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Abstract 

Background Dimension reduction methods do not always reduce their underlying indicators to a single composite 
score. Furthermore, such methods are usually based on optimality criteria that require discarding some information. 
We suggest, under some conditions, to use the joint probability density function (joint pdf or JPD) of p-dimensional 
random variable (the p indicators), as an index or a composite score. It is proved that this index is more informative 
than any alternative composite score. In two examples, we compare the JPD index with some alternatives con-
structed from traditional methods.

Methods We develop a probabilistic unsupervised dimension reduction method based on the probability den-
sity of multivariate data. We show that the conditional distribution of the variables given JPD is uniform, implying 
that the JPD is the most informative scalar summary under the most common notions of information. B. We show 
under some widely plausible conditions, JPD can be used as an index. To use JPD as an index, in addition to having 
a plausible interpretation, all the random variables should have approximately the same direction(unidirectionality) 
as the density values (codirectionality). We applied these ideas to two data sets: first, on the 7 Brief Pain Inventory 
Interference scale (BPI-I) items obtained from 8,889 US Veterans with chronic pain and, second, on a novel measure 
based on administrative data for 912 US Veterans. To estimate the JPD in both examples, among the available JPD 
estimation methods, we used its conditional specifications, identified a well-fitted parametric model for each factored 
conditional (regression) specification, and, by maximizing the corresponding likelihoods, estimated their param-
eters. Due to the non-uniqueness of conditional specification, the average of all estimated conditional specifications 
was used as the final estimate. Since a prevalent common use of indices is ranking, we used measures of monotone 
dependence [e.g., Spearman’s rank correlation (rho)] to assess the strength of unidirectionality and co-directionality. 
Finally, we cross-validate the JPD score against variance–covariance-based scores (factor scores in unidimensional 
models), and the “person’s parameter” estimates of (Generalized) Partial Credit and Graded Response IRT models. We 
used Pearson Divergence as a measure of information and Shannon’s entropy to compare uncertainties (informative-
ness) in these alternative scores.

Results An unsupervised dimension reduction was developed based on the joint probability density (JPD) 
of the multi-dimensional data. The JPD, under regularity conditions, may be used as an index. For the well-established 
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Brief Pain Interference Inventory (BPI-I (the short form with 7 Items) and for a new mental health severity index 
(MoPSI) with 6 indicators, we estimated the JPD scoring. We compared, assuming unidimensionality, factor scores, 
Person’s scores of the Partial Credit model, the Generalized Partial Credit model, and the Graded Response model 
with JPD scoring. As expected, all scores’ rankings in both examples were monotonically dependent with various 
strengths. Shannon entropy was the smallest for JPD scores. Pearson Divergence of the estimated densities of differ-
ent indices against uniform distribution was maximum for JPD scoring.

Conclusions An unsupervised probabilistic dimension reduction is possible. When appropriate, the joint probability 
density function can be used as the most informative index. Model specification and estimation and steps to imple-
ment the scoring were demonstrated. As expected, when the required assumption in factor analysis and IRT models 
are satisfied, JPD scoring agrees with these established scores. However, when these assumptions are violated, JPD 
scores preserve all the information in the indicators with minimal assumption.

Keywords Joint probability density, Psychometrics, IRT models, Pain, Psychiatric illness, Composite score, Bayesian 
network, Brief pain inventory, Manifestations of psychiatric illness severity index

Introduction
In this paper we introduce an unsupervised probabilistic 
method for dimension reduction (DR) particularly when 
it results in a single composite score or an index.

Sufficient dimension reduction (SDR), as a supervised 
probabilistic approach, is based on the conditional densi-
ties [1–4] to construct the q summaries. It requires:

f
(
y|x1, x2, . . . , xp

)
= f

(
y|s1, s2, . . . , sq

) ,  where sk = hk (x1, x2, . . . , xp),

k = 1,2, ..q.

To extend this idea to unsupervised situations, we use 
the joint density of predictors and replace the sufficiency 
of summaries, i.e., being the most informative for the 
response, with the notion of most informativeness. Thus, 
formally we define:

Definition
The function s : Rp

→ Rq , sk = hk (x1, x2, . . . , xp), k = 1,2, ..q. is 
a most informative summary if:

f x1, x2, . . . , xp|s1, s2, . . . , sq  is a uniform distribution, 
for each

 
In other words, given the summary score, the condi-

tional distribution of the indicators should have maxi-
mum entropy and hence minimum information. Note 
that this means s contains all the information in the indi-
cators. Note that f

(
x1, x2, . . . , xp

)
 , the joint probability 

density (JPD) function, satisfies (1) (see the appendix for 
a proof).

The following set of necessary conditions are required 
for JPD summary to be an index:

First, x1, x2, . . . , xp , must be at least ordinal be concep-
tually related, and undergird a broader concept, such as 
pain experience, mental health status, volatility of the 

(1)s =
(
s1, s2, . . . , sq

)
.

stock market, and as such. We refer to this property as 
relevance. In factor analysis language, the latent space 
of x1, x2, . . . , xp indicators should be unidimensional. 
Second, all indicators must be recorded or coded such 
that their order (higher or lower) values agree, and their 
pairwise monotone correlations be strong and in the 
same direction (sign). We call this property the unidi-
rectionality of the indicators. Third, the index, s, should 
be monotonically correlated with each of the indica-
tors (variables) and with the same sign. We refer to this 
property as the codirectionality of the summary with the 
variables. Strength of relevance and unidirectionality can 
be achieved at the study design stage where one decides 
what indicators should be collected or how they should 
be measured. The strength of codirectionality depends 
on actual frequencies and how the density values change 
by changes in indicators’ value patterns.

Many unsupervised techniques optimize some aspect 
of variables’ joint probability density or joint probability 
mass function. For example, Principal Components Anal-
ysis [5], its kernelized versions [6, 7] and Factor Analy-
sis are based on the variances and the covariances of the 
joint distribution, respectively. Item Response Theory 
(IRT) uses the joint pdf of indicators; however IRT ben-
efits from four assumptions: local independence, correct-
ness of functional form, usually a linear decomposition 
of the model parameters, the assumption that a unique 
parameter, called ability that measures subjects differ-
ences, and that this latent variable has a normal distri-
bution in the population [though see multi-dimensional 
IRT [8] and nonparametric IRT [9] for some relaxations]. 
The local independence assumption permits one to write 
the joint pdf as a product of the univariates indicators’ 
(items’) pdfs given the parameter values.

Using the joint probability density, or a monotone 
transformation of it, as an index offers many advantages. 
Variables(indicators) do not need to meet restrictive 
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assumptions beyond having at least ordinal scale, uni-
directionality, and co-directionality with the JPD. Vari-
ables may be highly skewed, dependent, and of different 
types (nominal, categories, ordinal, interval, count, or 
continuous). With a JPD index, items’ dependencies are 
respected–not just the covariances, and the informa-
tion in all moments of different orders is preserved. Note 
that indices need not necessarily designed to refer to a 
‘latent dimension’. The Charlson comorbidity indices, 
Economics and most other indices are such summaries. 
In observational studies, propensity score [10] is another 
instance. Propensity score is indeed a dimension-reduc-
ing index that reduces several possible confounders into 
a single score.

In the present paper, we compare the JPD scores with 
(Confirmatory) Factor Analysis and IRT scorings in two 
unique datasets. We first present the alternative JPD 
Index for the 7-item Brief Pain Interface Inventory (BPI-
I) [cite] and then construct the JPD index for ordering 
mental health patients based on 6 administratively col-
lected indicators. For both datasets, we then compare i) 
the JPD index, ii) factor analytic score when used as an 
index, and Person’s parameter from the Partial Credit 
model (PC) [11], the Generalized Partial Credit model 
(GPC) [12], and the Graded Response model (GRM) [13].

Background
Dimensionality reduction (DR) of p-variate data to a 
smaller set of q statistics overcomes computational chal-
lenges in data analysis [14–16] and [17]. Several super-
vised and unsupervised methods, both probabilistic, 
geometric, or mathematical have been developed. In DR 
literature, dimension refers to the number of summary 
statistics constructable from the multivariate data that: 
1) are linearly independent and have no overt and hope-
fully hidden non-linear dependency, and 2) satisfy some 
optimality criteria in preserving a notion of information. 
In some DR methods, such as factor analysis, composite 
score, and index construction, it is also desirable that the 
derived summary or summaries, 3) can be interpreted 
as quantifying some unmeasurable constructs. Implica-
tion of this 2- or 3-step procedure has been the source of 
ongoing DR research. The lack of unique optimality crite-
ria has been a source of subjective ad hoc decisions in DR 
procedures. Also, the impossibility of ensuring the non-
existence of nonlinear dependence has resulted in more 
restricted research formulation, e.g., mostly restricting 
to linear DR. The current study is about constructing an 
index, a single composite score, possibly non-linear, that 
can replace the indicators.

A quick review of DR methods has been reported 
by [18]. Textbooks on dimensionality reduction (DR) 

provide a more detailed account of the theoretical basis 
of these methods [19–21].

When DR results in a single statistic with codirection-
ality property, the statistic can be used as an index. There 
is a vast literature on classical index construction inde-
pendent of DR research [See for example: [22–24]. Also, 
The United Nations Statistics Division recommendations 
for index construction [25].

Another conceptually similar problem is the construc-
tion of composite scores, in the scoring of instruments 
and tests, where one is to reduce several item responses 
to a single statistic for assessment purposes. The scor-
ing methods in Classical Test Theory [26], various Factor 
Analysis formulations, provided some notion of unidi-
mensionality of factor structure holds, and the Person’s 
parameter of an appropriate Rasch and more general IRT 
models [27, 28], all also can be used to construct indices, 
although these methods have broader agenda then index 
construction. The DR property of FA and IRT, especially 
when some notion of unidimenionality holds, is the most 
relevant feature of the methods to index construction. 
For completeness, we have briefly introduced these two 
methodologies in Additional file  1. In the following we 
introduce the data and the detailed implementation of 
the methods that will be used in the two examples.

Materials and methods
Design
The cross- sectional baseline data collected are from 
two samples: the Effects of Prescription Opioid Changes 
(EPOCH) [29] and Long Term Outcomes in Veterans 
Requesting A Compensation (TRACTION) [30] studies. 
Analyses for EPOCH were post-hoc and pre-planned for 
TRACTION. The Minneapolis VA Health Care System’s 
Internal Review Board for Human Studies reviewed and 
approved the studies’ protocol (#4495-B and #4586-A).

Participants
EPOCH survey cohort participants were 9,253 randomly 
selected Veterans with chronic pain who were receiving 
long-term opioid treatment as part of their management 
plan who completed a baseline survey. Of baseline survey 
responders, 364 did not complete all the pain interference 
inventory items and were excluded from these analyses 
[29]. Participants from TRACTION were 960 representa-
tively sampled, gender-stratified Veterans who had served 
during Operations Enduring Freedom, Iraqi Freedom, 
and New Dawn and had pending VA disability claims for 
posttraumatic stress disorder Forty-eight TRACTION 
members did not use any VA health care during the study 
and are excluded from these analyses [30].
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Data sources
Data sources were self-report survey (EPOCH) and 
administrative data from the VA Corporate Data Ware-
house data (TRACTION). Data were collected between 
November 2015 and April 2017.

Measures
Pain interference
The short-form Brief Pain Inventory (BPI) [31] is 
widely used to assess clinical pain [32, 33]. Factor 
analysis points to two latent pain dimensions: “sever-
ity,” with four items, and “interference,” with seven 
items. BPI interference items have 11 response options 
scored from 0 to 10, with 0 = “Does not interfere” and 
10 = “Completely interferes.” Analyses here are confined 
to the 7 interference items included in the BPI inter-
ference (BPI-I) short scale that was collected from the 
baseline EPOCH questionnaire. Items one to seven are 
concerned with 1: mood, 2: work, 3: general activity, 
4: walking, 5: relationships, 6: enjoyment of life, and 7: 
sleep.

Psychiatric severity
The Manifestations of Psychiatric Severity Index (MoPSI) 
is a measure of psychiatric severity we developed to 
assess non-response bias in a randomized trial of sur-
vey methods [34]. MoPSI is comprised of 6 variables: 
the number of emergency department visits, psychiatric 
hospitalizations, and mental health visits TRACTION 
participants made in a 6-month period as well any ICD-9 
and ICD-10-CM codes pertaining to self-harm behav-
iors, including suicidality; any diagnosis of substance use; 
and any diagnosis of alcohol use in the 180  days prior 
to survey. The rationale for selecting these 6 variables is 
reported elsewhere [34].

Note that MoPSI items do not lend themselves well to 
traditional psychometric covariance decomposition tech-
niques, such as factor analysis, because there is a mix of 
data types (e.g., counts and dichotomous) with extreme 
skewness. Also, local independence of indicators, needed 
in IRT modeling does not hold across some variables. For 
example, even for subjects with a fixed person’s param-
eter value, one expects self-harm behaviors to trigger a 
more intense health care response (e.g., more clinic visits, 
emergency department visits, or hospitalizations) than 
for someone without self-harm behaviors and the same 
fixed person parameter. See the details below.

Analysis
We used R 4.2.1 and SAS version 9.4 for all analyses.

BPI‑I scoring
A. Variance–covariance based scoring
Per published recommendations [31] based on classi-
cal factor analysis, scores for the BPI Interference scale 
were obtained by averaging participants’ responses 
across the 7 items. The factor structure of the BPI-I has 
been thoroughly explored in prior studies, e.g., [32, 33]. 
Alphas showed good internal consistency was 0.89 to 
0.92 for the seven interference items [32]. A reported 
value for test–retest reliability was 0.97 for Pain Inter-
ference in a study on 109 patients [35]. However, we 
reexamined the psychometric properties of the brief 
BPI-I for our cohort.

In the following we are using Pearson correlation 
matrix for reliability, suitability and dimensionality iden-
tification, and our final confirmatory factor analysis and 
construct validity assessment. A sample of 8,889 patients 
who had used opioid for pain reduction for at least last 
2 months prior to the data collection endorsed the BPI-
I. Cronbach Alpha for BPI-I scale was 0.91 and after 
deleting each item it stayed within 0.89 to 0.92 showing 
acceptable reliability for the items.

The Bartlett’s test of sphericity was significant 
(χ2(21) = 41,465.36, p < 0.001). The overall KMO value for 
our data was 0.897. Both criteria suggesting that the data 
are probably suitable for factor analysis. To assess the 
dimensionality, Comparison Data method, Lower bound 
of RMSEA 90% confidence interval and Akaike Informa-
tion Criterion, all suggested 3 latent factors, while Hull 
method with CAF and Parallel Analysis with SMC iden-
tified 2 factors. However, the majority of other criteria: 
Empirical Kaiser criterion, Hull method with CFI, and 
with RMSEA, Kaiser-Guttman criterion with PCA, and 
with SMC, and the more common Parallel Analysis with 
PCA, all suggested unidimensionality. The fit measures 
of the confirmatory factor analysis, assuming a single 
construct, were χ2(14) = 4800.91, p < 0.001, CFI = 0.885, 
with RMSEA = 0.196 and SRMR = 0.056. The CFI ana-
lyzes model fit by examining the discrepancy between the 
data and the hypothesized model. SRMR is an absolute 
measure of fit and is defined as the standardized differ-
ence between the observed correlation and the predicted 
correlation. Also, RMSEA, the average of the residual 
variance and covariance. With these criteria, unidi-
mensional model is marginally acceptable. The widely 
accepted BPI-I scoring is based on the total sum of the 
items and assumes a unidimensional construct for pain 
interference. Note that only 66% of total variance was 
explained by this factor. Factor loadings of CFA for BPI-
I1 through BPI-I7 were 1.83, 2.12, 1.87, 1.93, 2.32, 1.84, 
and 2.22, respectively. The Pearson correlation between 
factor scores and the total sum was 0.996, supporting the 
practice of using sum score as the factor score.
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B. IRT modeling of the BPI‑I items
In Item Response Theory the estimated subjects’ abil-
ity, can be used to rank order the subjects. Here we will 
refer to the “ability” as “vulnerability” ( θv) namely, vul-
nerability to pain-related functionality indicators. We 
used Masters’ [11] Partial Credit models(PC), General-
ized PC (GPC), and Graded Response Models(GRM) 
to estimate participants’ vulnerabilities. With (Gen-
eralized) Partial Credit models and Graded Response 
Model, indicators may be recorded as categorical, 
ordinal, or even continuous [36, 37]. For the present 
analysis, we assumed each BPI-I item was an ordered 
response with 11-categories (0–10).

Specifically, the probability that person v choses cate-
gory h = 0,1, ...10 of ith BPI-I item is defined as:  

If assumptions of Item Response Theory hold, we 
would expect higher vulnerability to be associated 
with greater probability of endorsing higher or severer 
response options in all seven items. To investigate these, 
we used ICC and Items maps. The item characteris-
tic curves (ICC) for each BPI-I item, relating the prob-
ability of endorsing any value between 0 to 10 for each 
question against a person’s estimated vulnerability. Val-
ues with steep ICC indicate good discriminant power. 
Person-item map can be used to examine the associa-
tion between participants’ vulnerabilities and their prob-
ability of endorsing higher (severer) options for each 
BPI-I item. The R packages mirt: A Multidimensional 
Item Response Theory Package [38] and eRm: Extended 
Rasch Modeling [39] and psych package: Procedures for 
Psychological, Psychometric, and Personality Research 
[40] were used for the analyses.

C. JPD method for BPI‑I items
The joint density or probability function by its definition is 
an expression of frequencies in the presence of dependen-
cies. In technical sense it is radon-Nikodym derivative of 
the underlying probability model usually with respect to 
Lebesgue or counting measure. As detailed in Additional 
File 2, Appendix, to specify the 7-dimensional joint prob-
ability distribution for the BPI-I, we used all 7! (= 5040) 
permutations of the chain rule factorization:  

where x1 through x7 corresponds to the 7 BPI-I items.
To model the conditional dependencies, we assumed each 

conditional model f
(
xi|xl1 , . . . , xik

) had a two-parameter 
Gamma distribution whose mean, µ = E

(
Xi|xl1 , . . . , xik

)
=

∑
βjxij , 

was expressed as a linear function of all the conditioning 

(2)P(Xvih = h) =
exp[hθv + βih]∑l=10
l=0 exp[lθv + βil]

(3)
f (x1, x2, . . . , x7) = f (x1)f (x2|x1) . . . f (x7|x2, . . . , x6)

variables and b =
1
s
 , where b is the Gamma distribution’s 

rate parameter, and s, the scale parameter. We used the log 
transform of  f (x1, x2, . . . , x7) and then ML estimation of 
the parameters via generalized linear model (see Additional 
File 1 for code) estimates the log density= 
b̂
(
−xi
µ̂

− log
(
µ̂
))

−

(
b̂− 1

)
log(xi) for each conditional 

model f
(
xi|xl1 , . . . , xik

)
. The average of the 5040 

permutations;

Or any monotone transformation of that is the partici-
pant’s BPI-I score. Note that each of the 5040 conditional 
specifications provide estimates of the same JPD. The 
variations between the estimates:

provides a measure of accuracy of the estimators. To 
assess the sampling error of each person’s JPD estimate, 
we used 50 bootstrapped samples (with replacement) 
constructed within subject standard deviation of the 
bootstrapped JPD estimates. The estimated standard 
errors for 8889 subjects in the pain study were between 
0.19 to 1.89 when JPD was scaled to 0–10. For each sub-
ject our estimation method produces 5040(7!) JPD esti-
mates, the variation between these estimates coming 
from alternative specifications provides a measure of 
accuracy of reported JPD which is an average of these 
scores. The between specifications standard deviations 
for each subject BPI_I JPD scores were between 0 and 
0.252. These shows a rather robust JPD subjects’ esti-
mates with respect to the conditional factorization of the 
joint pdf.

MoPSI Scoring
A. Variance–covariance based scoring
To use the factor analysis method, one needs to construct 
a matrix of “correlations” between the indicators (items). 
Three items (Mental health clinic, hospital, and emergency 
room visits) are count data where their larger values indi-
cate more severe cases of mental health. Substance use 
(SUD), suicidality, and ETOH are ordered binary indica-
tors, where (1) indicates a worse case compared to (0). The 
first challenge in EFA and subsequent confirmatory mode-
ling is to decide how to quantify their associations (correla-
tions). Spearman correlations (and several other measures 
of monotone dependence) may be used to construct a sym-
metric matrix. Instead of modeling dependence via ranks, 
one may construct a matrix of heterogeneous correlations 

(4)log
(
f (x1, x2, ..., x7

)
) =

∑

7!

log
(
f
(
xi1 , xi2 , ..., xi7

))

7!

∑

7!

(log
(
f
(
xi1 , xi2 , ..., xi7

)
− log

(
f (x1, x2, ..., x7

)
)
)2

7! − 1
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consisting of Pearson product-moment correlations 
between numeric variables, polyserial correlations between 
numeric and ordinal variables, and Polychoric correlations 
between ordinal variables. Alternatively, we may ordinally 
categorize all indicators and use Polychoric correlation uni-
formly for all the p(p + 1)/2 pairs of variables. Hopefully, 
these symmetric matrices will be positive definite to qualify 
as a correlation matrix. The existence of multitude of possi-
bilities has consequences in identifying the dimensionality 
of latent factor structure and especially the quality of the 
unidimensional index.

Specifically, here we explored the Spearman correlation 
(Scor), a Polychoric correlation matrix (Ocor), assuming 
the number of hospitalizations (0–4), and the number of 
emergency visits (0–3) being ordinal and, a matrix (Mcor) 
of mixture of correlations, where for non-categorical pairs 
Spearman’s rho, tetrachoric correlations for binary pairs, 
and Glass rank biserial for binary and number of visits are 
used. The Mcor matrix, though, is non-singular: it is not 
positive definite (the smallest eigenvalue is negative). This 
phenomenon often happens with these remedies when one 
tries factor analytic methods on data with varying scales. In 
the present example, this required ad hoc smoothing when 
performing dimension identification [41].

To develop confirmatory factor scores, we first identified 
if each of these correlations is suitable for factor extraction. 
The table below summarizes the results (Table 1).

As it is seen, suitability of data for dimensionality iden-
tification depends on the subjective decisions involved in 
quantifying dependence. Unfortunately, there is also no 
unique optimal criteria for identifying the dimensional-
ity. Table below lists the number of latent dimensions sug-
gested by some more common criteria (Table 2).

Next, for each of the three correlation matrices, we used 
EFA model averaging to estimate the one- and two-dimen-
sional factors. The averaging was over estimation methods 
(Principal Axis, MLE and unweighted least squares), initial 
values and criterion type. Averaging performed via mean, 
with no trimming, across 108 EFAs for 2-factor model and 
9 for one-factor model. The error rate was zero; all the solu-
tions converged except for the mixed correlation matrix, 
where only 78% of alternative scenarios converged. All the 
solutions were admissible with no Heywood cases [cite] for 
all three matrices.

For reliability of the unidimensional CFA scores, 
assuming the ordinal scales, after categorizing number 

of mental health visits into eight categories, with Poly-
choric correlations, have ordinal alpha [42] of 0.923. The 
Omega, that is the ratio of variance of loadings times the 
latent factor over observed variance, was 0.749, how-
ever, the modified Omega (denominator variance being 
the CFA-implied variance) was 0.753. For developing an 
insight about construct validity of the unidimensional 
and two factor CFA models, fit indices are listed in the 
table below: [Table 3].

For one dimensional model, all indices indicate that 
the polychoric correlation structure fits better than the 
Spearman and the mixture of correlations. As always, 
the two-dimensional model indices indicate closer fit. 
For our comparisons we will use the factor scores of one-
factor model in the corresponding confirmatory factor 
analysis.

B. Item response modeling of MoPSI items
We will use PC, GPC and GR models to estimate the cor-
responding participants’ vulnerability. We treated the 
number of mental health visits, emergency department 
visits, and hospitalizations as ordinal variables. How-
ever, to assess the quality of these indices (estimated Per-
son’s paramter: vulnerabilities) a person-item map was 
graphed. This visually showed codirectionality between 
participants’ vulnerabilities (the indices) and their prob-
ability of endorsing higher (severer) options for each 
MoPSI items.

C. JPD method for the MoPSI
Consistent with our approach to estimating the BPI-I’s 
joint probability density, detailed above, we specified 

Table 1 Suitability of data for FA

Test/Correlation Spearman(Scor) Ordinal(Ocor) Mixed (Mcor)

Bartlett’s test of sphericity χ2(15) = 1036.99, p < .001: Suitable χ2(15) = 1025.45, p < .001: Suitable χ2(15) = 21,990.03, p < .001: Suitable

Kaiser–Meyer–Olkin criterion (KMO) 0.744: Suitable (middling) 0.765: Suitable (middling) 0.203: Not suitable (unacceptable)

Table 2 Number of latent dimensions

SpCor Spearman Correlation, Ocor Polychoric Correlations, Mcor mixture of 
Correlations

Test/Criteria Scor Ocor Mcor

Empirical Kaiser criterion 1 1 2

Hull method with CAF 1 1 0

Hull method with CFI 2 2 1

Hull method with RMSEA 2 2 1

Kaiser-Guttman criterion with PCA 2 2 2

Kaiser-Guttman criterion with SMC 1 1 2

Parallel analysis with PCA 2 1 2
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the MoPSI’s 6-dimensional joint probability distribu-
tion by using all 6! (= 720) permutations of the chain rule 
factorization:

where x1 = number of mental health clinic visits, 
 x2 = number of emergency department visits for mental 
health concerns, x3 = number of psychiatric hospitaliza-
tions, x4 = self-harm diagnoses, x5 = substance use diag-
noses, and x6 = alcohol use diagnoses.

To model the conditional dependencies, we used 
logistic regression for the 3 binary diagnosis variables 
(self-harm, alcohol use, and substance use) and linear 
regression for the 3 count variables (number of mental 
health clinic visits, emergency department visits, and 
hospitalizations). Based on Bayesian information crite-
rion (BIC) and Akaike information criterion  (AIC), we 
found that the Poisson-Inverse Gaussian (PIG) distribu-
tion for the count variables had better fit indices than the 
Poisson and Negative Binomial and their zero-inflated 
versions. Each permutation of the factorization yields 
720 new conditionally specified models that capture 
slightly different dependency structures. These terms 
each provide a single estimate of the same joint model, 
f (x1, x2, . . . , x6) or, after taking the log monotone trans-
formation, of f (x1, x2, . . . , x6) . Therefore, as in (3), to 
utilize all the information captured by the 6! models, we 
used the average of 720 estimates of log

(
f (x1, x2, ..., x6

)
),  

asthe participant’s JPD MoPSI score. To estimate stand-
ard error of the estimated score per person, we calculated 
standard deviations of 40 bootstrapped estimates of JPDs 
for each person. The bootstrapped estimated sampling 
standard errors for all subjects were between (0.001, 

(5)
f (x1, x2, . . . , x6) = f (x1)f (x2|x1) . . . f (x6|x2, . . . , x5)

2.433) with mean boosted SE for all subjects being 0.792. 
The standard deviations of each person estimated JPD 
between 720 specifications, for all subjects were between 
0.504 and 3.382, with an average SD of 1.106.

Note that this information probably shows that we 
might not need to run all the possible permutations. A 
random sample of permutations might suffice.

The R code used to estimate the joint probability den-
sity of the MoPSI components is included in Additional 
File 1.

Unidirectionality and co‑directionality
Assumptions of unidirectionality and co-directionality are 
the minimum required to conceptually label any summary 
as an index. Classical measures of monotone dependen-
cies, such as rank correlations, may be used to assess for 
the strength of unidirectionality and should be positive. 
To account for skew in the BPI-I items, we used Spear-
man’s rho and Kendall’s tau to examine the pair-wise rank 
correlations of BPI-I items and to compare the correla-
tion between each item and the 3 composite BPI-I scores 
obtained via standard scoring, Item Response Theory 
modeling, or JPD method. For the MoPSI, we examined 
pair-wise rank correlations using Spearman’s rho for non-
categorical pairs, tetrachoric correlations for pairs of bina-
ries, and the Glass rank biserial for binary/continuous pairs.

For co-directionality, subjects’ rankings provided by 
the summary or composite score should agree with 
each indicator’s ranking. The strength of this monotone 
agreement may also be assessed by rank correlations and 
should be positive. We used Spearman’s rank correla-
tion and Kendall’s tau to correlate individual items to the 
MoPSI summary scores obtained through IRT modeling 
and the JPD method.

Table 3 Fitness measures for Psych Severity Indicators (M (SD) [Min; Max])

Model Spearman Polychoric Mixture

One factor
df = 9

χ2: 122.47 (36.00) [80.91; 143.26] 104.54 (34.83) [64.33; 124.65] 297.46 ( NA) [297.46; 297.46]

p: .000 (.000) [.000; .000] .000 (.000) [.000; .000] .000 (NA) [.000; .000]

CFI: .92 (.03) [.90; .95] .93 (.02) [.92; .96] 0.92 (NA) [.92; .92]

RMSEA: .12 (.02) [.09; .13] 0.11 (.02) [.08; .12] 0 .19 (NA) [.19; .19]

AIC: 104.47 (36.00) [62.91; 125.26] 86.54 (34.83) [46.33; 106.65] 279.46 (00) [279.46; 279.46]

BIC: 61.13 (36.00) [19.57; 81.92] 43.20 (34.83) [ 2.98; 63.31] 236.12 ( 00) [236.12; 236.12]

CAF: .42 (.01) [.41; .43] 0.45 (.00) [.45; .45] .44 (.00) [.44; .44]

Two factors
df = 4

χ2: 4.23(1.75)[1.79; 5.45] 11.80 (4.87) [ 5.01; 15.20] 11,680.47 (8349.26) [37.98; 17,501.71]

p-value: 0.421(0.254) [.244; .775] 0.098 (0.135) [0.004; 0.286] 0.000 (.000) [.000; .000]

CFI:1.00 (.00)[1.00; 1.00] 0.99 (.00) [.99; 1.00] 0.33 (.47) [0.00; 0.99]

RMSEA: 0.01(.01) [.00; .02] 0.04 (.02) [.02; 0.06] 0.70 (.43) [0.10; 1.00]

AIC:-3.77(1.75)[-6.21;-2.55] 3.80 ( 4.87) [-2.99; 7.20] 11,672.47 (8349.26) [29.98; 17,493.71]

BIC:-23.03(1.75)[-25.48; -21.81] -15.46 ( 4.87) [-22.25; -12.06] 11,653.20 (8349.26) [10.71; 17,474.45]

CAF: 0.51(.00)[.51;.52] 0.49 (.00) [0.49; 0.50] 0.45 (.01) [0.42; 0.45]
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Comparing scoring approaches
We used simple scatterplots and Spearman’s rank corre-
lation to compare the three BPI-I scoring approaches and 
to compare the two MoPSI scoring approaches, where 
0 = no monotonic relationship and 1.00 indicates per-
fect, positive monotone relationship. Note that ranks stay 
invariant with respect to monotone transformations.

To more formally compare the approaches’ infor-
mativeness, we used maximum likelihood to estimate 
Shannon’s entropy [43]. Lower entropy values indicate 
that more information is contained within a summary 
or composite score. BIC and AIC indices indicated that 
a Weibull distribution was a better fit for the BPI-I and 
a two-parameter Gamma distribution, for the MoPSI. 
Shannon’s entropy E for Weibull distributions is calcu-
lated as follows:

where γ is Euler’s constant (approximately 0.57712), k = 
shape and l = scale. “Shape” refers to the actual shape or 
form of the distribution (e.g., is it peaked, rounded, flat?) 
and “scale” refers to the distribution’s dispersion. For 
two-parameter Gamma distribution, the entropy is:

where a = shape and b = rate, where the rate is the 
inverse of scale.

For each BPI-I and MoPSI scoring approach, we also 
examined the number of distinct values (person-scores) 

(6)E = γ

(
1−

1

k

)
+ ln

(
k

l

)
+ 1

(7)E = a− log(b)+ log(Ŵ(a))+ (1− a) ∗
dlog(Ŵ(a))

da

returned by each scoring method. A higher num-
ber of distinct values signifies greater granularity and 
informativeness.

Outcomes
The main outcome is development of an unsupervised 
dimension reduction method based on joint pdf and 
noticing that the joint probability function under some 
plausible conditions may be used as an index. This com-
posite score is the most informative unidimensional 
reduction of multivariate data. The BPI-I and MoPSI 
JPD-scores were developed as two applications of these 
results.

Power
This research does not test any hypothesis and hence 
power analysis is not relevant.

Results
Table  4 shows the summary statistics of the different 
BPI-I and MoPSI scoring approaches.

Table 5 shows the inter-item correlations of the seven 
BPI-I items and the item-to-score rank-correlations. As 
can be seen in the Table, all seven items are positively 
correlated and hence, unidirectional. Rank-correlations 
of the 7 items with the summary (composite) scores 
range from 0.605 to 0.897, suggesting moderate to strong 
co-directionality of all scorings with the items. The high 
rank-correlation between the standard, CFA, IRT scores, 

Table 4 Distribution statistics from scoring methods of the brief pain inventory-interference scale and scoring methods of the 
manifestations of psychiatric severity index

SD Standard Deviation, IQR Interquartile Range, BPI-I Brief Pain Inventory Interference scale, MoPSI Manifestations of Psychiatric Severity Index, JPD Joint Probability 
Density

Scoring Method Mean SD Median 1st Quartile 3rd Quartile

BPI‑I
 Standard 6.514 2.114 6.857 4.411 8.143

 CFA Score 5.740 1.780 5.766 4.571 6.922

 PC Model 5.535 1.764 5.488 4.341 6.651

 GPC Model 5.555 1.776 5.473 4.383 6.643

 GR Model 5.78300 1.745 5.816 4.658 6.935

 JPD 9.082 1.152 9.363 8.926 9.652

MoPSI
 CFA(Spearman) 0.763 1.079 0.279 0.000 1.118

 CFA(Polychoric) 1.251 1.500 0.499 0.000 1.999

 CFA(Mixture) 2.534 2.725 1.130 0.000 4.522

 PC Model 2,404 2.142 1.645 0.000 3.967

 GPC Model 2.107 2.261 1.321 0.000 3.488

 GR Model 2.193 2.192 1.891 0.000 3.481

 JPD 0.428 1.202 0.014 0.000 0.128
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and JPD summary indices for BPI-I scoring suggests the 
JPD method produces scores with ranks highly concord-
ant with the other methods. This demonstrates that JPD 
scoring encapsulates all the information captured by 
covariance structure decomposition (CFA), Persons’ vul-
nerability scores in IRT sub-models restricted by local 
independence assumption. Note that high rank cor-
relations between IRT scorings and CFA confirms that 
the broader IRT models agree with CFA, provided the 
covariance matrix is the only set of parameters identify-
ing the joint probability distribution. For centered set of 
indicators with a spherically symmetric distribution, like 
a multivariate normal distribution, CFA scoring then is 
equivalent to an appropriate IRT and more generally, the 
JPD scoring.

Figure 1 shows the BPI-I’s 7 items’ information curves 
for Graded Response model. As expected, the items are 
more informative (Fisher information) about participants 
with middle size vulnerabilities. The items specially items 
1 (mood), 4 (walking) and), 7(sleep) are more discrimi-
nating items for these vulnerabilities Generalized Partial 
Credit and Partial Credit models’ information curves, 
which we have not reported here, demonstrated similar 
patterns.

Figure  2 depicts items’ information curves for MoPSI 
indicators. Number of mental health Clinic visits (item 
1) provides information over a wider range, includ-
ing the less sever patients, while number of emergency 
department visits for mental health concerns (item 2) is 
more informative, almost non-overlapping about more 
severe cases (higher Person’s values). Number of psy-
chiatric hospitalizations is the most informative (item 

3) to discriminate between subjects with mainly above 
average severity. The item shows an erratic behavior, 
however even in its least informative situations is much 
more information than all other items (4–6): self-harm, 
substance, and alcohol use. These items are less-discrim-
inating items provided less information but over a wider 
range of more severe cases.

Table  6 shows the inter-item correlations of the six 
MoPSI indicators and the item-to-total-score correla-
tions for the 2 scoring versions. As Table  6 shows, the 
six indicators are positively correlated and thus unidi-
rectional. Correlations of the indicators with the sum-
mary scores are positive, again supporting evidence of 
co-directionality. The indicators’ higher correlations with 
the JPD method compared to the IRT method suggests 
that the JPD method generally ranks patients closer to 
their observed indicators’ rankings. As with the BPI-I, 
there is a high rank correlation between scores obtained 
via alternative models.

BPI-I is a well-established items and their properties 
have been reported by several authors. To understand 
the MoPSI items behavior more closely, Fig. 3 shows the 
MoPSI’s 6 ICC plots, and Fig.  4, the PC model person-
item map. As can be seen from Fig.  3, the 3 ICCs for 
binary items (suicidality, alcohol use, substance use) show 
that patient with higher severities have higher probabili-
ties of endorsing them and low sever patients most likely 
will report no use or thoughts of suicidality are steep and 
thus can distinguish between more and less vulnerable 
participants. As Fig.  3, Panels A, B and F show higher 
values are reported by patients with higher severity while 
lower values are reported with high probability by less 

Table 5 Spearman correlations between brief pain inventory interference items and composite scores

BPI-I Brief Pain Inventory-Interference scale, JPD Joint Probability Density, GR Graded Response Model, GPC Generalized Partial Credit Model, PC Partial Credit Model, 
CFA Confirmatory Factor Analysis, Sum Sum of item’s scores (The established BPI-I score)

BPI‑I Items Composite Scores

1 2 3 4 5 6 7 Sum GR GPC PC CFA JPD

1 1.00 0.61 0.64 0.77 0.58 0.57 0.65 0.833 0.865 0.839 0.814 0.855 0.698

2 0.61 1.00 0.46 0.55 0.74 0.57 0.67 0.821 0.783 0.805 0.813 0.896 0.639

3 0.64 0.46 1.00 0.74 0.47 0.46 0.55 0.751 0.735 0.713 0.723 0.740 0.608

4 0.77 0.55 0.74 1.00 0.56 0.55 0.64 0.834 0.850 0.820 0.803 0.857 0.700

5 0.58 0.74 0.47 0.56 1.00 0.58 0.68 0.827 0.780 0.807 0.820 0.897 0.605

6 0.57 0.57 0.46 0.55 0.58 1.00 0.62 0.766 0.717 0.718 0.718 0.712 0.623

7 0.65 0.67 0.55 0.64 0.68 0.62 1.00 0.852 0.832 0.829 0.819 0.825 0.700

Sum 0.833 0.821 0.751 0.834 0.827 0.766 0.852 1 0.975 0.973 0.974 0.980 0.802

GR 0.865 0.783 0.735 0.850 0.780 0.717 0.832 0.975 1 0.990 0.985 0.996 0.745

GPC 0.839 0.805 0.713 0.820 0.807 0.718 0.829 0.973 0.990 1 0.997 0.995 0.744

PC 0.814 0.813 0.723 0.803 0.820 0.718 0.819 0.974 0.985 0.997 1 0.991 0.744

CFA 0.855 0.896 0.740 0.857 0.897 0.712 0.825 0.980 0.996 0.995 0.991 1 0.762

JPD 0.698 0.639 0.608 0.700 0.605 0.623 0.700 0.802 0.745 0.744 0.744 0.762 1
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sever patients. ICCs for mental health care visits between 
0 and 45 assessed a wider range of vulnerability, which 
is desirable if one wishes to rank-order individuals along 
a broad continuum, rather than identify only high (low) 
vulnerability. This is echoed in Fig. 4, where it shows that 
the number of mental health clinic visits is most impor-
tant in covering the lower range of vulnerability, while 
the number of psychiatric hospitalizations, self-harm 
diagnoses, and the number of emergency department 
visits for psychiatric reasons are more important in cap-
turing the higher range of vulnerability.

Figure 5 shows the density plots of the BPI-I scorings, 
and Fig.  6, the density plot of the psych severity indi-
ces. As can be seen from Fig.  5, the density of the JPD 
score has highest Pearson Divergence from the uniform 
distribution over the interval [0,10]. Indeed, the Diver-
gences for BPI-I scoring densities are proportional to: 
0.004(BPI-I score), 0.035(JPD),0.007(GRD),0.007(GPC), 
0.007(PC) and 0.006(CFA). The same observation holds 
for the densities of the psych severity scorings:

Shannon’s entropy was consistently lower for the JPD 
method than for the other methods. Pearson Divergence 
of the alternaive indices’ densities from the uniform den-
sity over the common 0–10 range. The JPD Divergence 
for BPI-I, is 5 to 8 times bigger than the other indices’ 
Divergences. The Pearson’s Divergence of distributions 
of MoPSI scorings from the uniform distribution are 
proportional to: 0.432, 0.006, 0.034, 0.015, 0.004, 0.006, 
0.005, respectively for JPD, PC, CFA (Spearman), CFA 
(Polychoric), CFA (Mixture of measures of associations), 
GR and GPC models. As expected, The JPD Divergence is 
again much larger than the alternatives.

For psych severity scorings, there were no significant 
difference between the Graded Response model and 
Generalized Partial Credit model. Both fitted the data. 
However, all these three models, across different fit indi-
ces received a moderate support by data. See Table  7 
below for the details:

The JPD, GRM, GPC, CFA methods for BPI-I 
returned 7,778 distinct ranks compared to 480 distinct 

Fig. 1 Item characteristic curves for the 7 Brief Pain Inventory Interference items. BPI-I = Brief Pain Inventory Interference scale
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values for the conventional and PC methods. Likewise, 
the MoPSI’s JPD method produced 121 distinct values 
(person-scores) compared to 40 values produced by 
PC modeling. Both Graded Response and Generalized 

Partial Credit models ranked the subjects into 68 rank-
equivalent groups, indicating that the JPD method 
generally is more granular and can produce finer sepa-
rations in rank-order.

Fig. 2 Person-Item map for the 7 Brief Pain Inventory Interference items. Solid circles present the spread of item difficulties and hollow circles, 
response thresholds across the latent trait (vulnerability). Items are sorted along the y-axis by difficulty. Vul. Dist. = Vulnerability Distribution

Table 6 Spearman rank correlations between manifestation of psychiatric severity items and composite scores

MH Mental Health, ED Emergency Department, JPD Joint Probability Density, Spearman Rank correlations

MH Visits ED Visits Hospitalization Self‑Harm Substance use Alcohol use Composite Scores

GR GPC PC JPD CFA

Items
 MH Visits 1.000 0.445 0.281 0.533 0.407 0.313 0.302 0.302 0.298 0.299 0.993

 Ed Visits 0.445 1.000 0.180 0.295 0.200 0.145 0.228 0.226 0.220 0.245 0.212

 Hospitalization 0.281 0.180 1.000 0.211 0.296 0.352 0.982 0.987 0.991 0.954 0.299

 Self-Harm 0.533 0.295 0.211 1.000 0.255 0.165 0.235 0.232 0.228 0.241 0.229

 Substance Use 0.407 0.200 0.296 0.255 1.000 0.394 0.361 0.351 0.338 0.382 0.347

 Alcohol Use 0.313 0.145 0.352 0.165 0.394 1.000 0.456 0.441 0.429 0.504 0.400

Scores
 GRM 0.302 0.228 0.982 0.235 0.361 0.456 1.000 0.999 0.996 0.991 0.999

 GPC 0.302 0.226 0.987 0.232 0.351 0.441 0.999 1.000 0.999 0.986 0.999

 PC 0.298 0.220 0.991 0.228 0.338 0.429 0.996 0.999 1.000 0.980 0.999

 JPD 0.299 0.245 0.954 0.241 0.382 0.504 0.991 0.986 0.980 1.000 0.976

 CFA (Polychoric) 0.993 0.212 0.299 0.229 0.347 0.400 0.999 0.999 0.999 0.976 1.000
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Discussion
We showed that using p-dimensional joint probabil-
ity density function and the notion of entropy one can 
produce q (q < p) statistics which are most informa-
tive. This unsupervised DR theory does not require a 
notion of sufficiency as is common in regression DR lit-
erature. In addition, it is always possible to reduce the 
p-dimensional variable into a single statistic being most 

informative. This single statistic necessarily may not be 
interpretable as a latent construct or plausible summary 
useful to encapsulate a broader concept or characteristic. 
We provided the two conditions of unidirectionality and 
codirectionality, under which the summary measure (the 
index, the composite score) will rank the subjects(units) 
approximately the same way as the variables (the indi-
cators) will rank. The closeness the index ranking with 

Fig. 3 Item characteristic curves for the 6 manifestations of psychiatric severity index items
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p rankings depends on how strong the codirectionality 
and unidirectionaly hold. Factor Analysis, which is based 
on the second moments and cross moments of the joint 
pdf in the case that the variance-covariances exactly or 
at least approximately identify the joint pdf, and when 
unidimensionality of the indicators, in some sense holds, 
the unidiemensional factor scoring and JPD will produce 
similar ranking. Similarly, IRT models, which are based 
on the joint pdf of items satisfying a set of plausible con-
ditions, most importantly: local independence and unidi-
mensionality, naturally should result the indices similar 
to the estimated JPD index. We used this result to vali-
date our estimated index against these more established 
procedures. A BPI-I estimated JPD index summarizing 
7 items had very good Spearman rank correlations with 
those produced by confirmatory factor analysis Credit 
and Partial credit models. the same way the variable will 
rank. See Fig. 7 below:

Very similar to the BPI-I indices, the MoPSI JPD esti-
mator of 6 indicators with varying scale of measurements 
produced a psychiatric severity index similar to these 

alternative methodologies, though the strength of rank 
dependencies were moderate. In both cases, however, 
the JPD version proved more informative and granular. 
Conditional specification of the joint probability den-
sity has recently gained momentum in machine learning 
and anomaly and outlier detection, e.g., [44–47]. Results 
here suggest that estimating indicators’ joint probability 
density may also be useful for creating indices, particu-
larly when dealing with set of multivariate data where 
higher moments, bigger than 2, are more informative or 
when IRT or classical test theory assumptions (e.g. linear 
dimension reduction) are not met.

BPI users should be reassured by yet another entry 
supporting the robustness of the BPI interference scale. 
While all the items appeared to be well-calibrated. 
Although we did not pursue it in the present paper, the 
JPD summary as the most informative non-linear sum-
mary might be a desirable second step in scoring when 
more common techniques, such as factor analysis, which 
is based on the linear decomposition of covariance struc-
ture, produce more than one meaningful (linear) factor. 

Fig. 4 Person-Item map for the 6 Manifestations of Psychiatric Severity Index items. Solid circles present the spread of item difficulties and hollow 
circles, response thresholds across the latent trait (vulnerability). Items are sorted along the y-axis by difficulty. Vul. Dist. = Vulnerability Distribution. 
MH = Mental health. Dx = diagnosis. ED = Emergency department
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In such multidimensional (linear) latent structures, one 
might find lower dimensional latent construct that are 
non-linear. As we mentioned earlier, the single non-linear 
JPD index might not be interpretable as a latent trait, but 
when it does, it will be the best (most informative) repre-
sentation of that latent construct. Were the BPI Severity 
and Interference subscales integrated into a single, fully 
informative scalar using the JPD method, investigators 
and clinicians could rank patients along a single pain 
experience continuum. This could be particularly help-
ful in addressing problems of rank-order when patients 
report low severity scores but high interference scores or 
vice versa.

This paper also produced a brief, novel measure of 
psychiatric severity based on administrative data. IRT 
analysis showed that emergency department visits and 
self-harm diagnoses best discriminated between indi-
viduals with high and low vulnerability, while the number 

of mental health visits varied over a much wider range of 
latent traits. Taken together, the six MoPSI items can dis-
criminate individuals over both a wide and narrow range 
of vulnerability and have adequate measurement validity. 
The MoPSI’s concurrent, construct, and predictive valid-
ity have been reported elsewhere, and appear promising 
[34].

Limitations
To our knowledge, using joint probability density estima-
tion to create indices has not been previously explored. 
The R code, included in Additional File 1, is customizable 
for others’ use by substituting their variable names (and 
data) for ours.

Estimating multivariate densities is an old, ongoing 
challenge in statistics [48, 49]. Even with parametric 
models, higher dimensional multivariate densities have 
intrinsic challenges [23] and non-parametric models, 

Fig. 5 Density plots for brief pain inventory interference scorings. BPI-I = Brief Pain Inventory Interference scale. JPD = joint probability density
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even more. We used generalized linear modelling of the 
mean(proportion) r with simple linear combinations of 
indicators (no interaction, higher orders or non-linearity 
in the parameters) to approximate the dependencies and 
then estimate the node probabilities. While this choice 
is not necessarily a limitation, as it was confirmed by 
alternative scoring methods, other more elaborate multi-
variate density estimations can also be used [48] or even 
combined via a super learning recipe. Our averaging of 
all p! individual factorizations is equivalent to construct-
ing a simple super-learner combining the estimators con-
structed from different methoeds.

Using Bayesian Network (BN) analysis, chain decom-
position smaller than p! could be possible when there 
is specific knowledge about dependencies [50]. If lack-
ing content knowledge, one might try to discover the 
conditional independencies between the indicators, 
then reduce the joint model to products of separate 
conditional probabilities. Unfortunately, BN structure 

discovery depends on several factors, including the 
optimality search criteria used, the testing methods 
and employed models, and search algorithms [51] and 
[52]. As we showed in our example in Additional File 2, 
Appendix Table, errors in any one of these factors can 
result in an unreliable model. In the present analysis, we 
avoided specifying the plausible dependency structures 
by using all possible conditional factor models, albeit at 
the expense of high computational cost. Fortunately, the 
small and large sample statistical optimality properties of 
JPD index, as a multivariate density estimation problem 
is an ongoing research agenda. However, its use under 
various scenarios, e.g., when a set of categorical variables 
(such as gender, or, race) exist, needs further studies. 
The use of this unsupervised DR method at the present 
does not, of course, addresses the variable selection ques-
tions, its applications in (time-varying) high-dimensional 
models, where even for high-dimensional multivari-
ate Gaussian model surprising results are possible [53]. 

Fig. 6 Density plots of manifestations of psychiatric severity index scorings. MoPSI = Manifestations of Psychiatric Severity Index. JPD = joint 
probability density

Table 7 IRT Model Comparisons

Scoring Model M2 df p RMSEA RMSEA_5 RMSEA_95 SRMSR TLI CFI

BPI-I PC 6213.334 20 0 0.187 0.183 0.191 0.095 0.906 0.911

GPC 4946.723 14 0 0.199 0.194 0.204 0.074 0.893 0.929

GRM 5803.727 14 0 0.216 0.211 0.220 0.071 0.875 0.916

MoPSI PC 58.156 14 0.000 0.059 0.044 0.075 0.122 0.966 0.996

GPC 15.785 9 0.072 0.029 0.000 0.052 0.053 0.992 0.995

GRM 15.709 9 0.073 0.029 0.000 0.052 0.051 0.992 0.995
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A particular important problem we have not addressed 
is the question of constructing the most informative 
q-dimensional linear summaries (q < p) where the condi-
tional distribution of the p-dimensional indicators given 
the q linear summaries is Uniform. Such linear reduc-
tions are possible when the indicators have an elliptical 
distribution [54].

Conclusions
An unsupervised marginal probabilistic dimensional-
ity reduction method is possible. Under conditions of 
ordinality of the indicators, and their unidirectionality, 
and co-directionality, using the joint probability density 
one may reduce several indicators to a single scalar. The 
JPD method does not discard information and can han-
dle challenging data types that may not be well-accom-
modated using more traditional techniques, provided an 
estimable multivariate density exist.
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