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Abstract 

Background  Wolbachia symbiosis in Aedes aegypti is an emerging biocontrol measure against dengue. However, 
assessing its real-world efficacy is challenging due to the non-randomised, field-based nature of most intervention 
studies. This research re-evaluates the spatial–temporal impact of Wolbachia interventions on dengue incidence 
using a large battery of quasi-experimental methods and assesses each method’s validity.

Methods  A systematic search for Wolbachia intervention data was conducted via PUBMED. Efficacy was reassessed 
using commonly-used quasi-experimental approaches with extensive robustness checks, including geospatial 
placebo tests and a simulation study. Intervention efficacies across multiple study sites were computed using high-
resolution aggregations to examine heterogeneities across sites and study periods. We further designed a stochastic 
simulation framework to assess the methods’ ability to estimate intervention efficacies (IE).

Results  Wolbachia interventions in Singapore, Malaysia, and Brazil significantly decreased dengue incidence, 
with reductions ranging from 48.17% to 69.19%. IEs varied with location and duration. Malaysia showed increasing 
efficacy over time, while Brazil exhibited initial success with subsequent decline, hinting at operational challenges. 
Singapore’s strategy was highly effective despite partial saturation. Simulations identified Synthetic Control Methods 
(SCM) and its variant, count Synthetic Control Method (cSCM), as superior in precision, with the smallest percentage 
errors in efficacy estimation. These methods also demonstrated robustness in placebo tests.

Conclusions  Wolbachia interventions exhibit consistent protective effects against dengue. SCM and cSCM provided 
the most precise and robust estimates of IEs, validated across simulated and real-world settings.
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Introduction
The burden of dengue increased globally by 30-fold over 
the past five decades [1], placing a heavy burden on 
healthcare systems. With limited effective therapeutics 
[2, 3] and vaccines [4, 5], vector-control remains the pri-
mary means to reduce dengue transmission [6, 7].

Emerging vector-control strategies, such as the Ster-
ile Insect Technique (SIT) and Wolbachia-based meth-
ods, show promise in reducing mosquito populations 
and the transmission of dengue. SIT utilises radiation to 
sterilise male mosquitoes, limiting population growth. 
Wolbachia-based techniques employ two methods: the 
Incompatible Insect Technique (IIT), where Wolbachia-
infected males render females infertile, and introgression 
(also referred to as “replacement”), which spreads Wol-
bachia within mosquito populations through infected 
females, reducing their vectorial capacity.

Despite the initial success of Wolbachia-infected Aedes 
aegypti mosquitoes in field trials across several coun-
tries like Malaysia [8, 9], Indonesia [10], Singapore [11, 
12], Brazil [13, 14], Colombia [15], and Australia [16, 17], 
accurately gauging the intervention’s epidemiological 
impact presents substantial challenges. These challenges 
stem from factors that can obscure causal inferences 
regarding intervention efficacy (IE), such as (1) inter-
vention spillovers to control areas, (2) heterogeneities 
in baseline disease trajectories in spatial units prior to 
intervention, (3) staggered adoption of intervention due 
to resource limitations, (4) environmental heterogeneity, 
leading to different doses of interventions across target 
units despite uniform implementation of interventions, 
and (5) biological intricacies of the intervention, such as 
imperfect suppression of wildtype mosquitoes or incom-
plete introgression.

While gold-standard, cluster randomised controlled 
trials (cRCTs) have successfully evaluated the epide-
miological efficacy of Wolbachia introgression [10], they 
face practical and ethical constraints in population-level 
infectious disease control [18–20]. Additionally, although 
cRCTs balance baseline characteristics and historical 
dengue risk in intervention and control arms, differences 
in disease pre-trends cannot be explicitly balanced even 
if randomisation equalises historical dengue risk. Spillo-
ver effects due to the close proximity of intervention sites 
to controls also cannot be easily mitigated even with geo-
graphical features, underestimating the epidemiological 
efficacy of interventions.

Given these constraints, cRCTs can be augmented with 
alternative, quasi-experimental methods to triangulate 
IEs, including Pre-post analysis [16], Bayesian time series 
analysis [8], Difference-in-Differences (DiD) [13, 14, 21] 
and Regression Discontinuity Design (RDD) [22]. Cur-
rently, there is no consensus on a universally superior 

method, and choices often depend on study context. 
Other methodologies, such as compartmental models 
[17] can account for complicated disease transmission 
processes, and the Synthetic Control Method (SCM) 
[12] has been employed to simultaneously accommo-
date differences in spatiotemporal characteristics and 
historical dengue risk. These approaches aim to coun-
teract selection bias and confounding factors, helping 
in robust causal inference in the absence of traditional 
randomisation.

While existing literature acknowledges the challenges 
of evaluating Wolbachia interventions, there is yet to be 
an examination of the robustness of quasi-experimental 
methods in this application. To address this gap, our 
study conducted a thorough analysis of various quasi-
experimental designs to determine the causal impact of 
Wolbachia on dengue incidence across diverse settings 
in Singapore, Malaysia, and Brazil. Our study provides a 
threefold contribution to the literature on quasi-experi-
mental methodology. Firstly, we systematically searched 
for and re-evaluated all available open datasets pertain-
ing to Wolbachia field trials using a large battery of quasi-
experimental tools to re-estimate IEs by spatial units and 
event time. Secondly, we implemented a series of spatial 
and temporal placebo tests to verify the methodological 
robustness of each method. Finally, we stress-tested each 
method against a diverse range of hypothetical dengue 
epidemic scenarios through a simulation study to further 
underscore the practical relevance of these tools in public 
health planning.

By comparing these methods, we aim to identify the 
quasi-experimental techniques that have the necessary 
rigor for reliable evaluations of public health measures, 
a critical step to aid in the implementation of evidence-
based strategies against dengue and similar diseases 
when randomisation is impractical.

Methods
Study cohorts and data collection
We sought to re-evaluate the efficacies of Wolbachia 
interventions to stem dengue transmission where reports 
were publicly available, using quasi-experimental tools. 
First, eligible study cohorts were identified through a 
systematic review conducted in accordance with the 
PRISMA guidelines (Supplementary Fig. 1). A search was 
performed on the PUBMED platform from December 
2023 to January 2024 using specific terms: (1) "dengue" 
OR "breakbone fever," (2) "population" OR "community," 
and (3) "Wolbachia". The final search was conducted on 
January 4, 2024.

The inclusion criteria for article selection were studies 
that investigated the epidemiological impact of Wolbachia 
on dengue. On the other hand, the following exclusion 
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criteria were applied: (1) articles without open-sourced 
data, (2) articles that only reported aggregated dengue 
incidence across all control and intervention sites, (3) arti-
cles with no control arm or only a single control arm, (4) 
articles where the final reported metric was not dengue 
incidence, (5) review articles, and (6) articles not pub-
lished in English. These criteria ensured that the included 
studies were accessible for re-evaluating IEs using selected 
quasi-experimental methods as described later.

The initial search yielded a total of 212 articles. Follow-
ing screening and application of the specified inclusion 
and exclusion criteria, 2 articles met the requirements and 
were selected for data extraction. The third study setting, 
Singapore, was included in the analysis despite not having 
open-sourced data due to the team’s pre-existing access to 
the relevant data from previous studies [12, 23]. For more 
detailed data descriptions, see Supplementary Methods.

Quasi‑experimental methods for understanding 
intervention effects
We evaluate IEs of Wolbachia interventions to reduce 
dengue incidence rates using 6 commonly employed 
quasi-experimental methods, which include the (1) Pre-
post design – where dengue incidence rates are compared 
based on mean differences by utilising a simple regres-
sion model; (2) regression discontinuity design (RDD) – 
where dengue incidence rates are compared in pre- and 
post-intervention time for intervention units while con-
trolling for temporal trends; (3) 2 × 2 difference-in-dif-
ferences (2 × 2 DiD), which computes the intervention 
efficacies by comparing first, the Pre-post intervention 
differences in dengue incidence for intervention units, 
and the differences in dengue incidence between inter-
vention and control units over time; (4) difference-in-dif-
ferences with multiple time periods (Panel DiD), which is 
an extension of 2 × 2 DiD that explicitly accounts for the 
intervention adoption time in each treated unit, allow-
ing for estimation of treatment effects that vary spatially 
and temporally (Supplementary Table  S2, S3); (5) the 
canonical synthetic control methods (SCM), which gen-
erates counterfactuals for the intervention site by mini-
mizing the differences in the dengue incidence between a 
weighted set of donors (controls) versus the intervention 
unit in the pre-intervention period; and (6) count SCM 
(cSCM), which relaxes the bounding of synthetic con-
trol weights but still maintains the zero-lower bound for 
dengue incidence for the synthetic controls. (1) – (2) can 
be considered a single-group design as it includes only 
treated units in the model for evaluation, while (3) – (6) 
can be considered multiple-group designs which have 
both treated and control groups for evaluation of IEs.

For regression-based analyses (1) – (3) with the Malay-
sian and Singapore data, we utilised zero-inflated negative 

binomial models from the ’pscl’ R package, as the data 
exhibited non-negative, continuous characteristics with a 
significant number of zero values. Meanwhile, for the Bra-
zil data, we employed truncated normal regressions using 
the R package ’truncreg’. This decision was based on the 
absence of a population to use as an offset and the con-
tinuous, non-negative nature of the data. Supplementary 
Methods provides specific details on implementation of 
all quasi-experimental methods, computation of IEs and 
the counterfactuals.

Aggregates of intervention efficacy (IE)
As outcomes were both temporally and spatially explicit, 
we could re-aggregate IEs in meaningful ways, to exam-
ine potential spatial heterogeneity in IEs and considering 
time needed for Wolbachia interventions to take effect 
– either the time required for Wolbachia to introgress 
into local populations for the introgression approach, or 
suppression of wild-type mosquitoes to take place using 
the incompatible insect technique (IIT). In the preceding 
sections, IERDD,i, IEDiD,i and IESCM,i can be considered as 
aggregations of IEs for a specific treated unit i . However, 
we can also compute.

(1)	the overall effect of the intervention across all study 
sites (IEI ), as the difference between the cumulative 
sum of actual cases yi,t and cumulative sum of coun-
terfactual cases yi,t across all sites. This is calculated 
from each site i ’s specific start time of intervention 
tstart(i) to the end of the study tend.

(2)	the IE by event-study time ( IEt1:t2) , where t1 : t2 are 
the start and end periods for some pre-specified time 
in the post-intervention period. Intervention and 
counterfactuals can similarly be obtained in preced-
ing sections.

Robustness checks for quasi‑experimental methods
Each method was stress-tested to validate efficacy esti-
mates. Placebo interventions, set two years prior to actual 
interventions, discerned if observed effects were due to 

(1)

IEI =

(∑I
i=1

∑tend
t=tstart(i)

ŷi,t

)
− (

∑I
i=1

∑tend
t=tstart(i)

yi,t )
(∑I

i=1

∑tend
t=tstart(i)

ŷi,t

) × 100

(2)IEt1 :t2
=

(∑
t=t1 :t2

counterfactualt − interventiont

counterfactualt

)
× 100
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pre-intervention dengue incidence trends or the Wol-
bachia, ensuring that each methods fits well to the pre-
intervention data and that the measured effects were 
attributable to the intervention rather than to poorly pre-
dictive counterfactuals. For each dataset and method, we 
truncated all observations to be the pre-intervention period 
data, and recalculated placebo IEs after adjusting the pla-
cebo-treatment to two years prior to the actual intervention 
date. Post-adjustment placebo efficacies were then com-
pared to actual intervention effects in the complete dataset.

To test for spatial validity, in-space placebo tests were 
conducted by reassigning the control group to be the 
treated units and measuring whether there were any large 
intervention effects for control sites, while excluding the 
actual treated units from the donor pool. Supplementary 
Methods provides further details on the execution of in-
space placebos for each method.

Simulation study
We conducted a simulation study to examine whether 
quasi-experimental methods can recover IEs of Wol-
bachia interventions. We defined data generating pro-
cesses using a custom-built ASEI-SEIR transmission 
dynamic model which incorporates host-vector compo-
nents with waning immunity with stochasticity in the 
observation process for the Wolbachia introgression 
intervention (Supplementary Methods, Supplementary 
Table S1). In summary, the simulation was conducted 
1000 times for various control pool sizes, ranging from 5 
to 40 sites with increments of 5 per 1000 simulations.

Each simulation run created two intervention sites 
first with the absence, then the presence of Wolbachia 
releases using the same initial parameters (i.e. initial 
populations of susceptible humans Sh , dengue-infected 
humans Ih , and wild-type juvenile mosquitoes A(n,w) ). 
After the simulations were run, we assumed stochasticity 
using a Poisson distribution for the number of infected 
individuals in both intervention and control sites. The 
‘true’ IE was then computed by:

Each quasi-experimental tool was then fitted according 
to the observable number of infected individuals to gen-
erate counterfactuals for the case where the intervened 
group had no interventions. The IE of Wolbachia intro-
gression was hence calculated using each method and its 
respective formulae. The percentage error between the 
‘true’ IE and the calculated values was subsequently com-
puted to determine the ability of each method to recover 
the ‘true’ IE.

(3)

IEt1 :t2
=

(∑
t=t1 :t2

no interventiont − interventiont

no interventiont

)
× 100

Data analysis was performed using R software (V. 4.3.1) 
and RStudio (V.2023.06.1 + 524).

Results
Characteristics and outcomes of Wolbachia trials 
across study settings
Table  1 provides a summary of the essential charac-
teristics pertaining to the Wolbachia trials conducted 
in Malaysia, Brazil, and Singapore. The Malaysia trial 
involved wAlbB Wolbachia introgression across six sites, 
with a pre-intervention period of 221 to 255 weeks and 
a post-intervention period of 78 to 88  weeks, achieving 
the highest intervention saturation among the studies at 
74.62%. In Malaysia, saturation is calculated as the aver-
age percentage of wAlbB detected by qPCR in Ae. aegypti 
mosquitoes, starting 4 or 8  weeks post-release depend-
ing on the study site. In Brazil, a similar intervention 
with wMel Wolbachia spanned 32 sites, with a pre-inter-
vention duration of 42 to 51 months and a shorter post-
intervention timeframe of 3 to 12 months, resulting in a 
50.65% saturation rate. In Brazil, saturation is the average 
percentage of wMel detected by qPCR, starting 1 month 
post-release. Conversely, Singapore utilised a combina-
tion of IIT and SIT with high-fidelity sex sorting across 
four sites with saturation gradually expanding over the 
study period with the largest control group of 30 sites. 
Saturation in Singapore is calculated as the sum of (inter-
vention area * intervention timepoints) / (total area * max 
timepoints). The study in Singapore featured the most 
extensive pre-intervention data with 247 to 335  weeks 
of observation time, and post-intervention data of 109 to 
209 weeks.

Aggregated intervention efficacies by site and event time
Reductions in dengue incidence were attributed to Wol-
bachia interventions in all study settings, indicated by 
positive IEs for methods which passed all robustness 
checks. For Malaysia, the IE estimates from quasi-experi-
mental methods ranged from 46.73% to 69.19% (Table 2), 
surpassing the 40.00% (95%CI 5.06–64.59) estimate 
from the original study [8]. Brazil estimates showed a 
high degree of efficacy (55.35% to 89.40%), broadly con-
sistent with the original study [14]. However, only SCM 
and cSCM passed spatial robustness checks in this loca-
tion. In Singapore, SCM and cSCM passed both placebo 
checks and these methods respectively produced posi-
tive IEs despite incomplete saturation of interventions 
in intervention sites over the study period, similar to the 
original study [12]. Estimated IEs across study settings 
revealed distinct patterns when both in-time and in-
space checks were employed.

The efficacy of Wolbachia interventions can be medi-
ated by their duration. As quasi-experimental tools can 
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Table 1  Summary of Wolbachia intervention approaches over the 3 study settings (Malaysia, Brazil, Singapore)

a given as the range of pre and post intervention lengths across all units in the specific study setting
b calculated as average across all intervention sites
c sum of population across all intervention and control sites
d Computation varies across locations. In Singapore, saturation is determined by the sum of (the area of intervention*total timepoints of intervention)/(total 
intervention area*max timepoints of intervention). In Malaysia and Brazil,, average saturation is determined by the average percentage of the wAlbB (Malaysia) or 
wMel (Brazil) Wolbachia strain detected by qPCR in Ae. aegypti mosquitoes across all sites, from the initiation of monitoring. Monitoring commences 4 or 8 weeks 
post-initial release in Malaysia (varying by site) and 1 month post-release in Brazil

Study Setting Selangor, Malaysia Niterói, Brazil Singapore, Singapore

Intervention type Introgression Introgression IIT-SIT, High-fidelity sex sorting

Study dates EW 1 2013 – EW 19 2019 EW 1 2007 – EW 27 2020 EW 1 2014 – EW 26 2022

Intervention sites 6 32 4

Control sites 19 19 30

Pre-intervention perioda 221–255 weeks 42–51 months 247–335 weeks

Post-intervention perioda 78–88 weeks 3–12 months 109–209 weeks

Intervention timeb 94.5 weeks 9.4 months 156.75 weeks

At risk populationc 179,305 373,000 5,151,316

Average intervention saturation 
over study durationd

74.62% 50.65% 40.28%

Table 2  Aggregate intervention efficacy (IE) estimates (%) of Wolbachia releases on total dengue incidence rates across all 
intervention sites. The estimates are reported for each method and are accompanied by the corresponding confidence intervals (in 
parentheses). The IE estimate reported in the respective original papers, highlighted in blue, is provided for comparison. Numbers in 
parenthesis represent lower and upper bounds for 95% confidence intervals, estimated using the bootstrapping procedure [8, 12, 14]

Pre-Post analysis compares the dengue incidence rates before and after the intervention. RDD analyses the relationship between the intervention time (assignment 
variable) and dengue incidence (outcome) at a specific threshold (start of the intervention). The 2 × 2 Difference in Differences (DiD) approach compared changes over 
time between treatment and control groups. SCM and cSCM methods construct a counterfactual by using a weighted combination of control units, with the latter 
relaxing the convex hull assumption
a indicates that the estimate passed in-time placebo checks while b indicates that it passed in-space placebo check. Bolded figures represent significant IE estimates 
which also passed in-space and in-time placebo checks
c Computation varies across locations. In Singapore, the saturation is determined by averaging the product of the area covered by the intervention within each 
specific site and the number of effective weeks, divided by the total area of the Wolbachia intervention in the site multiplied by the number of weeks in a year. In 
Malaysia and Brazil, average saturation is determined by the average percentage of the wAlbB or wMel Wolbachia strain detected by qPCR in Ae. aegypti mosquitoes 
across all sites, from the initiation of monitoring. Monitoring commences 4 or 8 weeks post-initial release in Malaysia (varying by site) and 1 month post-release in 
Brazil
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generate counterfactuals for each location and time post-
intervention, we re-aggregated IEs by event time rela-
tive to intervention start (Table 3). Results indicated that 
Wolbachia releases were associated with reduced dengue 
incidence in all locations, but geographic variation in 
magnitude of efficacy was evident, likely due to local fac-
tors such as saturation levels, release strategies and Wol-
bachia strain employed (Table 3).

Malaysia’s IE estimates were consistently high across 
methods (Table 3, Supplementary Figure S2a), demon-
strating an upward trend over time, suggesting that the 
intervention is stable and increasingly effective as Wol-
bachia introgresses into the local Aedes population. 
Conversely, Brazil showed significant variability and 
a notable decline in efficacy in later months (Table 3, 
Supplementary Figure S2b). However, Brazil’s IE esti-
mates lack robustness, failing all temporal checks 
and passing few spatial checks. In Singapore, IIT-SIT 
showed reductions in dengue incidence ranging from 
35.77–53.11%, using SCM and cSCM (Table 3, Supple-
mentary Figure S2c), stabilising as intervention satura-
tion increases.

This variation in IE reflects the complexity of factors 
affecting Wolbachia intervention outcomes, highlight-
ing the need to account for local conditions in efficacy 
assessments.

Empirical validation by simulation study
Table 4 presents the results of the simulation study, dis-
playing the average percentage errors across 1000 simu-
lation runs along with their corresponding standard 
deviations (s.d.) across methods. Both the Pre-post and 
RDD methods exhibited underestimation of the true IE. 
However, the RDD method, with a percentage error of 
-34.98% (s.d. 23.848), demonstrated the greatest extent 
of underestimation and spread when compared to other 
methods.

2 × 2 DiD consistently underestimated the true IE 
across all control pool sizes, with a percentage error of 
approximately -2.5% (s.d. 3.39), suggesting a minor bias 
that remained consistent irrespective of the control pool 
size.

Meanwhile, SCM and cSCM showed notable improve-
ments in performance as the control pool size increased. 
SCM’s error decreased from 2.52% (s.d. 3.327) to 0.23% 
(s.d. 1.370), and its s.d. decreased as the number of con-
trols increased, indicating greater accuracy and consist-
ency with larger control pools. On the other hand, cSCM 
exhibited a transition from a small positive error of 1.62 
(s.d. 2.465) to a small negative error of -0.27 (s.d. 0.572) 
as the control pool expanded, along with diminishing 
s.d., suggesting enhanced precision, but a tendency to 
slightly underestimate the IE with increasing control pool 

size. cSCM also exhibited the least variability in its esti-
mates across varying control pool sizes, reflected by con-
sistently narrow standard deviations, indicating a high 
level of precision in estimates. The results also suggest a 
requisite minimum number of control groups for accu-
rate estimation in SCM and cSCM. With a baseline of 10 
control groups, SCM’s accuracy improved by a factor of 
four (2.52 to 0.60). Likewise, cSCM’s accuracy saw a ten-
fold increase (1.62 to -0.15) with at least 5 control groups, 
but declined when more than 20 groups were used.

Discussion
Dengue necessitates robust vector control strategies. Yet, 
assessing the effectiveness of these interventions in field 
conditions is difficult, due to the challenge of undertak-
ing randomised control studies and confounding in non-
randomised studies. This study revisits the IEs of three 
Wolbachia field trials targeting dengue from a systematic 
search through a variety of commonly-used quasi-exper-
imental methods, all underpinned by stringent validity 
checks. Despite incomplete intervention saturation over 
the study period, methods passing these checks confirm 
Wolbachia’s protective effect against dengue (Tables  2 
and 3), aligning with existing literature [8–10, 12–17, 21].

Comparative analysis reveals how different statisti-
cal methods which complied with spatio-temporal pla-
cebo checks can yield diverse IE estimates. The Bayesian 
model from the Malaysia study yielded a conservative IE 
estimate of 40.00% (95%CI 5.06–64.59) [8] while other 
methods in this study reported higher efficacies 46.73 – 
69.19%. However, a revised Bayesian analysis based on 
a longer timespan and additional study sites were con-
cordant with our higher estimates of intervention effi-
cacy (IE: 62.4% (95%CI: 50.00–71.00)) [9]. In Singapore, 
SCM and cSCM derived IEs (IE: 48.71–53.33%) were in 
close agreement with the original study’s 56.88% (95%CI 
51.88–58.46) [12], with the application of similar meth-
odologies and data, confirming the intervention’s effec-
tiveness even with partial Wolbachia saturation. These 
consistent results, validated by robust placebo checks, 
highlight how the choice of analytical method can signifi-
cantly impact intervention assessments.

The Brazil study’s application of Interrupted Time 
Series Analysis (ITSA), operationally mirroring 2 × 2 
DiD, resulted in a higher reported IE of 69.40 (95%CI: 
54.40–79.40) [14] compared to 66.59% (95%CI: 60.18–
70.83) and 55.35% (95%CI 52.16–65.95) from our use 
of SCM and cSCM respectively. Discrepancies in IE 
estimates may arise from different methodological 
approaches. Firstly, SCM and cSCM have theoretically 
enhanced accuracy over DiD through better balanc-
ing of pre-intervention historical outcomes compared 
to DiD, thus accounting for unobserved confounders. 
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Additionally, due to absence of population data at 
the neighbourhood level, the granularity of data dif-
fers; our study’s neighbourhood-level analysis with 
min–max normalisation to adjust for population sizes 
and reporting disparities contrasts with the original 
study’s zone-level approach, in which the authors could 
directly account for population. Therefore, interpret-
ing IE differences between studies requires concomi-
tant consideration of each analytical approach’s unique 
assumptions and constraints.

Aggregating IEs by the period post-intervention 
(Table  3, Supplementary Figure S2), our analysis facili-
tates equitable comparison of intervention impacts 
across sites, currently unexamined in existing literature, 
illuminating the dose–response relationship of Wol-
bachia interventions. The IEs in Malaysia displayed an 
upward trend with longer intervention periods, indicat-
ing that sustained Wolbachia presence may lead to more 
significant reductions in dengue incidence. This obser-
vation indicates the potential long-term benefits of sus-
tained Wolbachia releases until Wolbachia frequencies 
reach a high and stable level without further releases, and 
is also consistent with the recent Bayesian analysis com-
pleted on additional Malaysian data [9]. In Singapore, 
IIT-SIT first showed a moderate efficacy, which may be 
due to wildtype vector declines as Wolbachia-infected 
males began reducing viable mosquito offspring. The 
dip in mid-term efficacy likely reflected interepidemic 
dengue transmission or ecological adjustments to the 
new intervention–emphasising the need for persistent 
releases to maintain pressure on the mosquito popula-
tion. The recovery and eventual stabilisation of IE in 
the later months signifies that the consistent release of 
Wolbachia-infected males leads to a progressive and 
sustained reduction in the mosquito population despite 
incomplete saturation across the study period. In Brazil, a 
decline in IE over time pointed to challenges in maintain-
ing the intervention’s effectiveness. Varied factors affect 
the wMel strain’s homogenous spread within mosquito 
populations, including persistent wild-type eggs, urban 
infrastructure barriers, and disruptions like the COVID-
19 pandemic impeding mosquito dispersal [13, 14]. The 
Brazil dataset, inclusive of both suspected and confirmed 
dengue cases, confronts limitations in the specificity and 
sensitivity of case reporting, wherein potential misclas-
sified or unreported cases could skew the assessment of 
Wolbachia’s efficacy. Declines in maternal transmission 
of Wolbachia at higher temperatures may also account 
for decreased efficacy, especially in Brazil’s dense urban 
environment with its variable microclimates [24, 25]. The 
need for adaptive management of Wolbachia interven-
tions, as emphasised in public health discussions [26], is 

critical to respond to these environmental and biological 
challenges to maintain the success of the program.

Our study introduces a novel empirical validation of 
quasi-experimental methods using the ASEI-SEIR model 
to simulate dengue dynamics with Wolbachia interven-
tions, addressing the previously unexplored efficacy of 
such methods in recovering IEs in vector-borne disease 
transmission and interventions. Consistently minimal 
errors affirm SCM and cSCM’s exceptional empirical 
precision and accuracy in recovering IEs, outperforming 
other methods and demonstrating their reliability across 
different control configurations (Table  4). Conversely, 
RDD showed a notable negative bias, and the Pre-post 
and 2 × 2 DiD methods, despite relatively modest errors, 
did not match SCM and cSCM’s performance. Although 
parallel trends were validated in the Brazil study’s DiD 
analysis, our simulations point out that 2 × 2 DiD’s sensi-
tivity to unaccounted factors can lead to erroneous esti-
mations of IE, even with historically consistent parallel 
trends. This illustrates the advantage of SCM and cSCM 
in adjusting for time-varying confounding factors, offer-
ing a reduction in bias within quasi-experimental set-
tings, given an adequate pre-intervention duration [27].

In public health research, the choice between cRCTs 
and quasi-experimental designs hinges on the study’s 
resources, objectives, and constraints. cRCTs may offer 
high validity but face logistical and ethical issues in out-
break situations. Our study illustrates that quasi-exper-
imental methods can provide comparable validity with 
thorough checks, yet require cautious interpretation due 
to potential biases from non-randomisation. In the sim-
ple one-group Pre-post design, researchers must adjust 
for confounding factors, including disease incidence 
fluctuations (regression towards the mean) and behav-
ioural changes (maturation), to attribute effects to the 
intervention, given that this method cannot infer causal-
ity on its own due to the lack of a control group [28]. For 
SCM and cSCM to produce reliable counterfactuals, cer-
tain conditions should be met. While pre-intervention 
data directly before the intervention reflects the most 
recent trends, a longer pre-intervention period better 
captures historical changes and strengthens counter-
factuals [27, 29]. While a larger donor pool offers more 
control options for weight selection, it is essential to 
select well-matched controls to minimise over-fitting 
and interpolation biases [30]. A well-matched control 
unit is characterised by its ability to closely mimics the 
outcome trajectory of the treated unit over an extended 
pre-intervention period [30]. Valid causal inference with 
2 × 2 DiD requires confirmed parallel trends [31]. RDD’s 
effectiveness is bandwidth-dependent, requiring the bal-
ance between breadth of data against the risk of bias 
[32, 33]. Lastly, traditional quasi-experimental methods 
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approximate treatment effects as binary step functions, 
lacking the ability to account for the increasing magni-
tude of treatment effects over time. This approach fails 
to capture the gradual and cumulative impacts of inter-
ventions like Wolbachia, where small levels of saturation 
can significantly impact over time. Our time-aggregated 
analysis (Table 3) demonstrates how variations in treat-
ment saturation correlate with changes in intervention 
efficacy providing a more accurate understanding of 
the intervention’s incremental effects. These findings 
highlight that when applied rigorously, quasi-experi-
mental methods extend the toolkit for reliable causal 
inferences in public health interventions where cRCTs 
are impractical.

Our study has several strengths. (1) We systematically 
reviewed publicly available data on Wolbachia field tri-
als to minimise selection bias of included studies for 
re-evaluation of IEs. (2) We employed a comprehensive 
suite of quasi-experimental methods, accompanied by 
extensive robustness checks, to confidently demonstrate 
Wolbachia’s consistent protective effect against den-
gue. (3) We used a novel data generating process using 
a custom-built transmission dynamic model to vali-
date the efficacy of these quasi-experimental methods 
in estimating true IEs. However, there are limitations. 
The study did not account for spillover effects, pos-
sibly underestimating Wolbachia’s efficacy by diluting 
the observed differential in disease incidence between 
intervention and control sites. Subsequent research 

could use spatial analysis to account for indirect pro-
tection effects due to the migration of Wolbachia-
infected mosquitoes into control areas. Moreover, data 
constraints precluded the inclusion of relevant covari-
ates and demographic subgroup analyses. Future stud-
ies with richer datasets could perform more granular 
analyses using spatial interpolation to better understand 
Wolbachia’s differential impact across population strata 
and control for confounders. Lastly, our study focused 
on a single-serotype, single-season simulation to clar-
ify IE recovery in simplified dengue dynamics. Multi-
season, multi-serotype expansions are recommended 
for future work to triangulate long-term efficacy while 
encompassing the interplay of cross-immunity to anti-
body-dependent enhancement.

Conclusion
In conclusion, our study rigorously re-evaluated the 
impact of Wolbachia-based vector control interventions 
on dengue incidence across three locations using quasi-
experimental methods. The findings revealed a consistent 
protective effect against dengue, particularly in analyses 
supported by robust internal validity checks. SCM and 
cSCM stand out for their precision and validity in esti-
mating IEs in both real-world and simulated settings, 
displaying promise for guiding public health strate-
gies where randomised controlled trials are not always 
feasible.

Table 4  Percentage errors of intervention efficacies for each method compared to the true intervention efficacy (IE). The values in 
parentheses represent the standard deviations, reflecting the variability observed across 1,000 bootstrapping iterations. These errors 
were computed using the formula (true IE–- IE from method) / (true IE). Here, ‘true IE’ represents the IE determined by simulating 
the dengue epidemic cycle with the same initial parameters and comparing scenarios with and without the intervention. For the 
intervention scenario, the initial Wolbachia-infected mosquito population is set to a random multiplier (1.2 to 2 times) of the wild-type 
mosquito population. In the non-intervention scenario, the initial Wolbachia mosquito population is set to zero

The analysis did not include Pre-post and RDD because the efficacy estimates derived from these methods are not affected by the size of the control group. 
This independence arises because neither method relies on a control or comparison group for efficacy calculations. Specifically, RDD estimates IE by comparing 
the incidence of dengue immediately before and after the interventions’ initiation at a specific threshold, while Pre-post assesses efficacy through within-unit 
comparisons of outcomes before and after the intervention

Control pool size Intervention efficacy (IE) percentage error (%)

Pre-post RDD 2 × 2 DiD SCM cSCM

5 -1.85 (3.36) -34.98 (23.848) -2.63 (3.393) 2.52 (3.327) 1.62 (2.465)

10 -2.53 (3.389) 1.24 (2.116) 0.37 (1.250)

15 -2.63 (3.388) 0.60 (1.571) -0.15 (0.825)

20 -2.59 (3.388) 0.52 (1.530) -0.18 (0.736)

25 -2.58 (3.389) 0.36 (1.474) -0.22 (0.679)

30 -2.53 (3.388) 0.40 (1.497) -0.21 (0.651)

35 -2.52 (3.386) 0.30 (1.402) -0.26 (0.595)

40 -2.52 (3.386) 0.23 (1.370) -0.27 (0.572)
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Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12874-​024-​02291-6.

Supplementary Material 1.

Supplementary Material 2. Supplementary Figure S2. Aggregated inter-
vention efficacies for (a) Malaysia, (b) Brazil, and (c) Singapore based on 
event time. Each efficacy assessment method is represented by a specific 
color: red for Pre-post, yellow for RDD (Regression Discontinuity Design), 
green for 2x2 DiD (Difference-in-Differences), blue for SCM (Synthetic 
Control Method), and purple for cSCM (count Synthetic Control Method). 
The intervention efficacy (IE) reported in the original paper is depicted on 
the right side of each diagram, represented by the colour black. The dot 
represents the IE point estimate for each method, while the line indicates 
the corresponding confidence intervals. Extreme confidence interval 
values and point estimates are denoted by arrows, with their respective 
values displayed next to the arrow.

Acknowledgements
Not applicable.

Authors’ contributions
J.T.L. and B.L.D. conceived the study. J.Y.C. and G.L. developed the underly-
ing code for the study’s analysis. J.Y.C., J.T.L., S.B., and G.L. implemented the 
study. A.A.H. and L.C.N. provided data resources. J.Y.C., J.T.L., and S.B. analysed 
the data. J.Y.C. and J.T.L. drafted the manuscript with contributions in the 
interpretation of the findings from A.A.H. and L.C.N. All authors have read and 
reviewed the manuscript.

Funding
This research is hosted by CNRS@CREATE and supported by the National 
Research Foundation, Prime Minister’s Office, Singapore, under its Campus 
for Research Excellence and Technological Enterprise (CREATE) program, and 
is funded by the Lee Kong Chian School of Medicine—Ministry of Education 
Start-Up Grant.

Availability of data and materials
The data underlying this article is available in Mendeley Data at https://
doi.org/https://​doi.​org/​10.​17632/​v8vn3​5zj3g.1 for Malaysia and Figshare at 
https://doi.org/https://​doi.​org/​10.​6084/​m9.​figsh​are.​13662​203.​v3 for Brazil.  
Data for Singapore are the property of the Ministry of Health, Singapore, and 
were shared under the Infectious Disease Act. Permission to access Singa-
pore data should be obtained from the Ministry of Health, Singapore. The 
code required to reproduce this study’s findings can be found at github.​com/​
joyic​how/​wolba​chia-​quasi​exper​iments.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Lee Kong Chian School of Medicine, Nanyang Technological University, Sin-
gapore 308232, Singapore. 2 Saw Swee Hock School of Public Health, National 
University of Singapore, Singapore 117549, Singapore. 3 National Environment 
Agency, 11, Biopolis Way, #06‑05/08, Helios Block, Singapore 138667, Singa-
pore. 4 Pest and Environmental Research Group, Bio21 Institute, University 
of Melbourne, Melbourne, Vic 3010, Australia. 

Received: 8 April 2024   Accepted: 18 July 2024

References
	1.	 Wang GH, Gamez S, Raban RR, Marshall JM, Alphey L, Li M, et al. Combat-

ing mosquito-borne diseases using genetic control technologies. Nat 
Commun. 2021;12(1):4388.

	2.	 Obi J, Gutiérrez-Barbosa H, Chua J, Deredge D. Current trends and limita-
tions in dengue antiviral research. TropicalMed. 2021;6(4):180.

	3.	 Troost B, Smit JM. Recent advances in antiviral drug development 
towards dengue virus. Curr Opin Virol. 2020;43:9–21.

	4.	 Capeding MR, Tran NH, Hadinegoro SRS, Ismail HIHM, Chotpitayasunondh 
T, Chua MN, et al. Clinical efficacy and safety of a novel tetravalent den-
gue vaccine in healthy children in Asia: a phase 3, randomised, observer-
masked, placebo-controlled trial. The Lancet. 2014;384(9951):1358–65.

	5.	 Torresi J, Ebert G, Pellegrini M. Vaccines licensed and in clinical trials for 
the prevention of dengue. Hum Vaccin Immunother. 2017;13(5):1059–72.

	6.	 Andersson N, Nava-Aguilera E, Arosteguí J, Morales-Perez A, Suazo-
Laguna H, Legorreta-Soberanis J, et al. Evidence based community 
mobilization for dengue prevention in Nicaragua and Mexico (Camino 
Verde, the Green Way): cluster randomized controlled trial. BMJ. 
2015;8(351):h3267.

	7.	 Vanlerberghe V, Toledo ME, Rodríguez M, Gomez D, Baly A, Benitez JR, 
et al. Community involvement in dengue vector control: cluster ran-
domised trial. BMJ. 2009;9(338):b1959.

	8.	 Nazni WA, Hoffmann AA, NoorAfizah A, Cheong YL, Mancini MV, Golding 
N, et al. Establishment of Wolbachia strain wAlbB in Malaysian popula-
tions of aedes aegypti for dengue control. Curr Biol. 2019;29(24):4241-
4248.e5.

	9.	 Hoffmann AA, Ahmad NW, Wan MK, Cheong YL, Ahmad NA, Golding N, 
et al. Operationalized releases of wAlbB Wolbachia in Aedes aegypti lead 
to sharp decreases in dengue incidence dependent on Wolbachia fre-
quency. medRxiv; 2023. p. 2023.11.08.23298240. Available from: https://​
www.​medrx​iv.​org/​conte​nt/​10.​1101/​2023.​11.​08.​23298​240v1. Cited 2024 
Jan 31.

	10.	 Utarini A, Indriani C, Ahmad RA, Tantowijoyo W, Arguni E, Ansari MR, et al. 
Efficacy of Wolbachia-infected mosquito deployments for the control of 
dengue. N Engl J Med. 2021;384(23):2177–86.

	11.	 National Environmental Agency. Wolbachia-Aedes Mosquito Suppression 
Strategy. n.d. Available from: https://​www.​nea.​gov.​sg/​corpo​rate-​funct​
ions/​resou​rces/​resea​rch/​wolba​chia-​aedes-​mosqu​ito-​suppr​ession-​strat​
egy. Cited 2023 Dec 18.

	12.	 Lim JT, Bansal S, Chong CS, et al. Efficacy of Wolbachia-mediated steril-
ity to reduce the incidence of dengue: a synthetic control study in 
Singapore. The Lancet Microbe. Elsevier; 2024;0(0). Available from: https://​
www.​thela​ncet.​com/​journ​als/​lanmic/​artic​le/​PIIS2​666-​5247(23)​00397-X/​
fullt​ext. Cited 2024 Mar 14.

	13.	 Ribeiro Dos Santos G, Durovni B, Saraceni V, Souza Riback TI, Pinto SB, 
Anders KL, et al. Estimating the effect of the wMel release programme 
on the incidence of dengue and chikungunya in Rio de Janeiro, Brazil: a 
spatiotemporal modelling study. Lancet Infect Dis. 2022;22(11):1587–95.

	14.	 Pinto SB, Riback TIS, Sylvestre G, Costa G, Peixoto J, Dias FBS, et al. 
Effectiveness of Wolbachia-infected mosquito deployments in reducing 
the incidence of dengue and other Aedes-borne diseases in Niterói, 
Brazil: A quasi-experimental study. Donald C, editor. PLoS Negl Trop Dis. 
2021;15(7):e0009556.

	15.	 Velez ID, Tanamas SK, Arbelaez MP, Kutcher SC, Duque SL, Uribe A, et al. 
Reduced dengue incidence following city-wide wMel Wolbachia mos-
quito releases throughout three Colombian cities: Interrupted time series 
analysis and a prospective case-control study. Viennet E, editor. PLoS Negl 
Trop Dis. 2023;17(11):e0011713.

	16.	 Ryan PA, Turley AP, Wilson G, Hurst TP, Retzki K, Brown-Kenyon J, et al. 
Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and 
reduction of local dengue transmission in Cairns and surrounding loca-
tions in northern Queensland, Australia. Gates Open Res. 2020;8(3):1547.

	17.	 Ogunlade ST, Adekunle AI, Meehan MT, McBryde ES. Quantifying the 
impact of Wolbachia releases on dengue infection in Townsville, Australia. 
Sci Rep. 2023;13(1):14932.

	18.	 Adebamowo C, Bah-Sow O, Binka F, Bruzzone R, Caplan A, Delfraissy JF, 
et al. Randomised controlled trials for Ebola: practical and ethical issues. 
The Lancet. 2014;384(9952):1423–4.

	19.	 Resnik DB. Ethical issues in field trials of genetically modified disease-
resistant mosquitoes. Dev World Bioeth. 2014;14(1):37–46.

https://doi.org/10.1186/s12874-024-02291-6
https://doi.org/10.1186/s12874-024-02291-6
https://doi.org/10.17632/v8vn35zj3g.1
https://doi.org/10.6084/m9.figshare.13662203.v3
http://github.com/joyichow/wolbachia-quasiexperiments
http://github.com/joyichow/wolbachia-quasiexperiments
https://www.medrxiv.org/content/10.1101/2023.11.08.23298240v1
https://www.medrxiv.org/content/10.1101/2023.11.08.23298240v1
https://www.nea.gov.sg/corporate-functions/resources/research/wolbachia-aedes-mosquito-suppression-strategy
https://www.nea.gov.sg/corporate-functions/resources/research/wolbachia-aedes-mosquito-suppression-strategy
https://www.nea.gov.sg/corporate-functions/resources/research/wolbachia-aedes-mosquito-suppression-strategy
https://www.thelancet.com/journals/lanmic/article/PIIS2666-5247(23)00397-X/fulltext
https://www.thelancet.com/journals/lanmic/article/PIIS2666-5247(23)00397-X/fulltext
https://www.thelancet.com/journals/lanmic/article/PIIS2666-5247(23)00397-X/fulltext


Page 11 of 11Chow et al. BMC Medical Research Methodology          (2024) 24:170 	

	20.	 Nichol AA, Antierens A. Ethics of emerging infectious disease outbreak 
responses: Using Ebola virus disease as a case study of limited resource 
allocation. PLoS ONE. 2021;16(2):e0246320.

	21.	 Quintero J, Ronderos Pulido N, Logan J, Ant T, Bruce J, Carrasquilla G. 
Effectiveness of an intervention for Aedes aegypti control scaled-up 
under an inter-sectoral approach in a Colombian city hyper-endemic for 
dengue virus. PLoS ONE. 2020;15(4):e0230486.

	22.	 Lim JT, Dickens BSL, Chew LZX, Choo ELW, Koo JR, Aik J, et al. Impact of 
sars-cov-2 interventions on dengue transmission. PLoS Negl Trop Dis. 
2020;14(10):e0008719.

	23.	 Lim JT, Mailepessov D, Chong CS, Dickens B, Lai YL, Ng Y, et al. Efficacy of 
Wolbachia-mediated sterility for control of dengue: emulation of a cluster 
randomized target trial. medRxiv; 2023. p. 2023.11.29.23299172. Available 
from: https://​www.​medrx​iv.​org/​conte​nt/​10.​1101/​2023.​11.​29.​23299​172v1. 
Cited 2024 Jan 30.

	24.	 Mancini MV, Ant TH, Herd CS, Martinez J, Murdochy SM, Gingell DD, et al. 
High temperature cycles result in maternal transmission and dengue 
infection differences between wolbachia strains in Aedes aegypti. mBio. 
2021;12(6):e00250-21.

	25.	 Ross PA, Wiwatanaratanabutr I, Axford JK, White VL, Endersby-
Harshman NM, Hoffmann AA. Wolbachia Infections in Aedes aegypti 
differ markedly in their response to cyclical heat stress. PLoS Pathog. 
2017;13(1):e1006006.

	26.	 Ooi EE, Wilder-Smith A. Externalities modulate the effectiveness of the 
Wolbachia release programme. Lancet Infect Dis. 2022;22(11):1518–9.

	27.	 Abadie A, Diamond A, Hainmueller J. Synthetic control methods for com-
parative case studies: estimating the effect of california’s tobacco control 
program. J Am Stat Assoc. 2010;105(490):493–505.

	28.	 Knapp TR. Why is the one-group pretest-posttest design still used? Clin 
Nurs Res. 2016;25(5):467–72.

	29.	 Bonander C. A (Flexible) synthetic control method for count data and 
other nonnegative outcomes. Epidemiology. 2021;32(5):653–60.

	30.	 Abadie A, Vives-i-Bastida J. Synthetic Controls in Action. arXiv; 2022. Avail-
able from: http://​arxiv.​org/​abs/​2203.​06279. Cited 2024 Jan 30.

	31.	 Semiparametric AA, Estimators D-i-D. Rev Econ Stud. 2005;72(1):1–19.
	32.	 Hausman C, Rapson DS. Regression Discontinuity in Time: Considerations 

for Empirical Applications. National Bureau of Economic Research; 2017. 
(Working Paper Series). Available from: https://​www.​nber.​org/​papers/​
w23602. Cited 2024 Jan 30.

	33.	 Imbens G, Kalyanaraman K. Optimal Bandwidth choice for the regression 
discontinuity estimator. Rev Econ Stud. 2012;79(3):933–59.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.medrxiv.org/content/10.1101/2023.11.29.23299172v1
http://arxiv.org/abs/2203.06279
https://www.nber.org/papers/w23602
https://www.nber.org/papers/w23602

	Evaluating quasi-experimental approaches for estimating epidemiological efficacy of non-randomised field trials: applications in Wolbachia interventions for dengue
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Introduction
	Methods
	Study cohorts and data collection
	Quasi-experimental methods for understanding intervention effects
	Aggregates of intervention efficacy (IE)

	Robustness checks for quasi-experimental methods
	Simulation study


	Results
	Characteristics and outcomes of Wolbachia trials across study settings
	Aggregated intervention efficacies by site and event time
	Empirical validation by simulation study

	Discussion
	Conclusion
	Acknowledgements
	References


