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Abstract 

Statistical regression models are used for predicting outcomes based on the values of some predictor variables 
or for describing the association of an outcome with predictors. With a data set at hand, a regression model can be 
easily fit with standard software packages. This bears the risk that data analysts may rush to perform sophisticated 
analyses without sufficient knowledge of basic properties, associations in and errors of their data, leading to wrong 
interpretation and presentation of the modeling results that lacks clarity. Ignorance about special features of the data 
such as redundancies or particular distributions may even invalidate the chosen analysis strategy. Initial data analysis 
(IDA) is prerequisite to regression analyses as it provides knowledge about the data needed to confirm the appro-
priateness of or to refine a chosen model building strategy, to interpret the modeling results correctly, and to guide 
the presentation of modeling results. In order to facilitate reproducibility, IDA needs to be preplanned, an IDA plan 
should be included in the general statistical analysis plan of a research project, and results should be well docu-
mented. Biased statistical inference of the final regression model can be minimized if IDA abstains from evaluating 
associations of outcome and predictors, a key principle of IDA. We give advice on which aspects to consider in an IDA 
plan for data screening in the context of regression modeling to supplement the statistical analysis plan. We illustrate 
this IDA plan for data screening in an example of a typical diagnostic modeling project and give recommendations 
for data visualizations.
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Introduction
Statistical models are commonly used in medicine 
and other fields, e.g., for predicting an outcome vari-
able based on the values of some predictor variables, for 
describing the association between the outcome and the 
predictors, or for estimating the causal effect of an inter-
vention on an outcome, adjusted for covariates. This is 
often done by defining a model structure such as, in its 
simplest form, a linear combination of the covariates, 
and estimating the unknown parameters of the model. 
Many aspects of multivariable regression analyses such 
as choosing an appropriate model family, covariate selec-
tion for a model, consideration of nonlinear associations 
of continuous covariates with the outcome, or validation 
of regression models have been discussed extensively [1–
4]. However, correct interpretation and adequate presen-
tation of a model crucially depend on knowledge about 
the predictors, in particular about their marginal and 
joint distributions. Further properties of the data such as 
patterns of missing values, collinearities, measurement 
errors, or complex hierarchies in the measured predic-
tors may have to be considered when choosing an appro-
priate model building strategy.

In practice, however, with standard software packages 
and coded functions for statistical procedures enabling 
regression analyses with little effort, data analysts may 
rush to perform sophisticated analyses, without system-
atically checking for errors in the data; without a clear 
understanding about the underlying features of the data; 
without knowledge on the suitability of the data for the 
intended analyses, or even without knowledge whether 
the data actually could provide answers to the research 
questions of interest. This problem may be even more 
prevalent when machine learning algorithms are used 
to model the data, because anomalies in the results are 
not so easily detected due to the lower explainability of 
these models. Our previous review of initial data report-
ing in five highly ranked medical journals revealed that 
some sort of data screening was performed in all papers 
and led to amendments of the intended statistical analy-
sis [5]. It remained unclear if these screening steps and 
subsequent amendments were preplanned or performed 
in a post-hoc fashion and the reporting was poor [5].

The main aim of Initial Data Analysis (IDA) is seen 
in providing reliable and transparent information about 
the data and how they meet preconditions to conduct 
appropriate statistical analyses and a correct interpre-
tation of the results to answer pre-defined research 
questions [6]. Others have noted the need for a strate-
gic approach to initial data analysis (for example, [7]). 
The IDA framework consists of six steps [6] incorpo-
rated in the research work flow [8]. Regarding steps I 

and II of the framework, we assume that metadata exist 
in sufficient detail, and that data cleaning was already 
performed [9]. Metadata summarize background infor-
mation about the data, and a data cleaning process 
identifies and corrects technical errors. In this paper 
we focus on those aspects of the IDA framework that 
address preparation of the data for building a regres-
sion model and possible consequences of the findings 
(steps III—VI).

• Data screening examines data properties to inform 
decisions about the intended analysis.

• Initial data reporting documents give insights into 
the previous steps and can be referred to when 
interpreting results from the regression modeling.

• Possible consequences of such initial analyses may 
be that the intended way of building the regression 
models may have to be revised, i.e., the analysis 
plan refined or updated.

• Finally, reporting of IDA methods and results in 
research papers (step VI) is necessary to ensure 
transparency regarding key findings that influence 
the analysis or interpretation of results.

Further details about the elements of IDA are dis-
cussed in [6].

Our objectives are (1) to give advice on what to con-
sider in an IDA plan for data screening in the context 
of regression modeling to supplement the statistical 
analysis plan and (2) to illustrate this IDA plan for data 
screening in an example with recommendations for 
data visualizations. While our examples are taken from 
medicine, our recommendations are not meant to be 
restricted to medical applications but may also guide 
data analysts in other fields of science. Reproduc-
ible R code with link to dataset is available at https:// 
strat osida. github. io/ regre ssion- regre ts/. Intermediate 
results of this project have been presented at various 
conferences and workshops. Feedback was sought from 
STRATOS members and other experienced statisti-
cians to come to a consensus.

We outline the assumptions made in our paper in 
Sect. "Aims and scope of initial data analysis in the con-
text of regression analysis". In Sect. "General strategy to 
develop an IDA plan for regression analyses" we define 
a list of several topics of relevance for an IDA plan in 
a regression modeling context. We show how to pre-
specify IDA topics by means of an example study in 
Sect. "Illustrative example: bacteremia study". In Sect. 
"Possible consequences of IDA", we discuss possible 
consequences of IDA findings. Finally, we reflect on 
integrating IDA in the research process for regression 
analyses and address reporting and limitations.

https://stratosida.github.io/regression-regrets/
https://stratosida.github.io/regression-regrets/
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Aims and scope of initial data analysis 
in the context of regression analysis
This paper elaborates on planning and conducting IDA, 
in particular data screening, in a reproducible manner 
in the context of regression analyses with a continuous, 
binary, ordinal or count-type outcome variable. While 
we focus on descriptive or predictive research questions, 
many aspects discussed here will also extend to explan-
atory models that seek to estimate a causal effect of an 
intervention. We are very aware of the danger of formu-
lating and testing hypotheses after exploring the data 
that can lead to overstated associations and false posi-
tive results [10, 11]. Hence, IDA should not be confused 
with exploratory data analysis (EDA) or with Chatfield’s 
notion of an ‘initial examination of data’, as the latter two 
approaches explicitly evaluate associations of the out-
come and the predictors [12, 13]. Instead a key principle 
of IDA is that it should –without good reason- not antici-
pate analysis directly related to the research question, 
implying that associations between outcome and predic-
tors are not explored, neither numerically nor graphi-
cally. Nevertheless, the conduct of IDA is guided by the 
research question and the intended analyses.

Figure  1 illustrates how IDA planning and conduct-
ing could be embedded in the research workflow, and 
contrasts the research flow including IDA (Path B) to 

workflows that unrestrictedly use the data to develop 
research questions and the analysis strategy (EDA, Path 
A), and to a workflow that fully prespecifies statisti-
cal analysis without initial data analysis (Path C). Ide-
ally, a statistical analysis plan can be fully prespecified 
before data collection, and it may entail, among many 
other items, the specification of the predictor set to be 
included in a model, the model structure, the outcome 
variable, any further steps considered in model building, 
and specifications how the modeling results will be inter-
preted with respect to the research question, and how 
they will be presented. This statistical analysis plan may 
also contain adaptive specifications since it is often not 
clear upfront if certain assumptions are justified by the 
data. Next, an IDA plan is devised which specifies a set of 
(mostly descriptive) analyses of the data to be conducted 
before the prespecified regression model is estimated, 
carefully avoiding any evaluations of predictor-outcome 
associations. This IDA plan may also include evaluat-
ing conditions that lead to changes in the prespecified 
analysis strategy, e.g. because of abundance of missing 
values, very imbalanced or even degenerate distribu-
tions or because of redundancy of predictors. Then IDA 
is conducted according to the prespecified IDA plan. 
Using the results of IDA, the statistical analysis plan may 
be updated or refined; any changes will be transparently 

Fig. 1 Embedding of initial data analysis (IDA) in a research workflow (Path B), contrasted to two extremes: a workflow based on exploratory data 
analysis (EDA) that has unrestricted access to the data when developing research questions and analysis strategy (Path A) and a strategy that does 
not make use of any initial data analysis to fully prespecify the statistical analysis plan (Path C)
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reported as a consequence of IDA. Finally, statistical 
analysis is conducted and reported using the finalized 
statistical analysis plan. Besides suggesting refinements 
or updates of a preliminary statistical analysis plan, IDA 
may also guide presentation and interpretation of mod-
eling results, which will be exemplified in later sections 
of the paper.

As a simple example, consider the case where the pre-
specified model includes a particular categorical predic-
tor with four levels, which should be included as three 
dummy variables contrasting three levels to a common 
predefined reference level. There is hardly any back-
ground knowledge about the expected frequencies of 
the four levels. Without consideration of IDA, during 
the regression modeling process it may turn out that 
the prespecified model is not estimable because at one 
of the levels of the predictor no events were observed. 
The analysis team may recommend to revise the analy-
sis strategy and to collapse this level with other levels in 
the analysis, but such revision is problematic because it is 
made post-hoc and has not been part of the analysis plan; 
critical assessors of the research may be suspecious about 
the criteria upon which the choice to collapse the levels 
was made, as the analysts may have tried several differ-
ent analyses. Let’s assume that the IDA plan included 
checks of the distributions of each predictor and condi-
tions under which collapsing of predictor levels is con-
sidered. IDA was then conducted according to this plan 
and revealed the sparsity of one level of the predictor, 
but without evaluating the frequency of outcome events 
for that level. As a result, the statistical analysis plan was 
refined according to the predefined conditions, transpar-
ently stating that the sparse level of the categorical pre-
dictor in question was collapsed with a suitable other 
level. Final statistical modeling proceeded according to 
the pre-specified, finalized SAP.

STROBE [15] and TRIPOD [16] are reporting guide-
lines giving advice on which aspects of a study to report. 
TARMOS [17] is a recently proposed framework for 

treatment and reporting of missing values in observa-
tional studies. In these frameworks, a couple of items/
statements relate to description of study data. Our sys-
tematic approach to initial data analysis is meant to pro-
vide the information that the modeling team needs; it is 
not meant to create results that should directly enter the 
final report, although some of them will. Since regres-
sion models can be used for a wide range of purposes, 
assumptions on the regression analysis set-up in this 
paper are listed in Table  1. IDA tasks will be explained 
in a well-defined, practically relevant setting typically 
encountered in biomedical research.

General strategy to develop an IDA plan 
for regression analyses
In this section, we provide guidance on how to develop 
an IDA plan focused on data screening to prepare regres-
sion analyses (Table  2) and is focused on three IDA 
domains: missing values, univariate distributions, and the 
multivariate system of predictors. We explain the aspects 
that we consider mandatory to be addressed in an IDA 
plan, and refer the reader to Additional file 1 for prereq-
uisites (Section S1) and optional extensions (Section S2). 
Consequences of IDA results are discussed in Sect. "Pos-
sible consequences of IDA".

Missing data
In many studies, missing values are a central and domi-
nant problem which needs to be addressed. We pro-
pose to start data screening with missing values, first 
evaluating various levels of unit missingness (Table  2, 
M1) as recommended by the STROBE statement [15]. 
Unit missingness refers to observational units that have 
missing data on all variables required for analysis. In 
observational studies, this means that parts of the target 
population are (randomly or not randomly) underrepre-
sented in the study cohort. Unit missingness could result 
from a biased selection process that may distort results 
(Table 2, ME1).

Table 1 Assumptions and scope for a general strategy of initial data analyses as prerequisite of regression analyses

Aspect Details

Purpose of analysis Focus on descriptive or predictive research aims;  many aspects also apply to causal aims

Type of analysis Regression analysis with one outcome variable and several predictors

Type of outcome variable Continuous, binary or count

Number of predictors 3 – 50; the number is assumed smaller than the number of effective observations (low-dimensional setting)

Data cleaning Has been conducted; for example, plausibility limits of all variables satisfied

Analysis strategy Most elements defined: type of regression model, set of candidate predictors, selection of variables, con-
sideration of possible nonlinear effects of continuous predictors, coding of categorical variables, inclusion 
of interactions, missing data handling

Background knowledge Data analyst collaborates with a domain expert to discuss all aspects of the analysis strategy
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The proportion of missing values (item missingness) 
should be computed for the outcome and separately for 
each predictor (Table  2, M2). This is then followed by 
evaluating the number of complete observations that are 
available for a regression model (Table 2, M3). Informa-
tion about patterns of missing values in the data may be 

useful for the modeling team to decide on possible sub-
stitution of predictors with abundant missing values. If 
stratified by the structural variables, such patterns may 
give further information about missingness mecha-
nisms; for example, if missingness of a predictor is asso-
ciated with time of recruitment this may indicate that 

Table 2 Check list for an initial data analysis (IDA) plan

Topic Item Features

Prerequisites
 Research aim PRE1 Define the research aim (descriptive, predictive, or causal) and phase 

of research (exploratory or confirmatory)

 Analysis strategy PRE2 Check specification of models and roles of variables in the models

 Data dictionary PRE3 For variables identified in PRE2, and any additional structural variables, 
check variable labels, definitions, values, units of measurement, data 
type, etc

 Domain expertise PRE4 When discussing analysis strategy with a domain expert, address: key 
predictors, structural variables for IDA, predictor grouping, expected 
missing values proportion, and predictor distributions/correlations

IDA screening domain: Missing values (predictor and outcome variables)
 Participant (unit) missingness M1 Describe: number of potentially eligible but not assessed, assessed 

but not recruited, and recruited but didn’t contribute data

 Variable (item) missingness M2 Provide missing value count and proportion for each predictor 
and the outcome variable. Distinguish by reason, if applicable

 Complete cases M3 Describe complete observations for outcome and predictors in any 
model described in PRE2

 Patterns M4 Investigate missing value patterns across all variables, structured 
by structural variables. Display as tables or appropriate visualizations

Missing values – Optional extensions

 Predictors ME1 Investigate predictors of missingness (complete vs incomplete cases)

IDA screening domain: Univariate descriptions (structural variables, predictors and outcome)
 Categorical variables U1 Summarize category frequencies and proportions, with appropriate 

plots. Summarize frequencies of collapsed categories as well

 Continuous variables U2 Inspect distributions with high-resolution histogram, summary of key 
quantiles (e.g. 1st, 5th, 25th, 50th, 75th, 90th, 99th) extreme values (5 
highest and 5 lowest), measures of central tendency (mean) and dis-
persion (Gini mean difference, standard deviation, interquartile range). 
Include number of distinct values. Describe mode of the data and its 
frequency. Similarly, inspect distributions of transformed variables, 
if applicable

Univariate analyses – Optional extensions

 Sparsity UE1 Create distributional plots to identify observations with extreme values

IDA screening domain: Multivariate descriptions (structural variables and predictors)
 Association V1 Visualize and summarize the association of each predictor 

with the structural variables

 Correlation V2 Quantify association (e.g., pairwise correlations) between all key predic-
tors in a matrix or heatmap

 Interactions, if applicable V3 Evaluate bivariate distributions of the predictors specified in interac-
tions, incorporating appropriate graphical displays

Multivariate analyses – Optional extensions

 Correlation VE1 Compare results from different association metrics

 Clustering VE2 Visualize clustering of predictors using a dendrogram to show closely 
associated predictors

 Redundancy VE3 Compute Variance Inflation Factors or fit parametric additive models 
to assess the predictability of each predictor from the remaining 
predictors
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measurements of this predictor became available only 
during the course of a study (Table 2, M4).

Univariate descriptions
Information about the empirical univariate distribu-
tions of the outcome and the involved predictors in the 
data is important for later modeling decisions, for pres-
entation of modeling results, and also for interpreting a 
model correctly (Table  2, U1 & U2). Such analyses may 
also detect concentrations of data, e.g., the distribution 
of distinct values, a spike at zero or digit preferences 
depending on the relative frequency. This information 
may guide the decision whether the functional form of 
a continuous predictor can be modelled flexibly, which 
would require a sufficient number of observations in the 
area where a nonlinear association with the outcome is 
expected, or should be better predefined, e.g., as linear. 
It may also guide a strategy to deal with influential data 
points, such as truncation or transformation of a predic-
tor. For the purpose of presenting the modeling results, 
the univariate distribution of a predictor may guide the 
choice of appropriate units corresponding to the regres-
sion coefficients.

Multivariate descriptions
Even an only moderate number of predictors can be chal-
lenging for concise multivariate descriptions. Therefore, 
we propose the following structured approach to limit 
the number of descriptions to be produced at this analy-
sis stage. First, associations of each predictor with the 
structural variables should be evaluated graphically and 
numerically (Table 2, V1). These analyses help to under-
stand how the predictors reflect structural heterogeneity. 
Next, associations between all pairs predictors should 
be assessed, and these analyses could be restricted to 
numerical evaluation if the number of predictors is large 
(Table 2, V2). In case of missing predictor values, it may 
be sufficient to use all pairwise complete observations 
to compute association measures between predictors. If 
nonlinear functional forms are considered for continuous 
predictors in a regression model, nonparametric (Spear-
man) correlation coefficients are a good choice. Other 
types of variables, e.g., categorical ones, may require 
other measures of association. If the analysis strategy pre-
specified the consideration of some biologically plausible 
interactions, the association of the involved predictors 
should be given special attention in IDA, as high corre-
lation between them may influence the ability to detect 
their interaction (Table 2, V3).

We emphasize again that these multivariate analyses 
should not incorporate the outcome variable to avoid 
hypothesis generation activities.

Illustrative example: bacteremia study
To illustrate the IDA plan (Table 2) an example study in a 
regression context with publicly available data and R code 
will be shown. The corresponding IDA plan, detailed 
analyses, and materials can be found in Additional file 2 
and at the accompanying website (see Availability of data 
and materials). In this section, we chose a subset from 
this comprehensive material to exemplify the key aspects. 
Possible consequences are discussed in Sect. "Possible 
consequences of IDA".

Overview of the bacteremia study
We will exemplify our proposed systematic approach to 
data screening by means of a diagnostic study with the 
aim to fit a diagnostic prediction model for the bactere-
mia status (= presence or absense of bacteria in the blood 
stream) of a blood sample. While blood culture analysis 
is the gold standard for identifying bacteremia in patients 
with suspected blood stream infection, true positive 
rates and false positive rates have been reported to be in 
similar ranges (4.1%-7% and 0.6%- 8%, respectively) [18]. 
Moreover, blood culture analysis usually takes a few days 
to complete but is needed to inform the decision whether 
to initiate antibiotic treatment or not. A quick and precise 
estimate of the pretest probability of a positive finding of 
the blood culture analysis based on routinely available 
measurements may help to avoid unnecessary antibi-
otic treatment and may increase the cost-effectiveness of 
blood culture analysis. Hence, the hypothetical primary 
objective of our example study is to use age, sex and 49 
routinely collected laboratory variables to fit a diagnostic 
prediction model for blood-culture confirmed bactere-
mia. The hypothetical secondary objective is to describe 
the functional form of each predictor in the model, which 
is helpful for model explanation. Between January 2006 
and December 2010, patients from the General Hospital 
of Vienna, Austria, with the clinical suspicion to suffer 
from bacteremia were included into this study if blood 
culture analysis was requested by the responsible physi-
cian and blood was sampled for assessment of hematol-
ogy and biochemistry. An analysis of this study can be 
found in Ratzinger et al. [18].

The data consists of 14,691 observations from different 
patients among which 8% had bacteremia and 51 poten-
tial predictors. To protect data privacy our version of this 
data was slightly modified compared to the original ver-
sion, and this modified version was cleared by the Medi-
cal University of Vienna for public use (DC 2019–0054). 
Compared to the official results given in [18], our results 
may differ to a negligible degree.
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Bacteremia study: prerequisites for the IDA plan
Research aim (PRE1)
We assume that the aims of the study are to fit a diag-
nostic prediction model for bacteremia with 51 poten-
tial predictors collected in routine laboratory analyses 
of blood sampled and to describe the functional form 
of each predictor. These research aims are considered as 
exploratory.

Analysis strategy (PRE2)
These aims are addressed by fitting a logistic regression 
model with bacteremia status as the dependent vari-
able. Prediction models for bacteremia that preceded the 
model of Ratzinger et  al. [18] (see the citations therein) 
included the predictors age (AGE), leukocytes (WBC), 
blood urea neutrogen (BUN), creatinine (CREA), throm-
bocytes (PLT), and neutrophiles (NEU). Hence, we con-
sider these variables are key predictors with known 
strong associations with bacteremia. Upon consultation 
of a laboratory medicine specialist, some variables were 
considered as of medium importance to predict bacte-
remia: potassium (POTASS) (which is related to kidney 
function), and some acute-phase related parameters such 
as fibrinogen (FIB), C-reactive protein (CRP), aspartate 
transaminase (ASAT), alanine transaminase (ALAT), and 
gamma-glutamyl transpeptidase (GGT). All other poten-
tial predictors are probably of minor importance. There-
fore, the three candidate models are based on the key 
predictors only, based on key predictors and predictors 
of medium importance, and based on all predictors. Con-
tinuous predictors should be modelled by allowing for 
flexible functional forms. Since there is a large number of 
potential predictors, the flexibility of the functional form 
of a predictor (which determines the number of param-
eters in the model) will follow its assumed importance 
for predicting bacteremia. Hence, more flexibility will be 
allowed for key predictors (e.g., to represent at least cubic 
associations with the outcome) than for all other predic-
tors (e.g., enabling the modeling of quadratic associa-
tions). The decision on which candidate model to use will 
be made based on results of data screening before uncov-
ering the association of predictors with the outcome vari-
able. In this example, an adequate strategy to cope with 
missing values will also be chosen after screening the 
data. Candidate strategies are omission of predictors with 
abundant missing values, complete case analysis, single 
value imputation or multiple imputation with chained 
equations, or a combination of those. In other types of 
studies, in particular longitudinal studies or studies with 
few candidate predictors, one might be forced or able 
to prespecify handling of missing data if sufficient prior 
knowledge about missingness patterns is available [19].

Data dictionary (PRE3)
The data dictionary of the bacteremia data set consists 
of columns for variable names, variable labels, scale of 
measurement (continuous or categorical), units, plau-
sibility limits, and remarks (a simplified version is in 
Table 3). In the original data dictionary the variables are 
sorted by alphabetical order, but for Table  3 we sorted 
them by importance.

Domain expertise (PRE4)
The demographic variables age and sex are chosen as the 
structural variables in this analysis for illustration pur-
poses, since they are commonly considered important for 
describing a cohort in health studies. Key predictors and 
predictors of medium importance are as defined above. 
Laboratory analyses always bear the risk of machine 
failures, and hence missing values are a frequent chal-
lenge. This may differ between laboratory variables, 
but no a priori estimate about the expected proportion 
of missing values can be assumed. As most predictors 
measure concentrations of chemical compounds or cell 
counts, skewed distributions are expected. Some pre-
dictors describe related types of cells or chemical com-
pounds, and hence some correlation between them is 
to be expected. For example, leukocytes consist of five 
different types of blood cells (BASO, EOS, NEU, LYM 
and MONO), and the sum of the concentration of these 
types approximately (but not exactly) gives the leukocyte 
count, which is recorded in the variable WBC. Moreover, 
these variables are given as absolute counts and as per-
centages of the sum of the five variables, which creates 
some correlation. Some laboratory variables differ by 
sex and age, but the special selection of patients for this 
study (suspicion of bacteremia) may distort or alter the 
expected correlations with sex and age.

Bacteremia study: IDA plan
In the following, we exemplify an IDA plan for the bacte-
remia study which uses the template of Table 2. The plan 
is written in future tense as we assume it is created before 
looking into the data.

Participant missingness (M1)
As the data is exported from the registry of the labo-
ratory, and only performed laboratory analyses are 
included, participant missingness cannot be evaluated.

Variable missingness (M2)
Numbers and proportions of missing values will be 
reported for each predictor and the outcome separately 
(M2). Type of missingness has not been recorded.
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Complete cases (M3)
The number of available complete cases (outcome and 
predictors) will be reported when considering:

(1) outcome
(2) outcome and structural variables,
(3) outcome and key predictors only,
(4) outcome and key predictors and predictors of 

medium importance,
(5) outcome and all predictors.

Patterns of missing values (M4)
Patterns of missing values will be investigated by:

(1) computing a table of complete cases (see 4.3.3) for 
strata defined by the structural variables age and 
sex,

(2) constructing a dendrogram of missingness indica-
tors to explore which predictors tend to be missing 
together.

Univariate descriptions: Categorical variables (U1)
For sex and bacteremia status, the frequency and propor-
tion of each category will be described.

Univariate descriptions: Continuous variables (U2)
For all continuous predictors, combo plots consisting of 
high-resolution histograms, boxplots and dotplots will 
be created. Because of the expected skewed distribution, 
combo plots will also be created for log-transformed 
predictors. As numerical summaries, minimum and 
maximum values, main quantiles (5th, 10th, 25th, 50th, 
75th, 90th, 95th), the mean, the Gini mean difference, the 

Table 3 Simplified data dictionary of the bacteremia study. Key predictors and structural variables are in boldface, predictors of 
medium importance in italic

Variable Label Scale Units Variable Label Scale Units

ID Patient Identification nom 1–14,691 GBIL Bilirubin cont mg/dl

BloodCulture Blood culture result for bacteremia nom no, yes GLU Glucoses cont mg/dl

AGE Patient Age cont years HCT Haematocrit cont %

BUN Blood urea nitrogen cont mg/dl HGB Haemoglobin cont G/L

CREA Creatinine cont mg/dl HS Uric acid cont mg/dl

NEU Neutrophiles cont G/L LDH Lactate dehydrogenase cont U/L

PLT Blood platelets cont G/L LIP Lipases cont U/L

SEX Patient sex nom 1 = male, 2 = female LYM Lymphocytes cont G/L

WBC White blood count cont G/L LYMR Lymphocyte ratio cont % (mg/dl)

ALAT Alanin transaminase cont U/L MCH Mean corpuscular hemoglobin cont fl

ASAT Aspartate transaminase cont U/L MCHC Mean corpuscular hemoglobin 
concentration

cont g/dl

CRP C-reactive protein cont mg/dl MCV Mean corpuscular volume cont pg

GGT Gamma-glutamyl transpeptidase cont G/L MG Magnesium cont mmol/L

FIB Fibrinogen cont mg/dl MONO Monocytes cont G/L

POTASS Potassium cont mmol/L MONOR Monocyte ratio cont %

ALB Albumin cont G/L MPV Mean platelet volume cont fl

AMY Amylase cont U/L SODIUM Sodium cont mmol/L

AP Alkaline phosphatase cont U/L NEUR Neutrophile ratio cont %

APTT Activated partial thromboplastin 
time

cont sec NT Normotest cont %

BASO Basophiles cont G/L PAMY Pancreas amylase cont U/L

BASOR Basophile ratio cont % PDW Platelet distribution width cont %

CA Calcium cont mmol/L PHOS Phosphate cont mmol/L

CHE Cholinesterase cont kU/L RBC Red blood count cont T/L

CHOL Cholesterol cont mg/dl RDW Red blood cell distribution width cont %

CK Creatinine kinases cont U/L TP Total protein cont G/L

EOS Eosinophils cont G/L TRIG Triclyceride cont mg/dl

EOSR Eosinophil ratio cont %
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number of distinct values, and the five lowest and five 
highest values will be reported.

Graphical and parametric multivariate analyses of the 
predictor space such as cluster analyses or the compu-
tation of variance inflation factors can be heavily influ-
enced by the distribution of the predictors. In order to 
make this set of analyses more robust to highly influential 
points or areas of the predictor support, some predictors 
may need transformation (e.g. cube root or logarithmic 
transformation). As possible transformations we will 
consider cube roots and logarithms of predictors. Since 
some predictors may have values at or close to 0, we will 
consider the pseudolog transformation instead of the log 
transformation [20]. The success of transformations to 
symmetrize predictor distributions will be assessed by 
evaluating each untransformed and transformed predic-
tor’s correlation with normal deviates. Additional file  2 
Appendix A contains some further explanations on the 
pseudo-log transformation.

Multivariate descriptions: associations of predictors 
with structural variables (V1)
A scatterplot of each predictor with age, with different 
panels for males and females will be constructed. Associ-
ated Spearman correlation coefficients will be computed.

Multivariate descriptions: correlation analyses (V2)
A matrix of Spearman correlation coefficients will be 
computed.

Comparing nonparametric and parametric predictor 
correlation (VE1)
A matrix of Pearson correlation coefficients will be com-
puted. Predictor pairs for which Spearman and Pearson 
correlation coefficients differ by more than 0.1 correla-
tion units will be depicted in scatterplots.

Variable clustering (VE2)
A variable clustering analysis will be performed to evalu-
ate which predictors are closely associated. A dendro-
gram groups predictors by their correlation. Scatterplots 
of pairs of predictors with Spearman correlation coeffi-
cients greater than 0.8 will be created.

Redundancy (VE3)
Variance inflation factors will be computed between the 
candidate predictors. This will be done for the three pos-
sible candidate models, and using all complete cases in 
the respective candidate predictor sets. Redundancy will 
further be explored by computing parametric additive 
models for each predictor in the first two candidate mod-
els using the Hmisc::redun function.

Bacteremia study: results of IDA
The full results of IDA according to the IDA plan are 
available in the Supplementary File. Moreover, our 
accompanying website https:// strat osida. github. io/ regre 
ssion- regre ts/ also provides the R code for full reproduc-
ibility. The main findings of IDA can be understood from 
the selected results described below.

IDA domain: missing values (M)
There is no instance of unit missingness in the sample 
dataset. Outcome variable and structural variables are 
completely observed. An analysis with only the key pre-
dictors hardly suffers from missing values (94% complete 
cases). If the predictor set is extended to include those of 
medium importance, the proportion of cases included by 
a complete case analysis decreases to only 63.9%. Extend-
ing to all predictors, only 27% of the observations would 
be complete. Individual predictors are missing with pro-
portions of 48% and less. Only seven predictors have 
missingness proportions of more than 20%, and ten pre-
dictors between 10 and 20%. The remaining 32 predictors 
have smaller missingness proportions. Age and sex, the 
structural variables, are never missing. Completeness of 
predictors does not vary between groups defined by the 
structural variables.

We also investigated the concordance of missingness 
between predictors (Fig.  2). GLU, PAMY and HS show 
very individual missingness patterns with more then 20% 
discordance with the patterns of any other predictors. 
Some groups of predictors have much lower discordance 
than missingness proportions, which points towards very 
similar missingness patterns. For example, AMY and LIP; 
TRIG and CHOL; or FIB, NT and APTT are such groups.

IDA domain: univariate distributions (U)
Many of the predictors measure concentrations of chem-
ical compounds in the blood or represent cell counts. 
These predictors typically exhibit skewed distributions.

For 15 predictors a pseudolog transformation increased 
the correlation with normal deviates by more than 0.2 
correlation units compared to not transforming the pre-
dictor. For these predictors, original and transformed 
distributions have been compared (cf Fig.  3 for four 
examples), and in scatterplots (IDA domain: multivari-
ate analyses) the transformed values will be used. We also 
evaluated cube root transformations but that transforma-
tion reduced skewness only very moderately.

We also investigated if there were spikes at specific 
values, by listing the five most frequent values of each 
predictor. For example, for basophiles and eosinophiles 
the most frequent value was 0 and occurred with a fre-
quency (proportion) of 12,671 (87%) and 6,994 (48%), 

https://stratosida.github.io/regression-regrets/
https://stratosida.github.io/regression-regrets/
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and corresponding concentration ratios (ratios of high-
est frequency and average frequency) were 15.7 and 17.3, 
respectively.

IDA domain: multivariate descriptions (V)
Absolute Spearman correlation coefficients of predic-
tors with AGE, stratified by SEX, were generally below 
0.3. Only few predictors had Spearman correlation coef-
ficients with AGE between 0.2 and 0.3.

Some Spearman correlations coefficients between pairs 
of predictors were greater than 0.8, e.g. between WBC 
and NEU; between EOS and EOSR; BASO and BASOR; 
RBC, HGB and HCT; MPV and PDW; and LYMR and 
NEUR. These pairs were investigated by scatterplots. The 
high correlations could be explained by domain expertise.

For 23 out of 1,225 pairs of predictors Spearman and 
Pearson correlation coefficients differed by more than 
0.1. Scatterplots of these pairs should be reviewed for 
anomalies.

Fig. 2 Missingness pattern among predictors depicted as dendogram. Numbers in brackets are percentages of missing values per variable. 
The position of each split on the horizontal axis corresponds to the proportion of discordant missingness between its branches. For example, 
the missingness status (present or missing value) for Lipases and Amylase (at the bottom of the graph) disagrees in about 20% of the observations
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Among the key predictors and the predictors of 
medium importance, WBC and NEU exhibited the 
highest degree of redundancy with variance inflation 
factors above 7 (key predictor set) or even above 14 
(key and medium importance predictors). Including all 
remaining predictors, many predictors became almost 
exactly redundant. Variance inflation factors increased 
when considering parametric additive models instead 
of linear models.

Possible consequences of IDA
In this section, we will describe how specific IDA 
results may be used in the regression analysis to follow. 
The possible impact of IDA has three aspects: it may 
induce refinements of the intended statistical analy-
sis and help defining the statistical analysis plan, help 
avoiding misinterpretation of results of the regression 
analysis, and its results will also support decisions on 
how to present results of the regression analysis.

Fig. 3 Four predictors for which a pseudo-log transformation enhanced graphical displays. The vertical bars refer to the quartiles and extremes 
of the distribution. Rugs on the bottom of the diagrams indicate location of data
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Bacteremia study: refinements of the analysis strategy 
triggered by IDA results
Revisions of the analysis strategy based on the results 
of IDA are justified if any predictor-outcome associa-
tions were strictly not evaluated during IDA. An update 
of the analysis strategy could encompass a refinement 
of the model specifications, additional analyses, such as 
sensitivity analyses, or possibly a change to the intended 
analysis methods. In our examples, we show that large 
proportions and specific patterns of missing values, 
skewed distributions of predictors, and a high degree 
of redundancy between predictors may suggest that 
the plan should be updated. Furthermore, IDA findings 
might lead to planning of sensitivity analyses before for-
mal statistical analyses commence.

In this example, the number of possible candidate pre-
dictors is relatively large if the final model should be ‘par-
simonious’ and explainable. Here IDA can provide the 
necessary information to guide model building. This is 
often an iterative process that depends on observed fea-
tures of the data, as the maximum correlation and num-
ber of complete cases change if predictors are removed. 
We consider IDA as the first iteration of this process. 
Further steps will then be carried out by the modeling 
team.

Predictors with univariate distributions that are par-
ticularly narrow, or, in case of categorical variables, that 
are extremely unbalanced may contribute only very little 
to predictive performance because most of the subjects 
are similar. The chances that such a variable is a strong 
predictor of the outcome is very low.

Given their histograms, basophiles (BASO) and the 
associated basophiles ratio (BASOR), and probably eosin-
ophiles (EOS) and the eosinophiles ratio (EOSR) could be 
candidates for discarding because of their excessive spike 
at zero, which cannot be removed by any transformation. 
Given that the aim of the analysis is to predict bacteremia 
accurately, these variables are probably unlikely to con-
tribute to overall predictive accuracy.

Predictors are also expected to add only little or no 
predictive performance if they are redundant to other 
predictors in the model. However, sometimes a repara-
metrization of the predictor space may remove the 
redundancy and enhance interpretability of the model. 
Analysis of the predictors’ multivariate distributions 
revealed that two predictors a priorily rated as important 
for predicting bacteremia exhibited a very high correla-
tion: leukocytes (WBC) and neutrophiles (NEU). This 
correlation stems from the fact that neutrophiles are the 
biggest subtype of leukocytes. As a consequence of the 
correlation and the background information, one could 
replace WBC with a new variable WBC_NONEU = WBC 
– NEU. Using NEU and WBC_NONEU retains all the 

information of the two predictors for the model and 
keeps their regression coefficients interpretable but 
removes the high correlation (see also [21]).

From our IDA analysis, we would probably conclude 
that among the leukocyte-related predictors, only the 
computed WBC_NONEU (leukocytes minus neutro-
philes) and NEU should be retained in an analysis with an 
extended candidate set, probably also MONO and LYM. 
The corresponding ‘ratio’ variables (MONOR, LYMR, 
NEUR) may not be needed for modeling as they are 
largely collinear with their absolute counterparts.

Likewise, one may also consider to remove those pre-
dictors that exhibit large proportions of missing val-
ues. Assume that a predictor with many missing values 
is closely associated with other predictors. In this case, 
it may be well imputable but is not likely to add predic-
tive value on top of those other predictors. If that predic-
tor in question is not associated with other predictors, 
it may not be well imputable and hence its imputation 
will introduce noise into the analysis. Hence, removing 
such variables may be indicated. It is not so clear, unfor-
tunately, when to disregard a predictor because of its 
proportion of missing values. The threshold value may 
depend on how many predictors are affected by missing 
values, how much they are affected, and how the missing-
ness pattern looks like. In our example, probably PAMY, 
TRIG and CHOL, all exhibiting more than one third of 
their values missing, may be the most obvious candidates 
for omission. Moreover, the following predictors all have 
missingness proportions of more than 20%: GLU, AMY, 
LIP, and HS. According to the missingness pattern den-
dogram, PAMY, TRIG, CHOL, AMY and LIP also have 
highly correlated missingness, suggesting that they do 
not serve each other in imputation models (Fig. 1).

Hence, 14 predictors (BASO, EOS, BASOR, EOSR, 
MONOR, LYMR, NEUR, PAMY, TRIG, CHOL, GLU, 
AMY, LIP, HS) could be excluded from model building 
without having to expect reduced predictive accuracy, 
which reduces the dimensionality of the predictor space, 
without unblinding the association of the predictors 
with the outcome, from 51 to 37. The modeling team will 
recompute the numbers of observations with complete 
recordings for all remaining predictors.

Generally, many different modeling strategies to handle 
nonlinear associations of predictors with the outcome are 
available, e.g. restricted cubic splines, penalized splines 
or fractional polynomials [3]. For example, restricted 
cubic splines provide a linear fit outside of the boundary 
knots, and one may want to adjust default knot positions 
in case of very skewed distributions. High-resolution 
histograms may help in such decisions. In our IDA, we 
already showed histograms based on pseudolog transfor-
mations of some predictors. These transfomations were 
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necessary in scatterplots to enhance their interpretability, 
but whether to use transformed predictors in the out-
come models may be debatable. Royston and Sauerbrei 
[22] discussed other ways of pretransforming predictors 
to increase robustness of models, in particular at the tails 
of the predictor support.

If interactions of predictors have been pre-specified, 
IDA may evaluate the joint distribution of these predic-
tors. Strong association of the predictors involved in 
an interaction may make the inclusion of their interac-
tion unnecessary as it would come with great estimation 
uncertainty (cf. [23], p. 301). For example, we included 
scatterplots of all predictors with age, stratified by sex in 
our IDA. Among the key predictors, BUN had the high-
est correlation with age with correlation coefficients of 
0.487 (males) and 0.386 (females), while there was hardly 
any correlation of bacteremia and PLT. Hence, interac-
tion terms involving age and PLT can be more precisely 
estimated than interaction terms involving age and BUN.

Sensitivity analyses, which are in general not part of 
IDA, are a tool to evaluate the robustness of estimates on 
decisions in model building, for example choices of dif-
ferent methods, impact of variable selections, or impact 
of strategies to handle missingness or influential points. 
Sensitivity analyses should be pre-specified, and IDA may 
suggest that certain sensitivity analyses are necessary to 
back up the modeling results. Regarding missing values 
in the bacteremia study, one could perform such a sen-
sitivity analysis by not imputing any predictors of minor 
importance but just omitting them from the model. One 
may also consider to transform some predictors with par-
ticularly skewed distributions before modeling. While 
this may lead to differences in the interpretation of the 
associated regression coefficient (if a linear functional 
form is chosen for such a predictor), one could evaluate if 
it also affects prediction performance or the values of the 
standard errors of the other covariates’ regression coef-
ficients (see Additional file 2 Appendix B.2 for an exam-
ple). About dealing with the strong correlation between 
WBC and NEU, one could define such a sensitivity anal-
ysis by removing either WBC or NEU from the model 
and evaluate if this has a relevant effect on the model’s 
performance.

In all three cases, such sensitivity analyses are conse-
quences of IDA but they are still predefined in the sense 
that they are planned before uncovering the association 
of the outcome with the predictors [14, 24, 25].

By contrast, for example, sensitivity analyses that result 
from observing an unexpected pattern in the residuals 
of a model (e.g. if residuals show a clear nonlinear asso-
ciation with a predictor) must be seen as post-hoc analy-
ses. Modifying the model because of such an unplanned 
sensitivity analysis increases the risk of overfitting the 

model. Nevertheless, it should be done and reported as a 
post-hoc analysis.

Bacteremia study: how IDA may guide the interpretation 
of modeling results
The results of the regression model consists of the esti-
mated regression coefficients, their covariance matrix 
and in particular their standard errors, may include 
predictions for selected predictor patterns and will also 
comprise measures of model performance.

Skewed distributions
Skewed distributions of predictors may have conse-
quences on the precision and the robustness of these 
results, and knowledge about the distributional shapes of 
the predictors are essential for interpretation. As revealed 
by our IDA, some of the predictors exhibited highly 
skewed distributions. For these predictors, the estimation 
of the nonlinear functional forms may suffer from dispro-
portional impact of some observations, and estimation 
uncertainty will be reflected by wide confidence intervals. 
Impact of highly influential points may be reduced by 
pretransforming the predictors to more symmetric distri-
butions, which however may change their interpretation 
if finally a linear functional form is chosen. Alternatively, 
the values could be winsorized before modeling as pre-
viously suggested [22, 24]. In addition, extreme values 
should be assessed for implausibility and, if classified as 
such, potentially removed. In general, there are numer-
ous ways to make analyses robust against such influential 
points, including transformation, robust regression or by 
estimating robust variances [22, 26, 27].

Transformation of predictors
If a predictor has been transformed, regression coef-
ficients are given for units of the transformed predictor. 
In case of the pseudo-log transformation using a base of 
10 that was suggested for BUN, they would correspond 
to the difference in outcome expected for a tenfold 
increase in the original predictor. This correspondence 
is only approximate as a pseudo-log transformation 
was used. See Additional file  2 Appendix B.2 for analy-
ses of the bacteremia study with and without preceding 
pseudo-log transformation of predictors. If for WBC and 
NEU, pseudo-log transformations will be used in mod-
eling the data, a unit of pseudo-logarithm would corre-
spond roughly to a tenfold of the original WBC or NEU. 
The range of the pseudo-logged values is about 1.5; thus 
a unit difference covers almost the entire range of the 
data and comparably large regression coefficients have 
to be expected. See Additional file 2 Appendix B.3 for an 
illustration.
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Validity of predictions
IDA allows to identify the support of a model, i.e., the 
ranges of values of the predictors from which the model 
was derived and to which it should be applicable. Pre-
dictions for observations from areas with higher joint 
density of predictors are more precise, while predictions 
with smaller support are less precise. The joint distribu-
tion also helps to understand in which cases predictions 
would actually be extrapolations. For example, in Fig.  3 
the density of data points in any of the age-sex-groups 
is very low beyond a value of the pseudolog of WBC (t_
WBC) greater than 1.5. The support is also essential to 
understand measures of model performance. Usually, the 
wider the support of a model, the more variance in the 
outcome can potentially be explained, and hence meas-
ures like the area under the ROC curve or the R-squared 
also tend to be greater. See Additional file 2 Appendix B.4 
for an illustration.

Missing data handling
While a method to handle missing data is usually pre-
specified, IDA can give some information to support this 
decision or put it into question. If multiple imputation 
was prespecified, it has to be expected that regression 
coefficients of predictors with higher proportion of miss-
ing values will generally be estimated more imprecisely 
compared to those with fewer missing values, relative to 
comparing these quantities after complete case analysis. 
Consequently, such predictors will seem less important 
in the final model than more complete predictors, given 
they have approximately equal association with the out-
come. Hence the decision whether to apply multiple 
imputation vs. using complete case analysis may impact 
assessments of the contribution of individual predictors 
to model instability. See also Additional file 2 Appendix 
B.5 for an illustration.

Interpretation of nonlinear functional forms
For predictors for which a nonlinear functional relation-
ship with the outcome is assumed, the partial response 
function (predicted values vs. predictor) will usually be 
evaluated graphically. Areas in which this response func-
tion has a wide confidence interval correspond to low 
support in observed predictor values, and such a low 
support may preclude the precise estimation of a nonlin-
ear functional form. In Supplemental Appendix B.1 we 
used a simplified fractional polynomial model for bacte-
remia status to illustrate the interplay between decisions 
to apply transformation to predictors before model build-
ing and their consequences on the estimated functional 
forms. In Additional file  2 Appendix B.6 we show an 
example where a nonlinear effect of a predictor was iden-
tified, but in the most relevant subrange of the predictor 

where the data is dense, the estimated nonlinear func-
tional form agreed well with a straight line.

Predictor selection or reparameterization of predictors
If two correlated predictors are considered for a model 
(like WBC and NEU), interpretation may be difficult if 
the correlation results from the definition of the predic-
tors. In the example with WBC and NEU, WBC cannot 
stay constant while varying NEU because neutrophiles 
are a component of leukocytes. Above we suggested to 
replace WBC by WBC_noNEU and then WBC_noNEU 
and NEU can vary independently, ensuring interpretabil-
ity of regression coefficients.

How IDA may guide the presentation of results
While in this paper we intentionally do not present the 
actual modeling results for the bacteremia study, we give 
some general remarks on how IDA may guide the presen-
tation of such results.

Transformations of predictors included in predic-
tion models should be appropriately documented and 
reported. For continuous predictors, IDA suggests appro-
priate unit increments of predictors to which regression 
coefficients or derived quantities such as odds or hazard 
ratios should correspond (e.g. 1 year, 5 year or 10 year 
increments of age). Numerous examples from the medi-
cal literature demonstrate that this is often ignored, and 
one can find reports of regression coefficients of a con-
tinuous predictor and confidence limits that are all close 
to parity. For example, Ma et al. [28] report an adjusted 
risk ratio of CRP (95% confidence interval) of 0.982 
(0.973, 0.991) with a p-value < 0.001 for predicting sur-
vival of persons admitted to a hospital with COVID-19. 
When considering the reported interquartile ranges (7.52 
to 37.93 mg/L for survivors, and 35.52 to 148.31 mg/L for 
non-survivors), it becomes apparent that a unit difference 
in CRP in this study cohort is probably not an appropri-
ate choice for presenting the model, if interpretability is 
a goal.

Royston and Sauerbrei [24, p. 54f ] discuss choosing an 
appropriate reference category for categorical predictors 
in a regression model. While there may be background 
knowledge to support the choice of a specific category as 
the reference, IDA may be used to ensure that the ‘sample 
size (of the referent category) should not be too small’ to 
avoid inflation of standard errors for all comparisons to 
the reference [24, p.55].

In our example, one could be interested in presenting 
partial dependence of predictions on predictors by dis-
playing the estimated response function of predictors. 
IDA guides the choice of an appropriate range for the 
x-axis, which will be either the range of the predictor or a 
bit less than the range depending on the data sparsity in 
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the tails of its distribution. One could also use a scaling 
of the x-axis that corresponds to the transformation that 
was deemed appropriate to symmetrize the distribution 
of the predictor. See Additional file  2 Appendix B.2 for 
illustrations.

All changes to the prespecified analysis and reporting 
strategy induced by IDA must be transparently reported 
in a statistical methods summary for the statistical report. 
In this example we did not suggest specific changes, but 
only illustrated which aspects of an analysis plan could be 
further refined or put into question once the IDA results 
are available. For each of these refinements, usually many 
options are possible and specific choices may depend on 
the preferences and experience of the analysis team.

In this application with 50 possible candidate predic-
tors to choose from there is a lot of emphasis on how to 
use IDA to guide model building by disregarding predic-
tors in the analysis. This is of course very specific to this 
example, and IDA is not always related to this aspect.

Discussion
In this paper we proposed a set of elements of initial 
data analysis that may help a data analyst in designing 
an IDA plan in conjunction with the statistical analysis 
plan. While we focused on studies in which a descrip-
tive or predictive research question is addressed with a 
statistical regression model, it can be adapted to other 
studies. In this context, IDA has the purpose to inform 
the data analyst and the domain expert about key proper-
ties of the data, without exploring the predictor-outcome 
association. The IDA findings are essential to empirically 
support the choice of the original analysis strategy or to 
guide revisions. They are also key to correct interpreta-
tion of the analysis results. An IDA plan should balance 
an exhaustive investigation of the dataset with utility. It 
should have sufficient details to detect features of a data 
set that could affect a regression analysis, or the interpre-
tation or presentation of results. It should cover neces-
sary steps informed by the reseach aims and pre-specified 
analysis strategy in a systematic approach, to avoid miss-
ing items or overlooking important findings in lengthy 
template reports. While the IDA framework comprises 
six elements, here we devised a strategy to develop ele-
ments of an IDA plan from data screening onwards, bal-
ancing utility and parsimony. The strategy could be seen 
as a recommended minimum set of analyses that an IDA 
plan should contain in order to prepare for regression 
analysis. The IDA checklist can be used as a starting point 
for an analyst to design an IDA plan tailored to a specific 
study and possibly adding other aspects. Simplifications 
may be appropriate, in particular in the IDA domain of 
multivariate descriptions, for example if only few predic-
tors are considered.

We included the outcome variable in univariate evalu-
ations, but intentionally excluded it from any bivariate 
or multivariate analysis, as IDA shall not anticipate the 
main analysis. This principle distinguishes IDA from 
exploratory data analysis (EDA), where associations in 
the data are explored and new hypotheses can be gen-
erated. To protect against arriving at wrong conclusions 
from prematurely evaluating the association of the out-
come with the predictors when they are performing IDA, 
one could generate an outcome-blinded ‘IDA data set’ 
from the main analysis set. In such a ‘blinded’ IDA data 
set, the outcome variable is detached from the predic-
tors and permuted relative to the predictors, such that 
any associations of the outcome with predictors variables 
are destroyed and any apparent associations meaning-
less, but associations between the predictors retained. 
The conclusions from our IDA example analyses are 
unchanged had they been conducted on such a blinded 
IDA data set. This approach imitates a blinded data 
review in clinical trials [29].

In the IDA plan statements on how potential IDA 
findings may guide the decisions in adaptive analysis 
strategies, e.g. how to handle missing data or select-
ing predictors for a model, should be deterministically 
prespecified [30]. Well thought-out, systematic adap-
tive analysis strategies are reproducible unlike ad-hoc 
decisions during the analysis process [31]. Hence, an 
IDA plan enhances the statistical analysis strategy, and 
relevant IDA methods should be incorporated in the 
methods section of a research report. Even informal or 
exploratory analysis projects that are not intended to be 
reported in the scientific literature, will benefit from a 
systematic approach to IDA and separating IDA activities 
from the main analyses. Some IDA findings may suggest 
changes in the intended analyses that were not foresee-
able, such as transformation of predictors, a refinement 
of the statistical model, or additional sensitivity analy-
ses. The IDA findings that lead to such changes or IDA 
findings that help interpret the model results should be 
explicitly reported as results or in the discussion [25]. 
Transparent reporting of the planned and actually con-
ducted analyses, as well as the reasons for the changes in 
an analysis plan, are essential for ensuring reproducibil-
ity and repeatability. Adequate reporting of research has 
been under discussion [15, 32] and we suggested report-
ing strategies of IDA for research papers [5]. Adapting 
structured reporting for IDA, as first proposed in the 
REMARK profile [25] and later extended [33] may also 
help to provide a better overview of all IDA steps. IDA 
augments knowledge about a dataset and transparency in 
reporting will aid in accessible and reusable data accord-
ing to the FAIR principles [34]. Of note, a range of R 
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packages may facilitate the conduct of several aspects of 
IDA as well as data quality [35, 36].

In this paper we focused on a predictive research 
question, but our recommendations may also guide the 
planning of IDA for descriptive or explanatory research 
questions, including the estimation of an adjusted 
exposure-outcome association, and of models that esti-
mate causal effects. A separate article discusses IDA for 
longitudinal studies [19]. Our guidance may also help 
in designing a systematic approach to data screening 
for clinical trials, in particular if covariate adjustment is 
used, and may then be applied before treatment alloca-
tion is unblinded. We also expect that our recommen-
dations may be useful for researchers fitting models 
with modern algorithmic approaches.

In summary, we provide practical recommendations 
for an IDA plan and how to carefully examine data 
properties to improve analyses and reproducibility of 
results. Our hope is that this empowers researchers to 
follow a systematic strategy for IDA.
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