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Abstract 

Background A platform trial approach allows adding arms to on-going trials to speed up intervention discovery 
programs. A control arm remains open for recruitment in a platform trial while intervention arms may be added 
after the onset of the study and could be terminated early for efficacy and/or futility when early stopping is allowed. 
The topic of utilising non-concurrent control data in the analysis of platform trials has been explored and discussed 
extensively. A less familiar issue is the presence of heterogeneity, which may exist for example due to modification 
of enrolment criteria and recruitment strategy.

Method We conduct a simulation study to explore the impact of heterogeneity on the analysis of a two-stage 
platform trial design. We consider heterogeneity in treatment effects and heteroscedasticity in outcome data 
across stages for a normally distributed endpoint. We examine the performance of some hypothesis testing proce-
dures and modelling strategies. The use of non-concurrent control data is also considered accordingly. Alongside 
standard regression analysis, we examine the performance of a novel method that was known as the pairwise trials 
analysis. It is similar to a network meta-analysis approach but adjusts for treatment comparisons instead of individual 
studies using fixed effects.

Results Several testing strategies with concurrent control data seem to control the type I error rate at the required 
level when there is heteroscedasticity in outcome data across stages and/or a random cohort effect. The main param-
eter of treatment effects in some analysis models correspond to overall treatment effects weighted by stage wise 
sample sizes; while others correspond to the effect observed within a single stage. The characteristics of the estimates 
are not affected significantly by the presence of a random cohort effect and/ or heteroscedasticity.

Conclusion In view of heterogeneity in treatment effect across stages, the specification of null hypotheses in plat-
form trials may need to be more subtle. We suggest employing testing procedure of adaptive design as opposed 
to testing the statistics from regression models; comparing the estimates from the pairwise trials analysis method 
and the regression model with interaction terms may indicate if heterogeneity is negligible.
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Introduction
A platform trial approach can speed up intervention dis-
covery programs. This is achieved by allowing adding 
arms and other pre-specified design adaptations during 
the lifetime of a study. The approach can be considered as 
an extension of a multi-arm multi-stage adaptive design: 
A control arm is always active for recruitment and new 
arms can be added after the onset of a platform trial, 
while other pre-specified adaptations may be employed 
as in multi-arm multi-stage designs. The time to dis-
cover interventions and the number of patients involved 
in clinical studies can be reduced by such an approach 
when compared to conducting multiple independent 
two-arm studies. This is because a platform trial is set-
up once for the lifetime of a study, and there is only one 
control arm being used to evaluate multiple intervention 
simultaneously [1, 2]. Examples of platform trials include 
STAMPEDE for prostate cancers [3], REMAP-CAP for 
community-acquired Pneumonia [4] FLAIR for chronic 
lymphocytic leukaemia [5], and RECOVERY for con-
firmed or suspected Covid-19 [6].

For interventions that were added after the onset of a 
platform trial, the comparisons with the treatment of the 
control arm can either utilise all the control data that are 
available for the analysis, or only the data of those controls 
who were randomized during the same period as the sub-
jects who were randomized to the intervention arms. The 
later control data are often known as contemporaneous 
or concurrent control data. To our knowledge, the meth-
odology research for the analysis of platform trials has 
been focusing on this aspect [7–13]. From the statistical 
point of view, the choice between these two analysis strat-
egies is related to the bias-variance tradeoff when there is 
a time trend in the study. The former strategy may lead to 
a biased estimated treatment difference that has a smaller 
variance than the latter strategy when there is a time trend 
in the trial. Several researchers identified that using a cat-
egorical time modelling approach fitted to all data can give 
valid treatment effect estimates when the outcomes of all 
active arms (within a stage/period) are influenced by a time 
trend in a similar manner, even if the trend is non-linear in 
recruitment time [8, 10]. From the implementation per-
spective, some stakeholders were concerned about the tem-
porality of the nonconcurrent control and bias introduced 
by different confounders related to time; but in some trial 
scenarios where recruitment is challenging, the use of non-
concurrent control data may be justified [14, 15].

Here we focus on another issue in platform (and adap-
tive) trials that is less familiar to the trial community, 
namely heterogeneity across stages of a study. More 
specifically we refer to the scenario where the responses 
of experimental subjects who were recruited to one 
trial stage are consistently different to the responses of 

subjects who were recruited to another stage. This phe-
nomenon may cause the following issues in a platform 
trial with a continuous endpoint: i) the group average 
effect of a treatment (either of an intervention or the 
control arm) becomes inconsistent across stages, and/
or ii) variances of outcome becomes inconsistent across 
stages, i.e., heteroscedasticity in outcome data. Example 
of reasons include modification of eligibility criteria as 
arms are dropped or added [16]; there exist patients who 
respond differently to the same treatment across stages 
in the presence/absence of other intervention arms (an 
effect that is analogous to the placebo effect) [17]; and/or 
recruitment started with a limited number of trial sites/ 
regions but was broadened to include more sites/ regions 
as the trial progresses [18].

In fact, the topic of heterogeneity has been widely 
explored in the context of meta-analysis where the results 
of multiple studies are combined for making an overall 
inference, see for example the discussion between clinical 
heterogeneity and statistical heterogeneity [19]. In recent 
years, heterogeneity in treatment effects in fixed trials has 
drawn the attentions of trial statisticians due to the Covid-
19 pandemic outbreak [20–22]. To mimic the scenario 
where there are multiple independent studies, it has been 
suggested to split the data of a single trial into separated 
distinct blocks/stages, e.g., before pandemic, during pan-
demic and after pandemic, such that the methods in the 
topics of meta-analysis may be applied analogously [20, 21].

Methods to assess heterogeneity in treatment effects 
across periods in either a fixed trial or an adaptive trial 
include: Cochran’s Q test that was first proposed for 
meta-analysis [20, 21], a multi-step testing procedure for 
heterogeneity in adaptive designs [23] and the test for 
qualitative interaction between stages of adaptive designs 
[24]. Nevertheless, some may argue that the data of fixed 
trials and adaptive trials are unlikely to be large enough 
to conduct such a test with high power at the commonly 
considered significance level of 5% [23, 25].

To account for heterogeneity in treatment effects 
across stages in the analysis of fixed trials, some research-
ers proposed to utilise the approaches for meta-analysis 
[20], Bayesian hierarchical methods [21] or machine 
learning techniques [22]. We are not aware of any pro-
posal/ investigation that accounts for heterogeneity in the 
analysis of platform trials; the closest one is the proposal 
of a network meta-analysis framework that assesses the 
impact of utilising non-concurrent controls on the analy-
sis of platform trials [9].

Our goal here is to explore the impact of heteroge-
neity on the analysis of a platform trial by a simulation 
study. Many have suggested that heterogeneity across 
trial stages would cause complications in result inter-
pretations [16, 18, 26, 27]. They have described the issue 
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to raise awareness of the problem but to our knowl-
edge, nobody has explored numerically how the pres-
ence of heterogeneity affects the inference. We examine 
the performance of several hypothesis testing proce-
dures and modelling approaches for a two-stage design 
that adds an arm in the second stage. In addition to the 
usual regression modelling approaches, we consider 
the application of a novel modelling approach, known 
as pairwise trials analysis method, which was proposed 
for the analysis of an innovative (non-adaptive) design 
[28]. This model includes fixed effects for making mul-
tiple research comparisons in the analysis, as opposed to 
the fixed effects for independent studies in the context of 
network meta-analysis.

The structure of this article is as follows. We first 
review some testing and estimation strategies for the 
analysis of platform trials. We then describe our simula-
tion study and selected analysis strategies in more details. 
We explore multiple scenarios to examine the impact of 
heterogeneity on the analysis. Finally we discuss the sim-
ulation results and comment on the analysis strategy for 
platform trials that have a more complex design than the 
considered setting.

Methods
Focusing on many-to-one comparisons, we are interested 
in making inference about each research comparison 
in terms of hypothesis test and estimation of treatment 
effect. Hereafter we refer to a research comparison as 
the comparison between an intervention and the control 
treatment. We refer to a treatment effect as the mean dif-
ference between the responses of an intervention and the 
responses of the control treatment. We describe some 
options of analysis strategy for hypothesis test and esti-
mation in this section.

Consider a two-stage design that started with three arms 
in stage one; a forth arm is added to the second stage of 
the study. Let yijk be the response of experimental sub-
ject i in arm j of stage k, with i = 1, ..., njk , j = A,B,C , for 
intervention arms and j = 0 for control arm, k = 1, 2, indi-
cates the trial stage, and njk is the sample size of arm j in 
stage k. Let nj be the total sample size of arm j in the study 
with nj1 + nj2 = nj . Consider stage one has three arms 
j = 0,A,B, and stage two has four arms j = 0,A,B,C , 
where intervention C is the newly added arm with nC1 = 0.

In the scenario where both the effect of a treat-
ment and the outcome are homogeneous across stages, 
a normally distributed outcome of arm j has mean 
µ′
j and variance σ 2 , i.e., yijk ∼ N (µ′

j , σ
2) . (Otherwise 

we have yij1 ∼ N (µj1, σ
2) for stage one responses 

and yij2 ∼ N (µj2, σ
2 + σ 2

e ) for stage two responses 
as considered in our simulation study in “Simulation 
study” section).

Hypothesis testing procedures
For each research comparison, consider the one-sided 
null hypothesis H0j′ : µ

′
j − µ′

0
= 0 where a positive differ-

ence represents a treatment benefit, j′ = A,B,C.
One testing strategy that ignores the fact that arm C 

was added to stage two of the study is to apply a simple 
T-test to each null hypothesis. For H0C , one may use all 
the control data or only the concurrent control data, i.e., 
stage two control data, to conduct the test as described in 
the Background section.

Without making adjustment for testing more than one 
hypothesis in a study, one may apply the simple T-test to 
each null hypothesis at α significance level. Alternatively 
one may apply a procedure/ correction to control the 
familywise type I error rate (FWER), i.e., the probability 
of rejecting at least one null hypothesis, at the desired 
level. For example, to apply Bonferroni correction in our 
context, a simple T-test is applied to each hypothesis at 
α/3 significance level in order to ensure that the FWER is 
achieved at α level.

A less conservative strategy than the T-test with Bon-
ferroni correction is to consider Dunnett test in plat-
form trials; the Dunnett test accounts for the correlation 
between the test statistics of the research comparisons 
due to utilising a common control group [29].

To ensure the FWER is controlled in the strong sense, 
i.e., FWER is guaranteed for any configuration of true 
and non-true null hypotheses (whether the global null 
hypothesis is true or not), we can apply a closed test-
ing procedure with a test [30, 31]. More specifically, 
this involves testing intersection hypotheses in addi-
tion to the usual elementary/individual H0j′ . The closed 
test principle states that an individual null hypothesis is 
only rejected when the elementary hypothesis and all the 
associated intersection hypotheses are also rejected at α-
level. An intersection hypothesis can be tested using test-
ing procedure such as the Dunnett test, Simes test, Sidak 
test and the likelihood ratio tests [31]. Table 1 shows the 
rejection set of hypotheses when the closed test principle 
is applied to the considered trial design here.

Note that the above described testing strategies have 
not accounted for the adaptation made to the study, i.e., 
adding arm C to the second stage of the study. In other 
words, these strategies ignore the two-stage design 
structure and any dissimilarities between the stages. 
Testing strategies that account for design modifica-
tions include the combination test procedures [32] and 
the procedure based on the conditional error principle 
[33]. These strategies allow the application of pre-spec-
ified design modifications without compromising the 
trial integrity, in the sense that the type I error rate or 
the FWER is controlled at the desired level. The con-
ditional error principle was also proposed to enable 
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modification of (fixed) trials that were affected by the 
Covid-19 pandemic [21].

The idea of the conditional error principle is as fol-
lows. First, compute the conditional probability of 
rejecting a null hypothesis, conditioned on the data 
prior to any design modification, i.e., stage one data in 
our context. This conditional error rate is then used as 
the error rate for evaluating the remaining hypotheses 
based on the data post-modification, i.e., stage two data 
in our context. Proceeding in such a way maintains the 
error rate at the desired level.

On the other hand, combination test procedures 
work by combining the stage-wise p-values via a pre-
specified function and comparing the resulting value 
with a significant level for a decision to reject or not 
reject a null hypothesis [34]. More specifically, the data 
of each stage are used to compute a respective p-value, 
e.g., based on a T-test or a Dunnett test. The resulting 
stage-wise p-values are then combined, e.g., by mul-
tiplication (for the Fisher’s combination method) or 
weighted summation (for the Inverse Normal method).

One may also apply the closed test principle when 
employing a combination test procedure or the con-
ditional error principle. This means the intersection 
hypotheses are tested analogously. For intersection 
hypotheses that involve the newly added research com-
parison C, we don’t have any information about it when 
computing the corresponding (stage one) conditional 
error rate or p-value; the data of arm C will only play a 
role in the second stage computation [7, 31]. For exam-
ple, the intersection ∗H0A ∩H0B ∩H0C is equivalent to 
∗H0A ∩H0B for stage one computation.

Estimation of treatment effects
One simple way to estimate a treatment effect of a 
research comparison is to consider the difference 
between the sample mean response of an intervention 

arm and the sample mean response of the control arm. 
Together with their standard deviations, T-statistic can 
be constructed for the corresponding hypothesis test.

Alternatively one may fit a regression model to all 
data, providing the summary statistics of the least 
squared estimates of treatment effects. In the context 
of a two-stage design that adds an arm, one may add a 
stage effect to the regression model to reflect the two-
stage design structure. Such modelling approaches 
use all control data in the estimation of all treatment 
effects, including that of research comparison C. Some 
authors find that the latter strategy provides a valid 
inference when there is a non-differential time trend in 
the study, i.e., the data of different arms are affected by 
a trend in a similar way that the trend is offset in the 
estimated treatment effects [8, 10]. To account for a 
differential trend, including a treatment-by-stage inter-
action term in the regression model may give valid 
inference but at the cost of not utilising the non-con-
current control data for research comparison C [10].

A pairwise trials analysis method has been proposed 
for an innovative design (known as Practical design) 
where there are subgroups of subjects defined by ran-
domization lists; each list contains a subset of inter-
ventions that a patient is eligible for randomization 
[28]. This modelling approach fits a single model to 
duplicated data that are involved in each pairwise com-
parison, and adjusts for the pairwise comparisons with 
fixed effects. The standard errors of the estimated treat-
ment effects are then computed using a sandwich vari-
ance to reflect the dependency between the duplicated 
data. (See example in the next section.)

We propose a version of the pairwise trials analysis 
approach for the analysis of platform trials, especially 
when there are many arms added at various stages and 
some patients are eligible for randomization to some 
arms but not all (scenario not considered here). Our 
context here is analogous to the Practical design [28] 
when view the design as recruitment of two different 
subgroups and ignore the stage/ recruitment period. 
More specifically, patients in stage one are ‘eligible’ 
for randomization to the control arm, arm A, and B; 
patient in stage two are ‘eligible’ for randomization to 
the control arm, arm A, B and C. Such a design has four 
arms and some patients are ineligible for randomiza-
tion to arm C.

Simulation study
We now describe the setting of our simulation study and 
some analysis strategies in more details. The purpose of 
the simulation study is to explore the impact of hetero-
geneity on the inference when some analysis strategies 

Table 1 Closed testing procedure for three research 
comparisons: reject a hypothesis when both the intersection 
hypothesis and the rejection set are each rejected by a testing 
procedure at significant level α

* When computing the stage one p-value for the combination test, these are 
equivalent to the corresponding hypothesis without H0C

Intersection hypothesis Rejection set

∗
H0A ∩ H0B ∩ H0C

H0A ∩ H0B H0A ∩ H0B ∩ H0C

∗
H0A ∩ H0C H0A ∩ H0B ∩ H0C

∗
H0B ∩ H0C H0A ∩ H0B ∩ H0C

H0A H0A ∩ H0B ∩ H0C and H0A ∩ H0B and H0A ∩ H0C

H0B H0A ∩ H0B ∩ H0C and H0A ∩ H0B and H0B ∩ H0C

H0C H0A ∩ H0B ∩ H0C and H0A ∩ H0C and H0B ∩ H0C
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are employed. More specifically, we consider the mean 
and variance of yijk by stages and vary their values in the 
underlying data generating mechanism. We then apply 
some of the analysis strategies to the simulated data and 
examine the properties of the inference.

We follow some of the numerical setting of a previ-
ous work [7]: Consider each arm has a total sample size 
of nj = 120 experimental subjects, which would give a 
power of 0.9 to detect an effect size of 0.38 between an 
intervention arm (A or B) and the control arm, at a sig-
nificant level of α = 5% based on a one-sided T-test. For 
the added arm C, set nc2 = nc = 120 ; this means control 
data that are concurrent to arm C will be less than nc2.

Three respective timings of adding an arm are consid-
ered. More specifically, arm C is added after 25%, 50% 
and 75% of nj subjects are recruited to the study, for 
j = 0,A,B . For each experimental subject, a two-step 
randomization procedure is applied: subjects are first 
randomized to a two-arm cohort, followed by randomi-
zation to an arm within the cohort. More specifically, a 
cohort consists of one arm for an intervention, another 
for the control treatment. For example, cohort A consists 
of those in arm A and the control arm; cohort B consists 
of those in arm B and the control arm; cohort C consists 
of those in arm C and the control arm. Table 2 shows the 
randomization ratios for the trial settings considered in 
our simulation. We use simple randomization with the 
considered ratios for each step of the procedure in our 
simulation.

Let Y1 = (y0,1, yA,1, yB,1) be the stage one outcome 
data and Y2 = (y0,2, yA,2, yB,2, yC ,2) be the stage two out-
come data, where yjk is the vector of responses of arm j in 
stage k. We simulate Y1 from a multivariate normal dis-
tribution with mean µ1 = (µ011

T
n01

,µA11
T
nA1

,µB11
T
nB1

)
T 

and covariance �1 = σ 2In1 + σ 2
c 1n11

T
n1 where 1Tr  is a 

(r × 1) vector of ones, Ir is a (r × r) identity matrix, σ 2
c  

is a random cohort effect and σ 2 = 1 , following the set-
ting of [7]. For stage two data, we simulate Y2 from 
another multivariate normal distribution with mean 
µ2 = (µ021

T
n02

,µA21
T
nA2

,µB21
T
nB2

,µC21
T
nC2

)
T
+ τ and 

covariance �2 = (σ 2 + σ 2
e )In2 + σ 2

c 1n21
T
n2 where τ is a 

fixed cohort effect/ time trend and σ 2
e  is the extra vari-

ability in stage two responses.

Data generating mechanisms
We consider the following data generating mechanisms 
when τ = 0 and τ  = 0 respectively:

• Scenario 1 has {σc, σe} = {0, 0}

• Scenario 2 has {σc, σe} = {0.38, 0}

• Scenario 3 has {σc, σe} = {0, 0.38}

• Scenario 4 has {σc, σe} = {0.38, 0.38}

When τ = 0 , it is the scenario that has no time trend or 
fixed cohort effect, otherwise τ  = 0 . Non-zero σc corre-
sponds to having a random cohort effect while non-zero 
σe means stage one and stage two outcome data have dif-
ferent variability, i.e., an example of heteroscedasticity.

In addition to the null hypothesis scenario, denoted 
by S0, where µ1 = µ2 = 0 , we set µ02 > 0 and µA2 > 0 
respectively in the simulation to explore the impact 
of heterogeneity in treatment effect across stages. The 
case with µ02 > 0 corresponds to the scenario that all 
research comparisons in stage two are no longer under 
the null hypothesis setting; while the case with µ0A > 0 
corresponds to only research comparison A in stage two 
is no longer under the null. We consider moderate and 
large heterogeneous effects respectively. Table  2 shows 
the numerical values of µ1 and µ2 for the scenarios con-
sidered in our simulation study.

Estimands
We are interested in making comparisons between each 
intervention arm and the control arm. We want to iden-
tify if each of the null hypotheses, H0A , H0B , H0C , can 
be rejected when a testing procedure is applied. We also 
want the respective estimated treatment effects when an 
estimation strategy is employed.

Competing analysis strategies
We examine the following testing strategies:

• Apply the simple T-test to each null hypothesis at 
α = 5% . We denote these by T-test A, T-test B, and, 
T-test C for research comparisons A, B, C, respec-
tively using concurrent control data, and by T-test 
C-nc for research comparison C that employs all the 
stage one and two control data in the computation.

• Apply the simple T-test with Bonferroni correction to 
test the three hypotheses; control the FWER at 5%. We 
denote this by Bonferroni and Bonferroni-nc for com-
putations that use the concurrent control data only 
and that with the combined control data, respectively.

• Apply Dunnett test followed by the closed testing 
procedure to control the FWER at 5%. We denote 
this strategy by Dunnett.closed and Dunnett.closed-
nc for computations that use the concurrent control 
data only and that with the combined control data, 
respectively. This approach ignores the two stage 
design. Table  1 shows the intersection hypotheses 
of the closed testing procedure.

• Apply Fisher’s combination test followed by the 
closed testing procedure to control the FWER at 5%. 
We denote this strategy by Combination.closed. Let 
p1 and p2 denote the stage one and stage two p-val-
ues of a hypothesis. The Fisher’s combination test 



Page 6 of 18Lee and Emsley  BMC Medical Research Methodology          (2024) 24:163 

proceeds as follows: reject a null hypothesis when 
p1p2 ≤ exp[−1/2χ2

4
(1− α)] where χ2

4
(1− α) is the 

(1− α)-quantile of the central χ2 distribution with 
4 degrees of freedom [34]. The closed testing princi-
ple states that a null hypothesis is rejected only when 
both the elementary and intersection hypotheses are 
rejected. We compute the stage-wise p-values from a 
Dunnett test for all the elementary and intersection 
hypotheses. For stage one intersection hypotheses 
that involve the new research comparison C, they 
are equivalent to the corresponding intersection/
elementary hypotheses without H0C . For example, 
H0A ∩H0B ∩H0C = H0A ∩H0B in stage one; the 
same stage one p-value is used for these two intersec-
tion hypotheses.

For the estimation of treatment effects, we compare 
the following modelling approaches:

• Simple linear regression model ignoring the two-
stage design structure. We denote this by M0. The 
fitted model is 

 where I(·) is an indicator function and E(yijk) 
denotes the fitted value. Here θ̂j is interpreted as 
the estimated treatment effect for the comparison 
between intervention j with the control treatment, 
where j = A,B,C.

• Linear regression model adjusting for a stage effect. 
We denote this by M.stage. The fitted model is 

 where τ̂ is the estimated fixed cohort effect/ trend. This 
model tends to provide a valid inference when there is 
a non-differential time trend across stages [8, 10].

E(yijk ) = β̂0 + θ̂A I(j = A)+ θ̂B I(j = B)+ θ̂C I(j = C)

E(yijk ) = β̂0 + θ̂A I(j = A)+ θ̂B I(j = B)+ θ̂C I(j = C)+ τ̂ I(k = 2)

Table 2 Data generating mechanisms for our simulation study. All scenarios are considered with setting one for each set of {σc , σe} 
and τ = 0 and τ = −0.5 respectively. Scenario SA.b are considered for setting two and three respectively for each set of {σc , σe} and τ = 0 
and τ = −0.5 respectively

Stage one Stage two

Setting one: add an arm at midpoint

     Stage wise sample size: n01 = nA1 = nB1 = 60 , nC1 = 0 n02 = nA2 = nB2 = 60 , nC2 = 120

     Randomization ratios:

     Step one 90:90 for cohort A : B 80:80:140 for cohort A : B : C

     Step two 60:30 for arm A : control 60:20 for arm A : control

60:30 for arm B : control 60:20 for arm B : control

120:20 for arm C : control

Setting two: add an arm after 25% recruitment

     Stage wise sample size: n01 = nA1 = nB1 = 30 , nC1 = 0 n02 = nA2 = nB2 = 90 , nC2 = 120

     Randomization ratios:

     Step one 45:45 for cohort A : B 120:120:150 for cohort A : B : C

     Step two 30:15 for arm A : control 90:30 for arm A : control

30:15 for arm B : control 90:30 for arm B : control

120:30 for arm C : control

Setting three: add an arm after 75% recruitment

     Stage wise sample size: n01 = nA1 = nB1 = 90 , nC1 = 0 n02 = nA2 = nB2 = 30 , nC2 = 120

     Randomization ratios:

     Step one 135:135 for cohort A : B 40:40:130 for cohort A : B : C

     Step two 90:45 for arm A : control 30:10 for arm A : control

90:45 for arm B : control 30:10 for arm B : control

120:10 for arm C : control

     Scenarios {µ01,µA1,µB1} {µ02,µA2,µB2,µC2}

     S0: Null scenario {0, 0, 0} {0, 0, 0, 0}

     SC.m: Moderate heterogeneity in control arm {0, 0, 0} {0.2, 0, 0, 0}

     SC.b: Big heterogeneity in control arm {0, 0, 0} {0.7, 0, 0, 0}

     SA.m: Moderate heterogeneity in arm A {0, 0, 0} {0, 0.2, 0, 0}

     SA.b: Big heterogeneity in arm A {0, 0, 0} {0, 0.7, 0, 0}
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• Linear regression model adjusting for a stage effect 
and an interaction term for stage-by-intervention A. 
We denote this by M.stageXA. The fitted model is 

 where η̂A represents the additional time effect on 
arm A in stage two, relative to the time trend on 
other arms in stage two. In other words, this model 
accounts for a differential time effect on arm A while 
other arms are affected by a trend equally [10].

• Linear regression model adjusting for a stage effect 
and two interaction terms for i) stage-by-interven-
tion A and ii) stage-by-intervention B respectively. 
We denote this by M.stageXAXB. The fitted model is 

 where the additional model parameter, η̂B , represents 
the additional time effect on arm B in stage two, rela-
tive to the time trend on the control arm in stage two.

• The pairwise trials analysis method [28]. We denote 
this by M.new. Prior to fitting a model, we prepare 
the data as follows: For stage one data, create two 

E(yijk ) =β̂0 + θ̂A I(j = A)+ θ̂B I(j = B)+ θ̂C I(j = C)

+ τ̂ I(k = 2)+ η̂A I(j = A) I(k = 2)

E(yijk ) =β̂0 + θ̂A I(j = A)+ θ̂B I(j = B)+ θ̂C I(j = C)

+ τ̂ I(k = 2)+ η̂A I(j = A) I(k = 2)+ η̂B I(j = B) I(k = 2)

copies of the original control data: one set is used 
for making the inference about research compari-
son A, another for research comparison B. Like-
wise for stage two data, create three copies of the 
original control data that are to be used for mak-
ing the inference about each of the three research 
comparisons. Then create a dummy variable Zijk to 
indicate the research comparisons. For example, the 
responses of arm A and of a copy of all the original 
control data have Zijk = A0 , the responses of arm 
B and of a copy of all the original control data have 
Zijk = B0 , and the responses of arm C and of a copy 
of the original stage two control data have Zijk = C0 . 
A model is then fitted to the data, resulting in 

 where γB0 and γC0 represent the comparisons. The 
label of the data entries is used as the “clustering” 
variable for computing the sandwich variance.

Note that we use θ̂j , j = A,B,C , for the estimates of 
treatment effects in all these competing strategies as θ̂j is 
the parameter of interests in the main model.

E(yijk ) =β̂0 + θ̂A I(j = A)+ θ̂B I(j = B)+ θ̂C I(j = C)

+ γB0 I(Zijk = B0)+ γC0 I(Zijk = C0)

Fig. 1 For T-test A, T-test B, T-test C and T-test C-nc, the points indicate the probability of rejecting a null hypothesis. For Bonferroni , Bonferroni-nc, 
Combination.closed, Dunnett.closed, Dunnett.closed-nc, the points indicate the FWER. Arm C is added after recruitment of 50% of nj , j = 0, A, B, 
in the simulation
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Performance measures
For hypothesis testing, we focus on the probability of 
rejecting a hypothesis or at least one hypothesis that 
make comparison between an intervention arm and the 
control arm (depending on the testing strategy).

For estimation, we consider the distribution of the sam-
ple estimates, θ̂j , from the analysis models. We present 
box plot to examine the mean, median and variability of 
the sample estimates. We also present the plot of root 
mean squared error (rMSE) of the estimates.

Results
We repeat the randomization and the respective data 
generating process 5000 times and summarise the anal-
ysis results across the replications. All simulation are 
implemented on R 4.2.2.

Hypothesis testing
Figure  1 shows the rejection probability of an individ-
ual null hypothesis for T-test A, T-test B, T-test C and 
T-test C-nc, and the rejection probability of at least one 
null hypothesis for the rest of the competing proce-
dures, when arm C is added after recruitment of 50% of 
nj , j = 0,A,B . The dashed lines correspond to the 95% 
simulation error coverage for the nominal rate of 5%. The 
first row of plots are the results for trial settings where 

there are no fixed cohort effect in the data while the sec-
ond row for the settings with a fixed cohort effect of -0.5. 
Each column corresponds to a scenario with {σc, σe}.

In general, we find that all the considered testing pro-
cedures that do not utilise the stage one control data 
for research comparison C tend to control the FWER 
or the type one error rate well. We see that some points 
are slightly outside of the 95% simulation error coverage, 
which might be due to the small number of trial replica-
tions considered in the simulation.

When there are no fixed and random cohort effects in 
the data, i.e., Fig. 1 top row of plots scenarios 1 and 3, the 
procedures that utilise stage one control data for research 
comparison C seem to control the associated error rate 
well even when stage two data have a larger variability than 
stage one data. When there is a random cohort effect (and 
no fixed cohort effect) in the data, i.e., Fig.  1 top row of 
plots scenarios 2 and 4, these procedures lead to an infla-
tion of the associated error rate, which can be as high as 
30% (as opposed to the nominal level of 5%). This is because 
for research comparison C, the pooled estimate of variance 
in these procedures underestimates the true value, leading 
to more rejections of the null hypothesis [7]. We see that 
Bonferroni-nc and Dunnett.closed-nc have a slightly smaller 
inflation than T-test C-nc in these scenarios. This might 
be because these procedures focus on FWER and that the 

Fig. 2 The points denoted by Bonferroni and Dunnett.closed correspond to the FWER. The points denoted by T-test A, T-test B, and T-test C 
correspond to the type one error rate
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pooled estimates of variances for the other two research 
comparisons are over-estimating the true value [7], which 
lead to fewer rejections of the corresponding hypotheses; 
so the overall rejection rate of at least one null hypothesis 
is slightly lower than the type one error rate of T-test C-nc.

For settings where a fixed and a random cohort effect are 
present in the data, i.e., Fig. 1 bottom row of plots scenar-
ios 2 and 4, the procedures that utilise the combined con-
trol data for research comparison C lead to an inflation of 
error rate, which can be as high as 15%; but these magni-
tudes are slightly smaller than the settings that do not have 
a fixed cohort effect (but a random cohort effect). This 
might be explained by the fact that i) the pooled estimates 
of variances are biased (for all research comparisons) and 
ii) there is a negative fixed cohort effect in the combined 
control data. When there is a positive fixed cohort effect 
(simulation result not presented here), these procedures 
can lead to an inflation of the associated error rate where 
the magnitudes are larger than the settings that do not 
have a fixed cohort effect (but a random cohort effect). The 
magnitude of inflation depends on the values of τ > 0.

For settings where there is a fixed cohort effect but not 
a random cohort effect in the data, i.e., Fig. 1 bottom row 
of plots scenarios 1 and 3, the procedures that utilise the 
combined control data for research comparison C lead to 

a deflation of the associated error rate, with T-test C-nc 
having no rejection of the null hypothesis at all. This can 
be explained by the fact that the pooled estimate of treat-
ment effect is bias negatively in the presence of a negative 
fixed cohort effect; the rejection frequency of Bonferroni-
nc and Dunnett.closed-nc are due to the rejection of the 
other two null hypotheses. When there was a positive 
fixed cohort effect, we observed an inflation of error rate, 
which magnitude depends on the values of τ > 0 (simula-
tion result not presented here).

Figure 2 shows the rejection probability under the same 
trial scenarios to those considered in Fig. 1 but computed 
using the test statistics of an analysis model (indicated on 
the x-axis). More specifically, the test statistics of a fitted 
model is used to test the null hypotheses by i) rejecting 
each null hypothesis at α = 5% level, denoted by T-test 
A, T-test B, and T-test C, respectively; ii) rejecting each 
null hypothesis at α/3 level, denoted by Bonferroni or iii) 
a Dunnett test followed by a closed testing procedured, 
denoted by Dunnett.closed. The results from using the 
test statistics of model M0 are analogous to the results of 
T-test C-nc, Bonferroni-nc and Dunnett.closed-nc in Fig. 1 
as the least square estimates from M0 are equivalent to 
the sample mean differences. For hypothesis tests based 
on the test statistics of other modelling approaches, the 

Fig. 3 Box plots of sample estimates for each research comparison for scenario S0 with τ = 0,µ1 = 0,µ2 = 0 . Arm C is added after recruitment 
of 50% of nj , j = 0, A, B
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corresponding error rate may not be controlled at level α 
when the underlying model assumptions fail to hold, e.g., 
some of the rejection probabilities are outside of the 95% 
simulation error coverage for scenarios 2,3 and 4. This 
in contrast with the results on Fig. 1 shows that the non-
model based hypothesis testing strategies are more robust 
when heterogeneity presents in the data.

Estimation of treatment effects
We refer to sample estimates as the estimated treatment 
effect of a single research comparison obtained from the 
simulation replications.

For figures that display the box plots of sample esti-
mates: each row and column correspond to a research 
comparison and a scenario with different {σc, σc} . From 
all box plots, we see that the sample estimates from all 
competing strategies are normally distributed and the 
mean and median are closed to each other. Comparing 
the box plots of an approach across the columns, i.e., sce-
narios with different {σc, σc} , we see that the properties of 
θ̂j are consistent except the samples from M0.

First focus on the scenarios with τ = 0 and the set-
ting where arm C is added after recruitment of 50% of nj , 
j = 0,A,B, in the simulation.

Under the null scenario, S0, where all research compar-
isons have zero treatment effects across the stages, Fig. 3 
shows that the sample estimates from all methods have a 
mean and median that are close to zero for all research 
comparisons. For research comparison B, the sample 
estimates from M.stageXAXB have the largest interquar-
tile range when compared with other methods across the 
scenarios. This observation is similar for research com-
parison A when we have scenarios 1 and 2; for the other 
two scenarios, the sample estimates from M.stageXA 
have the largest interquartile range. These indicate that 
including intervention-by-stage interaction term(s) in 
the analysis model increases the spread of the sample 
estimates of treatment effects; it is also indicated by the 
longer tails in the corresponding box plots. For research 
comparison C, we see that the sample estimates from M0 
have the smallest interquartile range and the shortest 
tails for scenarios 1 and 3; but the opposite characteris-
tics were observed for scenarios 2 and 4. The later might 
be due to the fact the M0 does not account for the extra 
variability and the random cohort effect in the data.

We now consider scenarios SC.m and SC.b where 
the control treatment has a null effect in stage one but 
µ02 > 0 ; while the mean responses of all interventions 

Fig. 4 Box plots of sample estimates for each research comparison for scenario SC.m with τ = 0,µ02 = 0.2 and other stage wise means are equal 
to 0. Arm C is added after recruitment of 50% of nj , j = 0, A, B
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are zero in both stages. When µ02 = 0.2 in scenario 
SC.m, the treatment effect weighted by stage wise sam-
ple sizes is equal to 0 x 0.5 + (-0.2) x 0.5= -0.1 for both 
research comparisons A and B. When µ02 = 0.7 in sce-
nario SC.b, the treatment effect weighted by stage wise 
sample sizes is equal to 0 x 0.5 + (-0.7) x 0.5= -0.35 for 
both research comparisons A and B. For research com-
parison C, µ0C − µ02 = 0− 0.2 = −0.2 for scenario 
SC.m and µ0C − µ02 = 0− 0.7 = −0.7 for scenario 
SC.b, respectively.

For research comparison A, Figs.  4 and 5 show that 
the mean and median of the sample estimates from 
M.new, M.stage, and M0 are closed to the correspond-
ing weighted treatment effects; while those from 
M.stageXAXB are closed to µ01 = 0 ; but those from 
M.stageXA are further away from zero and the weighted 
treatment effects. A similar finding is observed for 
research comparison B except that M.stageXA is now 
giving a mean and median that are closed to the cor-
responding weighted treatment effects. For research 
comparison C, M.new, and M.stageXAXB give sample 
estimates that have a mean and median that are closed 
to the true treatment effect of stage two; while the mean 
and median of sample estimates from all other methods 
are consistently larger than the true treatment effect 

and closer to 0 across scenarios 1-4 in the figures. As 
in scenario S0, Fig. 3, the sample estimates from M0 for 
research comparison C have the shortest tails in scenar-
ios 1 and 3, and the longest tails in scenarios 2 and 4.

Consider scenarios SA.m and SA.b where intervention 
A has a null effect in stage one but µA2 > 0 ; while all other 
arms have a null effect in both stages. Figures  6 and 7 
show that the characteristics of the sample estimates from 
all methods for research comparison B remain the same as 
in the null scenario, S0, in Fig. 3 as expected. For research 
comparison C, the pattern of observations is similar to the 
scenario S0 except for M.stage where the resulting mean 
and median are consistently smaller than the true value of 
zero across the scenarios. This observation is more obvi-
ous for scenario SA.b in Fig. 7 where µA2 = 0.7 than sce-
nario SA.m where µA2 = 0.2.

For research comparison A, Figs. 6 and 7 show that the 
sample estimates from M.stageXAXB have a mean and 
median that are closed to zero, i.e., the true value of stage 
one effect, µA1 . The sample estimates from M.stageXA 
have a mean and median that are closed to the true value 
of the second stage effect, µA2 . The other methods give 
sample estimates that have a mean and median that are 
closed to the weighted value of the stage-wise effects, 
weighted by the proportion of stage-wise sample size. For 

Fig. 5 Box plots of sample estimates for each research comparison for scenario SC.b with τ = 0,µ02 = 0.7 and other stage wise means are equal 
to 0. Arm C is added after recruitment of 50% of nj , j = 0, A, B
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example in scenario SA.m, the weighted value is 0 x 0.5 
+0.2 x 0.5=0.1 while in scenario SA.b, the weighted value 
is 0 x 0.5 + 0.7 x 0.5 = 0.35.

Figures  8 and 9 show the results for scenario SA.b 
when arm C is added after recruitment of 25% and 75% 
of nj respectively, for j = 0,A,B . The findings are simi-
lar to the setting when arm C is added after recruitment 
of 50% of nj . The mean of treatment effects for research 
comparison A from methods M.new, M.stage and M0 
are closed to the weighted treatment effects of 0 x 0.25 
+ 0.7 x 0.75=0.525 and 0 x 0.75 + 0.7 x 0.25=0.175 
respectively. For research comparison C, we also see 
that the mean and median of sample estimates from 
M.stage are consistently smaller than the true value in 
these two settings.

When a fixed cohort effect of τ = −0.5 exists in the 
data, all observations about research comparisons A, B 
and C are similar, except the sample estimates of research 
comparison C from M0. The latter is not surprising as 
model M0 does not account for the fixed cohort effect 
in the data and that all the control data are used in the 
analysis of research comparison C. The correspond-
ing plots can be found in the Supplementary document 
Figures 1-5.

We now consider the rMSE of the estimates from dif-
ferent analysis strategies. Figure 10 shows the rMSE for 
scenario S0 with τ = 0 . For research comparisons A, 
estimates from M.stageXAXB have the highest rMSE 
for settings where σe = 0 , i.e., scenarios 1 and 2, fol-
lowed by the estimates from M.stageXA. The opposite 
is observed for settings where σe = 0.38 , i.e., scenarios 
3 and 4. The rMSE of estimates from M.stage is the low-
est across all scenarios 1-4 while those from M.new and 
M0 are comparable to each other.

For research comparison B, estimates from M.stageXAXB 
have the highest rMSE for all scenarios 1-4. For settings 
where σc = 0.38 , i.e., scenarios 2 and 4, the estimates 
from M.new and M0 have a slightly larger magnitude 
of rMSE than those from M.stage and M.stageXA. The 
estimates from these four analysis approaches have 
similar magnitudes of rMSE for settings where σc = 0 , 
i.e., scenarios 1 and 3.

For research comparison C, estimates from M0 have 
the highest rMSE when σc = 0.38 , i.e., scenarios 2 and 
4. Apart from these, the rMSE from all methods are 
comparable to each other within each scenario.

These patterns of finding are similar for different 
trial settings. The corresponding plots of the rMSE are 

Fig. 6 Box plots of sample estimates for each research comparison for scenario SA.m with τ = 0,µA2 = 0.2 and other stage wise means are equal 
to 0. Arm C is added after recruitment of 50% of nj , j = 0, A, B
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presented in Figures  6-14 in the Supplementary docu-
ment, for scenarios S0, SC.m, SC.b, SA.m and SA.b 
under setting one with τ = 0 and τ = −0.5 , respectively.

Discussion
In this article we consider the issue of heterogeneous 
treatment effects and heteroscedasticity in outcomes 
across stages of platform trials. We examine the meth-
ods for hypothesis testing and estimation, respectively. 
For the latter, we evaluate the novel method that was 
known as the pairwise trials analysis, alongside other 
regression analyses. We note that some of the sce-
narios/settings that we explored here are similar to 
those explored for utilising non-concurrent control 
data. More specifically, the presence of a fixed cohort 
effect is analogous to the scenario where there is a step 
time trend [8, 10] while the presence of heterogeneity 
in treatment effect across stages is analogous to the 
scenario where there is a differential time trend in the 
data [9].

Table 3 shows a summary of the performance of test-
ing procedures in terms of controlling error rate. In the 

presence of heteroscedasticity in outcome data and/or a 
random cohort effect, our simulation findings show that 
the hypothesis testing strategies using only the concur-
rent control data are more robust than those utilising 
non-concurrent control data. The comparison between 
Figs.  1 and  2 indicates that the testing results from a 
testing procedure can be different to the testing result 
following from a modelling strategy. Moreover, the 
modelling approaches that utilise non-concurrent con-
trol data may not provide reliable estimates under sce-
narios with heterogeneity. For example, the estimated 
treatment effects for research comparison C from M0 
are highly variable when there is a random cohort effect, 
while those from M.stage are biased when heterogeneity 
in treatment effects exists. These findings have not been 
emphasized by existing work that focused on the utility 
of non-concurrent control data, yet it was suggested to 
employ M.stage in the presence of non-differential time 
trend.

We do not present the hypothesis testing results 
when there is heterogeneity in the effect of an arm 
across stages. This is because in such scenarios, the true 
underlying hypothesis is changing from one stage to 

Fig. 7 Box plots of sample estimates for each research comparison for scenario SA.b with τ = 0,µA2 = 0.7 and other stage wise means are equal 
to 0. Arm C is added after recruitment of 50% of nj , j = 0, A, B
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another. For the same reason, we do not focus on the 
power of the design, i.e., the probability of rejecting 
the hypothesis(es) in this work. We see from the esti-
mation results that different modelling approaches give 
different ‘type’ of estimated effects when we focus on 
the main parameter of treatment effects, i.e., θ̂j , in the 
models. Nevertheless, we see that the properties of θ̂j 
from each competing strategy are consistent under sce-
narios with different values of {σc, σe} except those from 
M0. Table 4 summarises the properties of the estimated 
treatment effects from different analysis approaches.

For the initial research comparisons A and B respec-
tively, we find that θ̂j from the regression model adjust-
ing for all possible intervention-by-stages interaction 
terms, i.e. M.stageXAXB, correspond to the treatment 
effects of stage one when heterogeneity in treatment 
effect across stages exists. The θ̂A from M.stageXA cor-
responds to stage two treatment effect of research com-
parison A under scenarios with µA2 > 0 , otherwise it 
is bias under scenarios with µC2 > 0 . Moreover, the 
estimates from these two models have relatively larger 
rMSE than those from other analysis approaches. On 
the other hand, θ̂j from the pairwise trials analysis 

method, M0, and M.stage correspond to weighted esti-
mated treatment effects, for j = A,B . When an unequal 
ratio is used to randomize patients into arms, we find 
that the θ̂j from the pairwise trials analysis and M0 
are equivalent to wj1X̄j1 + wj2X̄j2 − (w01X̄01 + w02X̄02) 
where wjk and X̄jk correspond to njk/nj and sample 
mean of arm j in stage k respectively.; this is not the 
case for θ̂j from M.stage.

For research comparison C, we find that θ̂C from 
M.stageXAXB and the pairwise trials analysis are unbi-
ased for all the considered scenarios, including the 
scenarios with a fixed cohort effect. In the absence 
of heterogeneity in treatment effects, the estimates 
from all methods have a mean and median that are of 
similar magnitudes, but the estimated samples from 
M.stageXAXB tend to have a higher variability than 
those from the other approaches. Note that in our 
investigation arm C only exists in stage two. If there 
was another stage such that there is heterogeneity of 
its effect across stages two and three, then the findings 
will be similar to those of comparison A under scenarios 
SA.m and SA.b when utilising concurrent control data. 
For approaches that utilise non-concurrent control, the 

Fig. 8 Box plots of sample estimates for each research comparison for scenario SA.b with τ = 0,µA2 = 0.7 and other stage wise means are equal 
to 0. Arm C is added after recruitment of 25% of nj , j = 0, A, B
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finding will be analogous to the differential time trend 
explored by [9].

Based on the observations from our simulation study, 
we suggest to apply both a regression model with all the 
potential intervention-by-stages interaction terms and 
the pairwise trials analysis method to the analysis of plat-
form trials that add arms. The model of the pairwise tri-
als analysis method can be extended to include important 
covariates in the models [28].

We considered some not-too-small values for µ02 > 0 
and µA2 > 0 respectively in the simulation. When these 
parameters have small values, e.g., µ02 = 0.02 and 
µA2 = 0.02 in the respective simulation, we see that the 
impact of heterogeneity is negligible (results not pre-
sented here). In practice, the true data generating mecha-
nism is unknown. Comparing the estimated treatment 
effects from the pairwise trials analysis method and the 
model that adjusted for interactions terms may indicate if 
heterogeneity is negligible.

Like other work that is based on simulation, we pre-
sented the findings of a limited number of scenarios/ 
settings. For example, we did not consider the sce-
narios where the size of the control arm in stage two 

is updated to match the size of the newly added arm. 
We hypothesise that the results summarized in Tables 3 
and 4 remain valid under this setting. We also did not 
consider other types of outcomes such as binary and 
survival endpoints. We think the impact of hetero-
geneity on these outcomes is similar to our findings 
here. For platform trials with repeated measurements, 
future work can extend our investigation to explore the 
impact of heterogeneity.

Futhermore, we have explored a not-so-complex design 
in the presence of heterogeneity: two stages and add-
ing one arm is the only adaptation. For hypothesis test-
ing, we note that the conditional error principle and the 
combination test methods can be applied analogously to 
designs that have more than two stages and those include 
other design adaptations [35, 36].

For platform trials that only allow for adding arms 
in multiple stages, the pairwise trials analysis method 
and the model adjusting for all possible intervention-
by-stage interaction terms may also be applied analo-
gously; even though the latter would then involve 
more parameters for intervention-by-stage interac-
tions. Another scenario where the latter may not give 

Fig. 9 Box plots of sample estimates for each research comparisons for scenario SA.b with τ = 0 . Arm C is added after recruitment of 75% of nj , 
j = 0, A, B
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estimates of good property is the scenario where some 
patients are eligible for randomization to some arms 
but not all. One may explore this by considering the 
Practical design [28] in the platform trial setting.

For platform trial designs that include other type of 
adaptations, such as covariate adaptive randomization, 
response adaptive randomization and dropping arms, 
more investigation on the topic of estimation is required 
as each adaptation may cause a different type of bias in 
the estimated treatment effects when the analysis model 

does not account for it, see, for example [31, 36, 37]. 
Future work may explore how the estimated treatment 
effects from the pairwise trials analysis may be extended 
to account for the bias due to the implementation of 
other design adaptations.

We do not comment on selecting a testing procedure 
and whether multiplicity correction shall be applied to 
platform trials as the decision is dependent on trial set-
tings [15]. Interested readers are referred to [17] and the 
reference therein.

Fig. 10 Root mean squared error of sample estimates for each research comparison for scenario S0. Arm C is added after recruitment of 50% of nj , 
j = 0, A, B

Table 3 Summary of the performance of hypothesis testing procedures

a In the test of research comparison C
bYes, when there is no fixed cohort effect. No, when there is a fixed cohort effect

Is the error rate being controlled at the nominal level?

Utilise concurrent control dataa   Utilise all control dataa  

Scenario 1: σc = 0, σe = 0 Yes Yes/Nob

Scenario 2: σc = 0.38, σe = 0 Yes No

Scenario 3: σc = 0, σe = 0.38 Yes Yes/Nob

Scenario 4: σc = 0.38, σe = 0.38 Yes No
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Conclusion
In view of heterogeneity in treatment effect across stages, 
the specification of null hypotheses in platform trials may 
need to be more subtle. Moreover, we suggest conduct-
ing hypothesis test following the procedure considered 
during the design stage of the study, while the modelling 
strategies provide estimated treatment effects adjusted 
for other prognostic covariates.

In addition to exploring stage-wise heterogeneity by 
presenting key patient characteristics and results by inde-
pendent stages and treatment groups [16], we suggest to 
implement the pairwise trials analysis method and the 
modelling approach with interaction terms respectively. 
The differences between the estimated treatment effects 
from these two modelling strategies may indicate if het-
erogeneity is negligible when present. We agree with oth-
ers that trial data is unlikely to detect heterogeneity with 
high power when a formal hypothesis test is conducted 
[25]. Non-concurrent control data may be considered for 
trial settings where the impact of heterogeneity is small 
and recruitment is challenging.

Abbreviation
FWER  Familywise type I error rate
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