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Abstract 

Background  Pocock-Simon’s minimisation method has been widely used to balance treatment assignments 
across prognostic factors in randomised controlled trials (RCTs). Previous studies focusing on the survival outcomes 
have demonstrated that the conservativeness of asymptotic tests without adjusting for stratification factors, as well 
as the inflated type I error rate of adjusted asymptotic tests conducted in a small sample of patients, can be relaxed 
using re-randomisation tests. Although several RCTs using minimisation have suggested the presence of non-propor-
tional hazards (non-PH) effects, the application of re-randomisation tests has been limited to the log-rank test and Cox 
PH models, which may result in diminished statistical power when confronted with non-PH scenarios. To address this 
issue, we proposed two re-randomisation tests based on a maximum combination of weighted log-rank tests (Max-
Combo test) and the difference in restricted mean survival time (dRMST) up to a fixed time point τ , both of which can 
be extended to adjust for randomisation stratification factors.

Methods  We compared the performance of asymptotic and re-randomisation tests using the MaxCombo test, 
dRMST, log-rank test, and Cox PH models, assuming various non-PH situations for RCTs using minimisation, with total 
sample sizes of 50, 100, and 500 at a 1:1 allocation ratio. We mainly considered null, and alternative scenarios featuring 
delayed, crossing, and diminishing treatment effects.

Results  Across all examined null scenarios, re-randomisation tests maintained the type I error rates at the nominal 
level. Conversely, unadjusted asymptotic tests indicated excessive conservatism, while adjusted asymptotic tests 
in both the Cox PH models and dRMST indicated inflated type I error rates for total sample sizes of 50. The stratified 
MaxCombo-based re-randomisation test consistently exhibited robust power across all examined scenarios.

Conclusions  The re-randomisation test is a useful alternative in non-PH situations for RCTs with minimisation using 
the stratified MaxCombo test, suggesting its robust power in various scenarios.
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Background
Randomisation has been widely used to evaluate the effi-
cacy and safety of interventions in clinical trials, ensur-
ing comparability by achieving the balance for treatment 
assignments across prognostic factors. In randomised 
controlled trials (RCTs) with limited sample sizes and 
several prognostic factors, simple randomisation may 
not be sufficient to balance treatment assignments across 
prognostic factors. In such cases, stratified randomisa-
tion or Pocock–Simon’s minimisation method  [1, 2] is 
often used. Stratified randomisation aims to balance the 
treatment assignments within each stratum; however, 
this objective becomes more challenging as the num-
ber of strata increases. Conversely, minimisation aims 
to achieve a marginal balance by sequentially assigning 
a new patient to the arm, which minimises the overall 
imbalance across the stratification factors. Consequently, 
RCTs that use minimisation are anticipated to have a 
higher number of strata relative to their sample sizes, 
necessitating careful consideration when choosing an 
analysis plan in these situations.

Previous studies have shown that a statistical test that 
relies on asymptotic normality without adjusting for the 
stratification factors used in minimisation is conserva-
tive  [3–7]. Moreover, performing asymptotic tests with 
adjustment for all stratification factors may be unfeasi-
ble due to small or zero sample sizes within some strata. 
According to the FDA’s covariate adjustment guide-
line  [8],  “sponsors should discuss their proposal with 
the relevant review division if the number of covariates 
is large relative to the sample size or if proposing to 
adjust for a covariate with many levels.” In the survival 
analysis, adjusted Cox proportional hazards (PH) mod-
els exhibit an inflated type I error rate when the sample 
size is small [9]. Thus, regardless of the adjustment in the 
asymptotic test, the type I error rate may not be main-
tained at the nominal level. One potential solution is a 
re-randomisation test [10], which is expected to hold the 
type I error rate at the nominal level and improve power 
when the stratification factors are unadjusted in the 
test [11].

Several RCTs with minimisation have suggested the 
presence of non-PH treatment effects, which are typically 
classified as delayed, crossing, or diminishing. In an RCT 
with minimisation that compared the efficacy of pem-
brolizumab with that of a placebo in patients with com-
pletely resected stage III melanoma [12], non-PH effects 
were observed on recurrence-free survival. The results of 
this trial indicated a delayed effect in the overall popu-
lation, where the survival probabilities of both groups 
remained similar for the first 3 months, and thereafter, 
the pembrolizumab group exhibited a higher survival 
probability than the placebo group. Moreover, a crossing 

effect was observed in a specific subgroup, where the 
pembrolizumab group initially demonstrated a lower 
survival probability than the placebo group; however, 
this trend was reversed in the later trial periods. Another 
study suggested a diminishing effect  [13]. In these non-
PH situations, the use of re-randomisation tests based on 
the log-rank test (LRT) and Cox PH models may reduce 
the statistical power, and the estimated hazard ratio (HR) 
may not be clinically interpretable [14, 15]. To the best of 
our knowledge, no previous study has evaluated the per-
formance of re-randomisation tests under non-PH situa-
tions in RCTs using minimisation.

To address the limitations associated with non-PH situ-
ations, we proposed two re-randomisation tests based on 
statistics that do not rely on the PH assumption. First, we 
used a maximum combination of weighted LRT (WLRT) 
from the Fleming-Harrington (FH) Gρ,γ class [16], known 
as the MaxCombo test [17–20]. This test demonstrates a 
robust higher power compared to the LRT under some 
non-PH scenarios. The concept of using re-randomisa-
tion to derive the null distribution for such a maximum 
combination was described by Ganju et al. [21, 22]. They 
demonstrated that the unadjusted MaxCombo-based re-
randomisation test, in a setting with simple randomisa-
tion, exhibits a robust high power nearly equivalent to 
the highest power achieved by the WLRT among combi-
nations (G0,0,G1,0,G0,1

) . However, they did not evaluate 
tests with different methods, such as dRMST, or strati-
fied WLRTs and stratified MaxCombo tests. Second, we 
used a restricted mean survival time (RMST), defined 
as the mean survival time up to a fixed time point τ [23]. 
The difference in RMST (dRMST) can be clinically inter-
pretable as follows, even under non-PH situations: “How 
long, on average, the time to event onset can be extended 
when patients are followed up until the specific time 
point τ.”  [24] These tests can be extended to adjust for 
randomisation stratification factors by stratification and 
regression adjustments.

In this study, we aimed to evaluate the performance of 
re-randomisation tests based on the aforementioned sta-
tistics, assuming various non-PH situations for RCTs with 
minimisation. We compared these methods in terms of 
their empirical type I error rate and power using numeri-
cal simulations. “Methods” section provides an overview 
of the testing procedure for both the asymptotic and 
re-randomisation tests. In “Simulation study”  section, 
we explained the simulation settings and presented the 
results; the results are discussed in “Discussion” section.

Methods
We considered a two-armed comparison with a single 
survival primary endpoint in an RCT using minimisation 
that includes prognostic factors.
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Testing null hypothesis
We defined the test statistics corresponding to the LRT 
and Cox PH model, and for the proposed methods, the 
MaxCombo test and dRMST, denoted as Z(LRT) , Z(Cox) , 
Z
(WLRT)
max  and Z(dRMST) , respectively. Furthermore, for 

these adjusted tests, we introduced Z(SLRT) , Z(ACox) , 
Z
(SWLRT)
max  , and Z(IPCW) . All of these Z-based test sta-

tistics asymptotically follow a standard normal distri-
bution under the null hypothesis. The comprehensive 
details of each statistic are provided in Appendices A 
to D.

Let S1(t) and S2(t) be the survival functions of the 
experimental and control arms, respectively. Through-
out this manuscript, we focused on one-sided tests to 
demonstrate the superiority of our experimental arm. 
The tests, including the LRT, WLRT, and MaxCombo 
test, were based on the null hypothesis H0 and alterna-
tive hypothesis H1:

The H0 was tested using Z(LRT) , Z(WLRT)
max  , or Z(SWLRT)

max  . 
We defined the RMST up to time point τ for each 
arm g (= 1, 2) as µg (τ ) =

∫

τ

0 Sg (t)dt . For dRMST, the 
hypotheses were as follows:

which was tested using Z(dRMST).
For the regression-based method, both the Cox 

and dRMST models were based on the following 
hypotheses:

where β0 represents the coefficient parameter for the 
treatment effect. We can test H0 using Z(Cox) , Z(ACox) or 
Z(IPCW) . The treatment effects β0 were investigated rather 
than the other effects of the covariates.

Furthermore, we considered the strong null hypoth-
esis [25, 26], which suggests that the survival probabil-
ity in the experimental arm consistently remains less 
than that in the control arm, despite the hazard func-
tion initially favouring the control arm in the early trial 
periods:

Although the probability of falsely rejecting H strong
0  

is expected to be below the nominal level, one-sided 
WLRTs from G0,1 , G1,1 , and the associated MaxCombo 
test may exhibit an inflated type I error rate in the 
strong null scenario without a covariate  [26, 27]. This 

H0 : S1(t) = S2(t) for all t ≥ 0,

H1 : S1(t) > S2(t) for some t ≥ 0.

H0 : µ1(τ )− µ2(τ ) = 0 vs H1 : µ1(τ ) > µ2(τ ) = 0,

H0 : β0 = 0 vs H1 : β0 < 0,

H
strong
0 : S1(t) ≤ S2(t) for all t ≥ 0,

H
strong
1 : S1(t) > S2(t) for some t ≥ 0.

is because events early in the experimental arm unfairly 
favour this arm for these tests  [28]. We evaluated the 
type I error rates of MaxCombo tests in strong null sce-
narios that incorporated prognostic factors.

Re‑randomisation tests
When testing H0 using a re-randomisation test, the treat-
ment assignments are regenerated based on the actual 
randomisation procedure. During this regenerated treat-
ment assignment process, the survival time, covariates, 
and order of patient entry remained fixed. Specifically, M 
datasets are generated to correspond with the observed 
dataset; these datasets include survival times and covari-
ates identical to those in the observed dataset, along with 
regenerated treatment assignment sequences that may be 
identical to each other. For each iteration, we obtained 
the test statistics Sm for m = 1, . . . ,M through Monte 
Carlo simulations. Subsequently, using the approximated 
null distribution derived from these iterations, the one-
sided P-value for this approach was calculated using the 
formula M

m=1 I(Sm ≥ Sobs)/M , where Sobs represents 
the test statistic computed on the observed dataset [10].

Users can specify their preferred test statistics Sm 
and Sobs to test the corresponding H0 as described in 
“Testing null hypothesis”  section. The P-value for the 
MaxCombo-based asymptotic test is determined by the 
numerical integration of the multivariate normal distri-
bution to account for multiplicity adjustment owing to 
the correlation among the four WLRT statistics (detailed 
in Appendix  B). Conversely, for MaxCombo-based re-
randomisation tests, Z(WLRT)

max  is directly adopted for 
both Sm and Sobs , thereby regenerating the approximated 
null distribution of Z(WLRT)

max  . We can apply the stratified 
MaxCombo test, Z(SWLRT)

max  , analogously. The null distri-
bution for the maximum combination statistics, Z(WLRT)

max  
and Z(SWLRT)

max  , can be derived from the re-randomisation 
as explained by Ganju et  al.  [21, 22]. Re-randomisation 
tests based on other tests, such as the LRT, Cox PH 
models, and dRMST, can also be constructed using the 
corresponding Z-based test statistics.

A numerical issue occurs in which Z(dRMST) cannot be 
computed, due to censoring. This issue arises when the 
longest observed survival time in either arm is shorter 
than τ and is censored. Horiguchi et  al.  [29] illustrated 
this problem in detail and proposed several solutions. As 
their results indicated no differences between all evalu-
ated methods, we simply adopted Method  2  [29], which 
extends the survival curve horizontally to τ . Although this 
extrapolation-based approach was originally employed 
for null distributions during re-randomisation and not 
for observed data, they regenerated the observed data 
until a pre-specified number of simulations were reached. 



Page 4 of 12Kimura et al. BMC Medical Research Methodology          (2024) 24:166 

To reduce the simulation execution time, we applied 
Method 2  [29] to the observed data. Consequently, both 
Z(dRMST) and Z(IPCW) are computable, except when no 
events are observed in either arm. In these exceptional 
cases, neither Z(dRMST) nor Z(IPCW) can be computed 
owing to the failure to estimate their standard errors, even 
when using the method of Horiguchi et  al.; thus, such 
cases were excluded from our simulation results.

Simulation study
Setup
To evaluate the performance of the aforementioned sta-
tistics in the asymptotic and re-randomisation tests, we 
calculated the empirical type I error rates and powers 
via numerical simulations, assuming two-armed RCTs 
with a 1:1 allocation ratio using minimisation. For the 
ith patient, the observed survival time was denoted as 
Ti = min(Yi,Ci) , where Ti denotes an event if Yi ≤ Ci , and 
otherwise, Ti denotes right censoring. We assumed that the 
censoring time Ci is independent of event time Yi . Regard-
ing prognostic factors, we set Zi1,Zi2

iid∼ Bernoulli(2/3) 
and Zi3 ∼ Bernoulli(1/3) . We generated Yi following a 
piecewise exponential distribution with the rate parameter 
�i(t) , which is modelled as follows:

where I(·) denotes an indicator function, Zi0 is a treat-
ment assignment based on minimisation with an assign-
ment probability of 0.7. For all scenarios, we set covariate 
effects γ1, γ2, γ3 as the common effect ( γ1 = γ2 = γ3 = γ ), 
on the logarithm of the HR scale (log-HR). The treatment 
effects, β1 and β2 , are on the log-HR scale and have been 
positioned before and after time point ǫ (months). The 
piecewise HR for treatment effects was different from 
the single HR from the Cox PH model. We assumed that 
a patient is uniformly accrued within 20 months and is 
followed up for at least 20 months; that is, Ci follows a 
uniform distribution on [20, 40] . The chosen total sample 
sizes, denoted by n, were 50, 100, and 500. All three prog-
nostic factors were incorporated into the stratification 
using the minimisation scheme.

Initially, we considered two null scenarios: null scenar-
ios with constant treatment effects ( HR = 1.00 over time) 
and a strong null scenario A, where the experimental sur-
vival probability consistently favours that of the control 
arm. In strong scenario A, the HR for the treatment effect 
was exp (β1) = 16.0 in favour of the control arm for the 
initial month, subsequently shifting to exp (β2) = 0.8 in 
favour of the experimental arm. In this scenario, the one-
sided WLRTs from G1,1 , G0,1 and the associated Max-
Combo test, may result in a false rejection and advocate 

�i(t) = �0 exp [{β1I(t < ǫ)+ β2I(t ≥ ǫ)}Zi0 + γ1Zi1 + γ2Zi2 + γ3Zi3],

the alternative hypothesis that supports the experimental 
arm [26]. The parameter settings were based on the stud-
ies by Freidlin et  al.  [25] and Roychoudhury et  al.  [27] 
and were slightly modified to adapt to our RCT setting 
with prognostic factors. Subsequently, our simulation 
results from the strong null scenario A deviated from 
our expectations, leading to the introduction of an addi-
tional strong null scenario B. This scenario exhibited 
weaker prognostic factor effects compared to scenario 
A, ensuring that the survival distribution for each stra-
tum remained almost consistent with the marginal distri-
bution. The survival plots for each stratum under strong 
null scenarios A and B are shown in Figures S1 and S2. 
The rationale behind the parameter settings for scenario 
B is described in “Empirical type I error rate”  section. 
For alternative hypotheses, three non-PH scenarios were 
examined: delayed, diminishing, and crossing treatment 
effects. The marginal survival plots for each scenario are 
displayed in Fig. 1. The parameter settings for each sce-
nario are presented in Table 1.

We evaluated the following tests: the MaxCombo test, 
with (G0,0,G1,0,G1,1,G0,1

) , and the dRMST with τ = 30 
(months). For comparative purposes, we also included 
the LRT and Wald tests based on the Cox PH models. 

In non-PH scenarios, using the Cox PH model, which is 
a model misspecification, may result in the loss of sta-
tistical power. The results of the other tests, including 
each WLRT from G1,0,G1,1 , G0,1 , and the dRMST with 
τ = 20, 25 (months), are presented in Table  S1 and Fig-
ures  S3 and S4. Furthermore, the performance of these 
tests was evaluated by adjusting the randomisation strati-
fication factors using stratification and/or regression. 
We test H0 at a one-sided significance level α = 0.025 . 
For re-randomisation tests with M = 1, 000 , we con-
sistently used the Z-based test statistic for both Sm and 
Sobs . As described in “Re-randomisation tests”  section, 
cases in which Z(dRMST) could not be computed due to 
censoring were addressed using Method  2  [29], which 
extends the survival curve horizontally to τ . Simula-
tions were performed using the R software with the “sur-
vival”  [30],  “survRM2”  [31], and “nph”  [32] packages to 
obtain Z-based test statistics. The numbers of repetitions 
were 10,000 for the null scenarios and 5,000 for the other 
scenarios, including strong null scenarios.

Results
Empirical type I error rate
Null scenarios: Across all sample sizes ( n = 50, 100, 500 ), 
the empirical type I error rates for the re-randomisation 
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tests were maintained at the nominal level 2.5% (Table 2). 
The unadjusted asymptotic tests exhibited conservative 
type I error rates for larger sample sizes. The adjusted 
asymptotic tests in the LRT and MaxCombo maintained 
a type I error rate of 2.5% , whereas those in Cox and 
dRMST showed inflated type I error rates when a limited 
sample size was used ( n = 50 ). The detailed results of the 
other tests, including those of dRMST with different τ , 
are presented in Table S1.

Strong null scenarios: For strong null scenarios, 
we showed the type I error rates for MaxCombo tests 
in Table 3. The type I error rates of MaxCombo were 
not consistently at 0% across all sample sizes in both 
the asymptotic and re-randomisation tests, notably 
exceeding 2.5% at n = 500 . However, the type I error 
rates of the stratified MaxCombo ranged from 0 to 
0.12%.

Surprisingly, the trends in type I error rates for Max-
Combo and stratified MaxCombo differed. This dis-
crepancy between the MaxCombo and its stratified 
counterpart may be attributable to the differences in the 
calculation of the LR score, that is, regarding whether the 
calculation was performed marginally. Specifically, the 
stratum with Zi1 = Zi2 = Zi3 = 0 diverges from the mar-
ginal strong null scenario, as illustrated in Figure S1. To 
validate these observations, we further investigated the 
strong null scenario B. In this scenario, each stratum did 
not deviate substantially from the marginal settings by 
incorporating the weaker effects of the prognostic factors 
compared to that in scenario A (Figure S2). Both the Max-
Combo and stratified MaxCombo showed inflated type I 
error rates (MaxCombo:1.90–4.80% and stratified Max-
Combo:1.46–4.30% , Table 4). The results of the other tests 
in scenarios A and B are listed in Tables S2 and S3.

Fig. 1  The marginal survival plots for each scenario

Table 1  Parameter settings for each scenario

Scenario �0 ǫ (month) exp(β1) exp(β2) exp(γ ) Censoring rates (%)

Test Cont

Null 2.00 0.00 1.00 1.00 0.20 14 14

Strong null A 0.60 1.00 16.0 0.80 0.20 30 36

Strong null B 0.04 1.00 16.0 0.70 0.90 30 38

PH 2.00 0.00 0.70 0.70 0.20 19 14

Delayed 2.00 5.00 1.00 0.40 0.20 26 14

Crossing 2.00 5.00 1.25 0.40 0.20 24 14

Diminishing 2.00 5.00 0.40 0.95 0.20 16 14
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Empirical power
Delayed effects scenarios: The unadjusted re-randomi-
sation tests indicated higher statistical powers than their 
corresponding asymptotic tests across all sample sizes 
(Fig.  2 on the left). In particular, among all tests, the 
MaxCombo-based re-randomisation test exhibited the 
highest power. Moving to the adjusted tests, re-randomi-
sation tests in the LRT and MaxCombo indicated pow-
ers similar to those of their corresponding asymptotic 
tests across all sample sizes. In contrast, the adjusted re-
randomisation tests in the Cox PH models and dRMST 
indicated slightly lower powers than their correspond-
ing asymptotic tests at n = 50, 100 , with no substantial 
power differences at n = 500 . Among these adjusted 
tests, the MaxCombo test exhibited the highest power 
at n = 500 . For smaller sample sizes, n = 50, 100 , almost 
no difference was observed among the adjusted tests, 
except for the asymptotic tests in the Cox PH models and 
dRMST.

The conservatism of the unadjusted asymptotic tests 
and the slightly higher power of the adjusted Cox PH 
models and dRMST at n = 50, 100 compared to their 
corresponding re-randomisation tests were consistently 
observed in subsequent scenarios. Therefore, we primar-
ily focused on comparing the power of the re-randomisa-
tion tests in the following scenarios.

Crossing effects scenarios: Among the unadjusted re-
randomisation tests, the MaxCombo-based re-randomi-
sation test demonstrated a superior power, particularly at 
n = 500 (Fig. 2 at the center). Among the adjusted re-ran-
domisation tests, both dRMST-based and MaxCombo-
based re-randomisation tests exhibited higher powers 
than the other adjusted re-randomisation tests, espe-
cially at n = 500 ; no substantial power differences were 
observed among the adjusted re-randomisation tests at 
n = 50, 100 . The power of dRMST depended on the value 
of τ (Figure S3).

Diminishing effect scenarios: Similar to the cross-
ing effects scenarios, among the unadjusted re-randomi-
sation tests, the MaxCombo-based re-randomisation 
test demonstrated a higher power (Fig.  2 on the right). 
Among the adjusted re-randomisation tests, the pow-
ers of the Cox/dRMST were the highest and lowest at 
n = 50, 100 , respectively, with no substantial power dif-
ferences at n = 500.

Proportional hazards scenarios: As supplementary 
information, the results, which include all evaluated 
tests for the PH scenario, are presented in Figure S4. No 
substantial power differences were observed among the 
unadjusted re-randomisation tests, except for WLRT 
with G(0,1) . Conversely, among the adjusted re-randomi-
sation tests, the Cox PH models demonstrated higher 
power than the other tests, consistent with the findings 

Table 2  Comparison of type I error rates under the null scenario

Abbreviations: Asymp Asymptotic test, Re-rand Re-randomisation test, LRT Log-
rank test, MCT MaxCombo test, dRMST Difference in RMST, n total sample sizes

 The range of Monte Carlo SE for type I error rates is 0.06 to 0.19 (%). Bold values 
exceed 2 × Monte Carlo SE + 2.50

n = 50 n = 100 n = 500
 Method Test Type I error rate (%)

Asymp LRT 1.03 0.76 0.39

MCT 1.41 0.96 0.66

Cox 0.96 0.74 0.37

dRMST 1.30 0.95 0.40

Stratified LRT 2.68 2.35 2.35

Stratified MCT 2.46 2.34 2.45

Adjusted Cox 3.03 2.48 2.40

Adjusted dRMST 3.55 2.80 2.59

Re-rand LRT 2.62 2.49 2.51

MCT 2.59 2.41 2.40

Cox 2.62 2.49 2.51

dRMST 2.59 2.51 2.45

Stratified LRT 2.39 2.22 2.15

Stratified MCT 2.23 2.22 2.49

Adjusted Cox 2.67 2.27 2.28

Adjusted dRMST 2.58 2.40 2.40

Table 3  Comparison of type I error rates under the strong null 
scenario A

Abbreviations: Asymp Asymptotic test, Re-rand Re-randomisation test, 
MCT MaxCombo test, n total sample sizes

 The maximum Monte Carlo SE for type I error rates (%) is 0.53. Bold values 
exceed 2 × Monte Carlo SE + 2.50

n = 50 n = 100 n = 500
 Method Test Type I error rate (%)

Asymp MCT 1.86 2.28 8.28
Stratified MCT 0.10 0.04 0.00

Re-rand MCT 3.44 5.36 17.06
Stratified MCT 0.12 0.04 0.00

Table 4  Comparison of type I error rates under strong null 
scenario B

Abbreviations: Asymp Asymptotic test, Re-rand Re-randomisation test, 
MCT MaxCombo test, n total sample sizes

 The range of Monte Carlo SE for type I error rates is 0.16 to 0.30 (%) . Bold values 
exceed 2 × Monte Carlo SE + 2.50

n = 50 n = 100 n = 500
 Method Test Type I error rate (%)

Asymp MCT 2.12 2.32 4.80
Stratified MCT 1.66 1.78 3.96

Re-rand MCT 1.90 2.14 4.72
Stratified MCT 1.46 1.78 4.30
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reported by Xu et  al.  [9]. Following the Cox PH model, 
the LRT-based and MaxCombo-based re-randomisation 
tests showed the highest powers.

Discussion
Asymptotic tests versus re‑randomisation tests
In the current study, we compared the performance 
of asymptotic and re-randomisation tests via numeri-
cal simulation, assuming various non-PH situations for 
RCTs with minimisation. As in previous studies [9, 33], 
the unadjusted asymptotic tests exhibited conservative 
type I error rates under null scenarios. Balancing treat-
ment assignments by minimisation may lead to a corre-
lation between treatment groups; thus, unadjusted tests 
that ignore this correlation yield conservative results. 
Accordingly, both the FDA guidelines and ICH E9 state 
the importance of accounting for the stratified ran-
domisation factor in the analysis [8, 34]. Even with such 
adjustments, the Cox PH models and dRMST exhibited 
inflated type I error rates for n = 50 owing to the small 
sample size. This finding suggests that the asymptotic 
tests adjusted for stratification factors do not always 
yield valid results. Regardless of covariate adjustment, 
the type I error rates of the re-randomisation tests 
remained at the nominal level across all examined sam-
ple sizes. Except for cases with inflated type I error 
rates, the re-randomisation tests preserved almost the 
same power as their asymptotic counterparts. There-
fore, a re-randomisation test is a valuable alternative to 
an asymptotic test in RCTs with minimisation.

The optimal re‑randomisation test in terms of statistical 
power
Subsequently, we discussed which re-randomisation tests 
should be used, considering the aspect of power. Gener-
ally, the analysis used in RCTs must be pre-specified dur-
ing the planning phase [34]. However, predicting the exact 
types of non-PH scenarios that may emerge is challeng-
ing, except in RCTs involving delayed effects in cancer 
immuno-oncology. Hence, a test that maintains robust 
power in various non-PH scenarios is required. Our simu-
lation results show that the unadjusted re-randomisation 
tests in the LRT, Cox, and dRMST exhibited lower power 
than their corresponding adjusted re-randomisation tests. 
In contrast, the MaxCombo-based re-randomisation test 
demonstrated superior power under delayed and cross-
ing effect scenarios, although it showed lower power than 
the other adjusted re-randomisation tests under diminish-
ing effect scenarios. Among the adjusted re-randomisation 
tests, the LRT exhibited consistently lower powers across 
all examined non-PH scenarios. The adjusted Cox-based 
re-randomisation test showed the highest power under 
diminishing conditions, although it was inferior under 
the other non-PH scenarios. The adjusted dRMST-based 
re-randomisation test indicated a relatively high power 
for the crossing effect scenarios, but it was inferior in the 
other non-PH scenarios, with the power depending on τ . 
Finally, the stratified MaxCombo-based re-randomisa-
tion tests exhibited consistently superior powers across 
all examined scenarios, including the PH scenarios. This 
observation suggests that, in terms of power, the stratified 

Fig. 2  Comparison of powers under three different non-PH scenarios. Abbreviations: LRT, log-rank; MCT, MaxCombo; dRMST, difference in RMST; str, 
stratification; adj, adjustment through a regression model; n, total sample sizes
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MaxCombo-based re-randomisation test is the optimal 
choice among examined tests.

Considerations for the stratified MaxCombo‑based 
re‑randomisation test in RCTs using minimisation
Despite the promising performance of the stratified Max-
Combo-based re-randomisation test, its application in 
RCTs warrants caution due to potential inflation of the 
type I error rate in strong null scenarios. This concern, 
discussed in the literature  [35–40], is particularly rel-
evant when considering the strict accuracy requirements 
of primary analyses in RCTs. We note that these studies 
focused on RCTs using simple randomisation, excluding 
stratified MaxCombo tests. In contrast, we demonstrated 
that, even under minimisation, the type I error rates of 
the MaxCombo tests (alternatively, the re-randomisation 
test) were inflated, except in some scenarios. However, 
given our assumption of using it in a non-primary analy-
sis context, the MaxCombo-based re-randomisation test 
remains an attractive option, while recognising its limita-
tions in such extreme scenarios.

Furthermore, we examined two types of strong null 
scenarios A and B, and found that in the strong null 
scenario A, stratified MaxCombo tests exhibited lower 
type I error rates compared to MaxCombo tests. In 
both scenarios, the MaxCombo test exhibited a type I 
error rate of up to 17% . This result is consistent with 
the findings of a previous study [27]. In the strong null 
scenario A, the type I error inflation was not observed 
in the stratified MaxCombo test. This discrepancy 
arose because each stratum in scenario A deviated 
from the marginal setting (Figure S1 and S2). Under 
minimisation, several known prognostic factors with 
relatively strong effects exist, justifying the deviation 
of some strata from the marginal setting. Therefore, it 
is unrealistic to observe the inflation of the type I error 
rate for the stratified MaxCombo test under such an 
extreme null scenario in practical RCTs. This does not 
imply that the stratified MaxCombo test fundamen-
tally overcomes this statistical flaw. However, even for 
those who do not accept the type I error rate inflation 
in the strong null scenario, it is worth considering the 
application of the stratified MaxCombo-based re-ran-
domisation test as an option, possibly for non-primary 
analyses.

Interpretability of estimands in non‑proportional hazards 
scenarios
In non-PH cases, the interpretability of the estimands 
corresponding to the selected test is important. In 
particular, the HR estimated using the Cox PH model 

may not be clinically interpretable  [14, 15]. Moreover, 
the estimated HR in non-PH scenarios varied depend-
ing on the study-specific censoring time distribution, 
such as accrual rate, accrual period, and follow-up 
period. Therefore, the estimated HR cannot be inter-
preted as a simple or meaningful weighted average of 
the time-specific HR in non-PH scenarios  [41, 42]. As 
an alternative, a piecewise HR, which describes the 
change in treatment effect over time, or a weighted 
HR corresponding to the maximum WLRT within the 
MaxCombo test, may be useful to capture the charac-
teristics of the non-PH situation [20, 27, 43]. However, 
even these estimands may remain subject to criticism 
when interpreting the treatment effect causally [14, 44]. 
Shifting focus from HRs, the dRMST has a 1:1 corre-
spondence between the testing and estimand, which is 
clinically interpretable even under non-PH scenarios. 
In crossing effects scenarios, where interpreting the HR 
becomes particularly challenging, the adjusted dRMST-
based re-randomisation tests showed relatively high 
power. Although the power of dRMST depends on τ , 
considering that τ is typically selected from a clinical 
perspective, the dRMST-based re-randomisation test 
may be an attractive choice in terms of interpretability 
of the estimand. Importantly, in non-PH contexts, rely-
ing on a single summary measure and using test results 
alone to infer treatment efficacy is inadequate; thus, 
reporting multiple summary measures is recommended 
for a more comprehensive assessment of the treatment 
effect [27].

Conclusion
Re-randomisation tests have emerged as a credible 
and methodologically robust alternative to asymptotic 
tests in RCTs employing minimisation, particularly 
under non-PH conditions. The efficacy of the adjusted 
dRMST-based re-randomisation test is scenario-specific 
and significantly influenced by the strategic selection of 
the time point τ . In contrast, the stratified MaxCombo-
based re-randomisation test has consistently dem-
onstrated its pre-eminence in power across a broad 
spectrum of scenarios. Although whether an inflated 
type I error rate for the stratified MaxCombo-based re-
randomisation test in the strong null scenario should 
be strictly controlled is debatable, this inflation is con-
siderably reduced under some strong null scenarios for 
RCTs with minimisation. Consequently, considering the 
necessity of pre-specifying statistical analyses in RCT 
design, the stratified MaxCombo-based re-randomisa-
tion test is recommended for its steadfast and superior 
power in non-primary analysis.
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Appendix
A Weighted log‑rank test and its stratification
We initially explained the WLRT based on the FH Gρ,γ 
class  [16]. Then, the stratified WLRT (SWLRT) can be 
naturally constructed by replacing the LR score for each 
stratum with the WLR score. Let tj (j = 1, 2, . . . ,D) be 
the jth ordered event time, dgj be the number of events at 
tj in arm g (= 1, 2) , and ngj be the number of patients at 
risk of the event at tj in arm g. The WLR score is obtained 
using the following equation:

where dj = d1j + d2j and nj = n1j + n2j . The variance of 
d1j is given by:

Subsequently, the variance of U (WLRT) is 
V̂
[

U (WLRT)
]

=
∑D

j=1 v1j . Therefore, the statistic for 
WLRT is calculated as follows: Z(WLRT) = U (WLRT)

√

V̂ [U (WLRT)]
 , 

which asymptotically follows a standard normal distribu-
tion under the null hypothesis [45].

For the stratification analysis, we extended the indices 
to account for the stratum s (= 1, 2, . . . , S) . Hence, ngjs 
and dgjs represent the number at risk and the number of 
events in stratum s, respectively. The WLR score for each 
stratum is calculated as follows:

where djs = d1js + d2js and njs = n1js + n2js . The variance 
of d1js is calculated as follows:

Subsequently, the variance of U (WLRT)
s  is calculated as 

follows: V̂
[

U
(WLRT)
s

]

=
∑D

j=1 v1js . Therefore, the test sta-
tistic for SWLRT is defined as follows:

which asymptotically follow a standard normal distribu-
tion under the null hypothesis [45].

U (WLRT) =
D
∑

j=1

wj

(

d1j −
n1jdj

nj

)

,

v1j = w2
j

n1jn2jdj(nj − dj)

n2j (nj − 1)
.

U (WLRT)
s =

D
∑

j=1

wj

(

d1js −
n1jsdjs

njs

)

,

v1js = w2
j

n1jsn2jsdjs(njs − djs)

n2js(njs − 1)
.

Z(SWLRT) =
∑S

s=1U
(WLRT)
s

√

∑S
s=1 V̂

[

U
(WLRT)
s

]

,

The weight function for the Gρ,γ class is defined as 
wj =

(

Ŝ(tj−1)

)

ρ
(

1− Ŝ(tj−1)

)

γ

 , where ρ ≥ 0, γ ≥ 0 , and 
Ŝ(tj−1) denote the pooled KM estimator. The representa-
tive FH classes, G1,0 , G1,1 , and G0,1 are weighted to the early, 
middle, and late events, respectively, whereas G0,0 corre-
sponds to the LRT. The WLRT with unfavourable weights 
that do not align with the observed data may exhibit a 
reduced power  [20]. If the non-PH type, such as delayed, 
crossing, or diminishing treatment effects, is unpredictable, 
a robust method for non-PH types may be desirable.

B MaxCombo test and its stratification
A maximum combination of WLRT statistics, known as 
the MaxCombo test, demonstrates a robust higher power 
compared to LRT under a non-PH situation [17–20]. The 
MaxCombo for one-sided test is defined as follows:

where Z(WLRT)

l  ( l = 1, 2, . . . , L ) denotes some classes 
of the WLRT. Among several combinations of Z(WLRT)

l  , 
Lin et  al.  [20] proposed the MaxCombo test based on 
Z
(WLRT)
max  with Z(WLRT)

1 ,Z
(WLRT)

2 ,Z
(WLRT)

3  , and Z(WLRT)

4  
corresponding to G0,0,G1,0,G1,1 , and G0,1 . The Z(WLRT)

max  
asymptotically follows a multivariate normal distribution 
with means of zero and the correlation matrix R under 
the null hypothesis [19, 20]. Let the covariances of Gρi ,γi 
and Gρj ,γj be Cov[Gρi ,γi ,Gρj ,γj ] and let the (i,  j)-compo-
nent rij of R be given by

as described previously   [19, 20, 27]. The P-value of the 
MaxCombo test was calculated by numerical integra-
tion based on the above multivariate normal distribu-
tion with using the algorithm proposed by Genz [46]. For 
the adjustment of covariates, the stratified MaxCombo 
test statistics, Z(SWLRT)

max  can be naturally constructed by 
replacing Z(WLRT)

l  with Z(SWLRT)

l .

C Cox proportional hazards model
The Cox PH model  [47] is routinely used to estimate the 
HR as a treatment effect under the PH assumption. Let 
Zi be a p+ 1-dimensional covariate vector comprising a 
treatment group indicator and p covariates. For multivari-
able analysis, the Cox PH model is expressed as follows:

Z(WLRT)
max = max

(

Z
(WLRT)
1 ,Z

(WLRT)
2 , . . . ,Z

(WLRT)
L

)

,

rij =















Cov[Gρi ,γi ,G
ρj ,γj ]√

V [Gρi ,γi ]V [Gρj ,γj ]
=

V

�

G

ρi+ρj

2
,
γi+γj

2

�

√
V [Gρi ,γi ]V [Gρj ,γj ]

for i �= j

1 for i = j,

h(Zi, t) = exp(β⊤
Zi)h0(t),
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where h(Zi, t) represents the hazard function for the 
ith patient at time t; vector β⊤ = (β0, . . . ,βp) is a p+ 1

-dimensional regression coefficients, including a treat-
ment effect β0 ; and h0(t) is a baseline hazard function for 
time t.

Moreover, the stratified Cox PH model is expressed 
using the following equation:

where hs(Zi, t) represents the hazard function for ith 
patient at time t in stratum s (= 1, . . . , S) , Zi is the treat-
ment group indicator for ith patient, β∗

0 is the coefficient 
for the treatment group indicator, and h0s(t) is the base-
line hazard function for time t in stratum s.

The estimation of β and β∗
0 are based on a partial likeli-

hood  [45]. Given our interest in treatment effects, Wald 
tests based on the aforementioned equations are expressed 
as follows: Z(ACox) = β̂0√

V̂ [β̂0]
 and Z(SCox) = β̂

∗
0

√

V̂ [β̂∗
0
]
 , 

respectively. For univariate situations with p = 0 , we 
denote the test statistics by Z(Cox) . These test statistics 
asymptotically follow a standard normal distribution under 
the null hypothesis [45].

D Difference in RMST and its adjustment
The RMST is defined as the mean survival time up to a 
fixed time point τ  [23]. Let Dg (τ ) be the total number 
of events up to time point τ in arm g (= 1, 2) and Ŝg (t) 
be a KM estimator of Sg (t) . For each arm, the RMST 
estimated by the direct integration of the KM curve 
method [45, 48] is calculated as follows:

where t0 = 0 and tDg (τ )+1 = τ . The variance of µ̂g (τ ) 
based on Greenwood’s formula  [49] is calculated as 
follows:

Thus, the test statistics for the dRMST were con-
structed as

which asymptotically follows the standard normal distri-
bution under the null hypothesis [48].

For covariate adjustments, the inverse probability of 
censoring weighted (IPCW) method was proposed by 

hs(Zi, t) = exp(β∗
0Zi)h0s(t),

µ̂g (τ ) =
∫

τ

0
Ŝg (t)dt =

Dg (τ )
∑

j=0

(tj+1 − tj)Ŝg (tj),

V̂ [µ̂g (τ )] =
Dg (τ )
�

j=1





Dg (τ )
�

k=j

(tk+1 − tk )Ŝg (tk )





2

dgj

ngj(ngj − dgj)
.

Z(dRMST) = µ̂1(τ )− µ̂2(τ )
√

V̂ [µ̂1(τ )] + V̂ [µ̂2(τ )]
,

Tian et  al.  [50]. Let Ci (i = 1, . . . , n) be a non-negative 
random variable denoting the censoring time for the 
ith patient, and η(·) be a general link function. The 
covariate vector β , which includes a treatment effect 
β0 , can be estimated using the estimating equation for 
the IPCW, based on η(E[Yi(τ ) | X i]) = β⊤

X i , where 
X
⊤
i = (1,Z⊤

i ) . The estimating equation for the IPCW is 
obtained as follows:

where Ĝg (·) represents the KM estimators of Ci in arm 
gj (= 1, 0) for the patient who experienced the jth event, 
and tj(τ ) = min (tj , τ ) denotes the restricted time to 
event. The variance of β̂ can be estimated using a sand-
wich estimator. Hence, an IPCW-based test statistic is 
constructed using Z(IPCW) = β̂0√

V̂ (β̂0)

 , which asymptoti-

cally follows a standard normal distribution under the 
null hypothesis.
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