 (0.0026)↑

Empirical SE 0.0860 (0.0019) 0.1752 (0.0039)↑ 0.0921 (0.0021)↑ 0.0807 (0.0018)↓

MSE 0.0074 (0.0003) 0.0307 (0.0018)↑ 0.0085 (0.0004)↑ 0.0065 (0.0003)↓

Model-based SE 0.1206 (0.0001) 0.1323 (0.0002)↑ 0.1265 (0.0001)↑ 0.1130 (0.0001)↓

Coverage 0.9940 (0.0024) 0.8900 (0.0099)↓ 0.9920 (0.0028)↓ 0.9940 (0.0024)

Bias-eliminated Coverage 0.9930 (0.0026) 0.8960 (0.0097)↓ 0.9920 (0.0028)↓ 0.9940 (0.0024)↑

Fig. 2  Comparing the empirical and average model standard errors from four propensity score estimation methods in the plasmode simulation 
based on the Right Heart Catheterization study in the presence of a frequent exposure (prevalence 30% ) and a frequent outcome (prevalence 
30% ): Logistic Regression (PS), Autoencoders (AE), Deep Learning (DL), and Multivariate Adaptive Regression Splines (MARS). The results are derived 
from 1, 000 sets of plasmode simulation data, each with a sample size of 3, 500 . The true target parameter was set to an odds ratio of 0.7
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intervals, as well as their bias-eliminated counterparts, 
the autoencoder approach exhibited undercoverage, 
whereas the other approaches demonstrated overcover-
age (see Appendix Figure E.1 [24]).

Comparing all scenarios: Results from the other simu-
lation scenarios are shown in Fig. 3 and Appendix Figure 
E.2. The estimated bias exhibited similar patterns across 
different scenarios. As expected, propensity score-based 
methods performed poorly when exposure was rare [35]. 
However, when deep learning-based methods were used 
(both for supervised deep learning and autoencoders), 
the bias was notably low, even though the mean squared 
error estimates were very high for all methods under this 
scenario. Coverage and bias-eliminated coverage prob-
abilities were notably poor for the base scenario, and the 

situation did not improve with a larger sample size or 
when the effect estimate was null. More detailed numeri-
cal results are presented in Appendix Tables E.1-E.5.

Comparing other deep learning versions: We have 
also presented extended results in Appendix Table E.1, 
where we included an additional version of the super-
vised deep learning model (naive) and another version of 
the autoencoders (optimized by adding the same design 
features, such as dropout, regularization, normaliza-
tion, and kernel initialization). Our findings indicate 
that the inclusion of these design features somewhat 
improved the performance of the supervised deep learn-
ing model (DL) compared to its simplified counterpart 
(DL.n). Generally, autoencoder methods (with or with-
out these added design features) perform poorly in terms 

Fig. 3  Plots comparing bias, bias-eliminated coverage probabilities and mean squared error [MSE] (point Estimates and Monte Carlo Standard 
Errors of corresponding performance measures) from four propensity score estimation methods in the plasmode simulation under different 
scenarios: Logistic Regression (PS), Autoencoders (AE), Deep Learning (DL), and Multivariate Adaptive Regression Splines (MARS). The results are 
derived from 1, 000 sets of plasmode simulation data
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of estimation of empirical standard error and coverage 
probabilities compared to either version of the super-
vised deep learning methods (see Appendix Table E.1). 
Particularly, the performance of the optimized autoen-
coder model (AE.o) was notably poorer compared to the 
original autoencoder model (AE) across several perfor-
mance measures, including bias and MSE. Most nota-
bly, the optimized autoencoder model showed very poor 
results in terms of mean squared error, coverage, and 
bias-eliminated coverage. These results highlight that the 
inclusion of advanced design features did not uniformly 
benefit both models, underscoring the importance of 
model-specific tuning and evaluation.

Real‑world analysis
Estimates: In analyzing the SUPPORT cohort data using 
propensity scores estimated from the four considered 
approaches, we calculated the treatment effects on the 
OR scale, along with their associated 95% confidence 
intervals. The results from the autoencoder approach 
did not yield significant results, whereas the other meth-
ods provided very similar OR estimates and confidence 
intervals (see Fig. 4). Therefore the conclusion from the 
autoencoder approach would be different compared 
to the other approaches. Reproducible software codes 
for this data analysis is presented in Appendix F, that 
includes diagnostic plots, such as love plot [36].

Computing time: Deep learning-based methods typi-
cally demand substantial resources and extended com-
puting time. In our propensity score matching analysis, 
the total computing time required for each method was 
as follows: logistic regression took 0.18 seconds, MARS 
required 1.19 seconds, autoencoder necessitated 12.9 
seconds, and the supervised deep learning approach took 
the longest at 82.3 seconds. These computing times are 
summarized in Fig. 5.

Discussion
Contextualizing the literature: The performance of esti-
mates from propensity score matching approaches often 
depends on the model specifications, including the selec-
tion of covariates and their functional form. This depend-
ency can significantly influence the matching process 
and the resultant balance between the treated and con-
trol groups [37]. The iterative nature of propensity score 
matching also allows researchers considerable leeway in 
selecting matched samples, potentially introducing bias. 
Despite these concerns, propensity score matching (e.g., 
pair matching) continues to be a favored method for pro-
pensity score analysis in healthcare research [29, 38].

Deep learning methods, known for their proficiency 
in managing high-dimensional data, such as in medical 
image analysis [39], have shown considerable promise 
in epidemiological studies, even with tabular datasets 

Fig. 4  Analyses of the Study to Understand Prognoses and Preferences for Outcomes and Risks of Treatments study data to estimate the association 
between the Right Heart Catheterization and death based on propensity scores estimated from logistic regression (PS), Autoencoders (AE), 
supervised deep learning (DL), and Multivariate Adaptive Regression Splines (MARS). Estimates from Targeted Maximum Likelihood Estimation 
(TMLE) approach is also added corresponding to each approach for comparison purposes
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[40]. The increasing application of deep learning meth-
ods across various healthcare research areas has recently 
sparked interest in their application to tabular health 
datasets. These methods are adept at automatically 
detecting various nonlinear and non-additive patterns. 
A recent study proposed a 1:1 propensity score match-
ing approach (with nearest neighbor without replace-
ment matching) based on an unsupervised deep learning 
approach: autoencoders [17]. It was found that autoen-
coder-based methods outperformed multivariate regres-
sion in terms of bias reduction. However, the study 
suggested that while autoencoders offer a data-adaptive 
method for propensity score computation, they may not 
provide substantial advantages over traditional machine 
learning methods in terms of confounding adjustment. 
In particular, it was noted that the autoencoder approach 
resulted in suboptimal coverage for the 95% confidence 
interval, achieving only 88.7%. Additionally, it was 
observed that increasing the number of layers in autoen-
coders tended to deteriorate the coverage probabilities.

In response to these findings, we assessed the perfor-
mance of a prediction-focused supervised deep learning 
approach for propensity score modeling. The fundamen-
tal difference between this supervised and the previously 
proposed autoencoder lies in their core objectives: super-
vised deep learning model focuses on making accurate 
predictions, employing techniques to enhance model 
generalization, whereas autoencoder approach is more 
geared towards dimension reduction, and hence posing 
the risk of information loss during data condensation.

Summary of the simulation findings: Our plasmode 
simulation incorporated an outcome model with non-lin-
earities, non-additivities, and complex functions such as 
exponentiation and cosine operations in the covariates. 
All methods, including a deep learning-based approach, 
showed comparable performance in terms of bias for the 
base scenario. However, variance estimates were slightly 
inaccurate for all methods, with the most significant 
issues arising in the autoencoder-based method, lead-
ing to under-coverage (89% in the base scenario), akin to 
previous findings [17]. In contrast, the supervised deep 
learning methods (with or without advanced design fea-
tures) notably improved variance estimates and coverage 
probabilities.

Although our results indicate that supervised deep 
learning and conventional logistic regression exhibit sim-
ilar performance in terms of bias in most scenarios we 
considered, deep learning methods have distinct advan-
tages in specific scenarios. For instance, in settings with 
rare exposure, supervised deep learning and autoencoder 
methods demonstrated better performance compared 
to conventional methods (e.g., logistic regression and 
MARS). Additionally, supervised deep learning mod-
els are inherently capable of capturing complex, non-
linear relationships and interactions among variables, 
which might not be easily modeled by logistic regression 
in more complex data settings. However, this does not 
mean that all deep learning methods have similar per-
formance. For example, autoencoders performed worse 
than the supervised deep learning method in terms of 

Fig. 5  Computing Time for different propensity score matching methods: Logistic Regression, Multivariate Adaptive Regression Splines (MARS), 
Autoencoder, and Supervised Deep Learning, ordered by computing time
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coverage probability estimation in most settings. Further-
more, we observed the importance of model-specific tun-
ing and evaluation when we added additional versions of 
deep learning models.

Data analysis findings: In actual data analysis, the 
ORs and 95% confidence intervals estimated by the 
autoencoder approach differed from those obtained with 
other propensity score matching-based methods. How-
ever, the estimates from the proposed supervised deep 
learning approach aligned more closely with those from 
the MARS and logistic regression methods. While the 
true data generating mechanism of the original dataset 
remains unknown, the similarity in results from logis-
tic regression, MARS, and supervised deep learning 
approach may indicate a lack of complex associations 
among covariates.

In terms of variance estimation, double robust methods 
often offer advantages in the scenarios when specification 
of the model is hard to determine [6]. Since model-spec-
ification is the core issue, we also have included TMLE-
based estimates in the comparison. To make the analyses 
results comparable, same propensity scores were used in 
both matching and TMLE-based approaches. The point 
estimates from the TMLE methods were always slightly 
lower than those from the matching methods. The influ-
ence-curve based 95% confidence intervals from TMLE 
approaches were always associated with shorter confi-
dence intervals compared to the confidence intervals 
from the matching methods, except for MARS approach. 
The MARS approach’s probability predictions are not 
always confined to the (0,1) interval, which could be a 
plausible reason for such deviation in the SE estimates.

Future Direction: While our study aimed to com-
pare the performance of propensity score matching 
approaches when the propensity scores were generated 
from deep learning-based approaches (e.g., Autoencod-
ers vs.  supervised deep learning models), we acknowl-
edge the potential value in exploring hybrid approaches. 
Specifically, one anonymous reviewer suggested that 
integrating the latent representations from the bottle-
neck layer of Autoencoders with supervised DL methods 
could offer an innovative avenue for enhancing propen-
sity score estimation. This hybrid approach could poten-
tially leverage the strengths of both unsupervised and 
supervised learning techniques, leading to improved per-
formance. Future research could investigate this hybrid 
approach to further advance the field.

Conclusion: Our investigation reveals that a supervised 
deep learning approach for estimating propensity scores in 
observational studies demonstrates superior performance 
in variance estimation compared to unsupervised autoen-
coders, particularly in settings with complex data struc-
tures. As the field of causal inference continues to evolve, 

the integration of advanced machine learning techniques 
with traditional statistical methods holds the potential 
to significantly advance our understanding of treatment 
effects in observational data.
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