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Abstract 

Background According to long-term follow-up data of malignant tumor patients, assessing treatment effects 
requires careful consideration of competing risks. The commonly used cause-specific hazard ratio (CHR) and sub-
distribution hazard ratio (SHR) are relative indicators and may present challenges in terms of proportional hazards 
assumption and clinical interpretation. Recently, the restricted mean time lost (RMTL) has been recommended 
as a supplementary measure for better clinical interpretation. Moreover, for observational study data in epidemiologi-
cal and clinical settings, due to the influence of confounding factors, covariate adjustment is crucial for determining 
the causal effect of treatment.

Methods We construct an RMTL estimator after adjusting for covariates based on the inverse probability weight-
ing method, and derive the variance to construct interval estimates based on the large sample properties. We use 
simulation studies to study the statistical performance of this estimator in various scenarios. In addition, we further 
consider the changes in treatment effects over time, constructing a dynamic RMTL difference curve and correspond-
ing confidence bands for the curve.

Results The simulation results demonstrate that the adjusted RMTL estimator exhibits smaller biases compared 
with unadjusted RMTL and provides robust interval estimates in all scenarios. This method was applied to a real-world 
cervical cancer patient data, revealing improvements in the prognosis of patients with small cell carcinoma of the cer-
vix. The results showed that the protective effect of surgery was significant only in the first 20 months, but the long-
term effect was not obvious. Radiotherapy significantly improved patient outcomes during the follow-up period 
from 17 to 57 months, while radiotherapy combined with chemotherapy significantly improved patient outcomes 
throughout the entire period.

Conclusions We propose the approach that is easy to interpret and implement for assessing treatment effects 
in observational competing risk data.
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Introduction
According to long-term follow-up data for patients with 
malignant tumors, individuals may face multiple pos-
sible outcomes. Therefore, assessing treatment effects 
requires careful consideration of competing risks [1, 2]. 
For instance, the clinical outcomes of cervical cancer 
patients might include survival, loss to follow-up, death 
from cervical cancer or death from another cause (such 
as heart disease, other cancers, circulatory system disease 
and so on) [3–7]. In most studies on the survival prog-
nosis of cervical cancer patients, researchers tend to con-
sider either a single endpoint (i.e., cervical cancer death, 
with other unobserved outcomes considered censored) 
or a combined endpoint (i.e., all-cause death, where sev-
eral different causes of death are considered). However, 
when a study is designed to evaluate the effectiveness of 
a treatment for cervical cancer, the event of interest will 
be death attributed to cervical cancer. In such cases, if 
patients who die from other causes are simply treated 
as censored, this may lead to an overestimation of the 
occurrence rate of the events of interest, resulting in 
competing risks bias [8–10].

In the competing risks framework, the cause-specific 
Cox regression model is commonly employed to assess 
etiological treatment effects using the cause-specific 
hazard ratio (CHR), while the Fine-Gray model is used 
to explore the prognostic impact of treatment outcomes 
through the sub-distribution hazard ratio (SHR). The 
CHR measures the effect of a treatment group on the rate 
of dying from a cause of interest, while the SHR measures 
the effect of a treatment group on the risk of dying from 
a cause of interest [11]. Depending on the purpose of the 
study, both indicators have been widely used in compet-
ing risk data. However, in practical applications, both 
the CHR and SHR are hazard-based measures poten-
tially subject to limitations related to practical interpre-
tation and the proportional hazards assumption. Due to 
the fact that CHR and SHR are both relative indicators, 
it is challenging to provide clinicians and patients with 
tangible clinical explanations. Especially given that for 
patients diagnosed with this disease, the answer to "How 
much longer can life be extended after receiving treat-
ment?" might be the most pressing and relevant concern. 
Blagoev [12] discussed considerations for assessing treat-
ment efficacy using hazard ratios in clinical trial data. 
They proposed, “While a hazard ratio has some value, for 
the clinician caring for a patient and, more importantly, 
the patient, it does not convey benefit in terms that are 
meaningful—how much longer will the patient live or live 
without experiencing disease progression” [12].

To reduce the constraints of proportional haz-
ards assumption and better explain treatment effects, 
in recent years, several researchers in the fields of 

medicine, epidemiology, and statistics have recom-
mended incorporating restricted mean time lost 
(RMTL) to complement hazard-based indicators in the 
competitive risk setting [13–19]. The RMTL represent 
the average time lost by patients due to the event of 
interest from the initiation of follow-up to a particular 
time point [20, 21]. In practical applications, the differ-
ence of the RMTL (RMTLd) between patients receiving 
a certain treatment and those not receiving the treat-
ment is usually calculated to measure the treatment 
effect. For example, if the time point is prespecified as 
5 years and the RMTLd for cervical cancer patients in 
the treated group compared to the untreated group is 
-1  year, this can be interpreted as follows: treatment 
decreases life expectancy due to cervical cancer death 
by approximately one year.

On the other hand, in practical applications, for certain 
rare diseases with low incidence rates, it may be chal-
lenging to recruit participants for controlled clinical tri-
als. Therefore, retrospective studies can be employed to 
explore treatment benefits. For example, small cell car-
cinoma of the cervix (SCCC) is a rare subtype of cervi-
cal cancer that accounts for only 0.5–1.0% of all cervical 
cancers [22–24], with a 5-year overall survival rate of less 
than 30% [24–26]. Due to the low incidence of SCCC, 
recommendations in clinical guidelines are unclear and 
researchers face challenges in conducting prospective 
randomized controlled studies. However, in observa-
tional studies, the distribution of baseline covariates in 
the treatment and non-treatment groups is likely to be 
unbalanced. If these covariates also predict potential sur-
vival benefits, the effect of treatment on survival will be 
confounded, and direct intergroup comparison methods 
may not result in correct inferences [27, 28]. Therefore, 
it is crucial to adjust covariates in observational stud-
ies. The inverse probability weighting (IPW) method is 
based on the propensity score and is a flexible covariate 
adjusting method in application, such that there have 
been studies that have considered adjusted RMTL using 
IPW [17, 18, 29]. Therefore, this study focused on obtain-
ing accurate and robust causal effect estimates of RMTLd 
after adjusting for confounding factors using IPW.

Furthermore, conducting an analysis using RMTLd 
requires specifying the restricted time point in advance. 
Typically, clinicians choose time points of interest, such 
as 3-year RMTLd or 5-year RMTLd, or they empiri-
cally select the minimum among the maximum observa-
tion times in the two groups [16]. However, in practical 
analytical situations, especially in observational stud-
ies, specifying a single time point may result in partial 
information loss. Therefore, we considered the dynamic 
changes in the RMTLd at various time points, aiming to 
provide additional information about clinical efficacy.
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In this study, for competing risks data, we used the IPW 
method to develop point and interval estimates of weighted 
RMTLd, allowing for covariate adjustments. A Monte 
Carlo simulation study was used to explore the statisti-
cal performance of the estimator under various situations. 
Furthermore, considering that treatment effects on patient 
prognosis between groups may vary over time, we extended 
our approach to develop dynamic adjusted RMTLd curves 
and simultaneous confidence bands. The implementation of 
the proposed method with a simulated example is available 
on Git-Hub [https:// github. com/ chenz gz/ aRMTL]. Finally, 
we applied this method to patients with SCCC from the 
Surveillance, Epidemiology, and End Results (SEER) data-
base to evaluate the treatment effects of different therapeu-
tic approaches on cervical cancer.

Method
For generality, we considered a model with only one event 
of interest (e.g., j = 1 , death from studied cancer) and one 
competing event (e.g.,  j = 2 , death from other causes). 
Let T  be the event time, and the corresponding event type 
is  j

(
j = 1, 2

)
. C  is the independent censoring time; then, 

the observation time is X = min{T ,C} , and the indicator 
of the occurrence of the event is δ = I(T ≤ C)j (δ = 0 is 
the censoring status, and δ = 1, 2    are events of interest 
and competing events, respectively). Assuming a com-
parison between two groups (e.g., whether the patients 
received treatment), where K = k(k = 0, 1) (k = 1indi-
cates the treatment group and k = 0 indicates the non-
treatment group) represents the grouping of patients, 
we define  Z  as a baseline covariate matrix of dimen-
sion n× q . For patients i = 1…, n, the observed data vec-
tor is 

(
Xi, δi,Ki,Z

T
i

)T . Additionally, for patient i in the 
k-th group, we define Nijk(t) = I

(
Xi ≤ t, δi = j,Ki = k

)
 , 

which indicates whether the individual has occurred 
event j by time t, and Yik(t) = I(Xi ≥ t,Ki = k) , which 
indicates whether any event has not occurred to the indi-
vidual by time t.

In the presence of competing risks, the cause-
specific cumulative incidence function (CIF) for 
the k-th group’s event of interest is defined as 
F1k (t) = P

(
T ≤ t, j = 1,K = k

)
=

∫ t
0
exp(−∧1k (s)− ∧2k (s))d ∧1k (s) , 

where ∧jk(t) is the cause-specific cumulative hazard func-
tion (Nelson‒Aalen estimate) for event j and group k. To 
compare treatment effects between groups, the measures 
of interest in this study are the RMTLd for the event of 
interest between the two groups: △(t) = µ1(t)− µ0(t) , 
where µk(t) =

∫ t
0 F1k(u)du . In practice, it is common to 

choose a restricted time point, denoted as  t = τ . µk(τ )

represents the RMTL for the event of interest in the k-
th group up to time τ , calculated by integrating the area 
under the CIF curve for the event of interest from 0 toτ . 

The RMTLd is interpreted as the discrepancy in the aver-
age time lost due to the event of interest between the two 
groups up to time τ.

Adjusted difference of the RMTL estimator using 
the inverse probability weighted method
In order to adjust for the covariates using IPW method, it 
is necessary to estimate propensity scores to construct 
weights. We employed a logistic regression model to esti-
mate propensity scores, i.e., log {p(β)/[1− p(β)]} =

β
(
1, ZT

)T , where p(β)    represents the probability of a 
patient being assigned to the treatment group. The maxi-
mum likelihood estimation yields the propensity score 
estimate pi

(
β̂

)
 for the i-th patient, and the inverse prob-

ability weight estimate is wi

(
β̂

)
= I(Ki = 1)/pi

(
β̂

)
+

I(Ki = 0)/ 1− pi β .
In this study, we construct a weighted RMTLd based 

on the Nelson–Aalen estimate of IPW under competing 
risks conditions. Following the concept of IPW, assigning 
weights to each individual, the IPW weighted Nelson-
Aalen estimator under competing risks is given by

where  Nw
jk

(
t, β̂

)
=

∑n
i=1 wi

(
β̂

)
Nijk(t) , is the weighted 

number of individuals who have experienced the j-event 
by time t, and  Yw

k

(
t, β̂

)
=

∑n
i=1 wi

(
β̂

)
Yik(t) , is the 

weighted number of individuals who have not experi-
enced any event by time t.

Then, the IPW weighted RMTLd estimate is given by 
△̂w

(
t, β̂

)
= µ̂w

1

(
t, β̂

)
− µ̂w

0

(
t, β̂

)
 , where µ̂w

k

(
t, β̂

)
=

∫
t

0
F̂
w

1k(
s, β̂

)
ds and F̂w

1k

(
t, β̂

)
=

∫ t
0
exp

{
−∧̂

w
1k

(
s, β̂

)
− ∧̂

w
2k

(
s, β̂

)}
d∧̂

w
1k

(
s, β̂

)
.

For a restricted time point τ , △̂w
(
τ , β̂

)
 is interpreted as 

the difference, after controlling for covariates, in the aver-
age time lost due to cervical cancer death between the 
entire study population receiving treatment and those not 
receiving treatment within τ years. To ensure the validity 
of the estimates, in practice, the choice of τ should neither 
be too early nor too late, meaning that each group should 
have at least one event before τ (i.e., Pr(T < τ) > 0 ) and 
at least one observation after τ (i.e., Pr(X > τ) > 0 ). This 
study refers to the RMTLd constructed based on the IPW 
as the adjusted RMTLd (aRMTLd).

The variance estimate of △̂w
(
τ , β̂

)
  can be approxi-

mately derived from its large-sample properties (for the 
detailed process, see Web Appendix 1), which is denoted 
as σ̂w(τ )2 = n−1

∑n
i=1

(
ξ̂wi1

(
τ , β̂

)
− ξ̂wi0

(
τ , β̂

))2
 , where 

∧̂
w
jk

(
t, β̂

)
=

∫ t

0

dNw
jk

(
s, β̂

)

Yw
k

(
s, β̂

) ,

https://github.com/chenzgz/aRMTL
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ξ̂wik

(
t, β̂

)
 is defined in formula (7) in Web Appendix 1. Then, 

the (1− α)  two-sided confidence interval for △̂w
(
τ , β̂

)
  is 

(
△̂w

(
τ , β̂

)
− z(1−α/2)n

−1/2σ̂w(τ ), △̂w

(
τ , β̂

)
+ z(1−α/2)n

−1/2σ̂w(τ )

)
 , 

where z(1−α/2) is the 100(1− α/2) percentile of the stand-
ard normal distribution and σ̂w(τ )  is the estimated stand-
ard deviation of △̂w

(
τ , β̂

)
.

Dynamic curve of aRMTLd and simultaneous confidence 
band estimates
In some practical applications, the effect of treatment 
may often change over time, and a single time point alone 
still cannot provide a sufficient summary of the treatment 
effect. At this point, it is necessary to assess the variation 
of aRMTLd over a time interval and using simultaneous 
confidence bands to evaluate its variability. Due to the 
complexity of ξwik (t,β) , our study employs a perturbation-
resampling method to construct confidence bands for the 
curve.

Assuming that the study evaluates the effect of treatment 
on patients from time points tL to tU , the simultaneous equal-
precision confidence band [30] for △̂w

(
t, β̂

)
 is estimated as (

△̂w
(
t, β̂

)
− q̂αn

−1/2σ̂w(t), △̂w
(
t, β̂

)
+ q̂αn

−1/2σ̂w(t)
)

 , 
and the estimated value of the 100(1− α) empirical percen-
tile  q̂α  for the simultaneous confidence bands is obtained 
using the following formula:

where Ri  (i = 1,..,n) is a randomly sampled standard nor-
mal distribution variable. Similarly, it should be noted 
that, for the selection of the time interval  [tL, tU ] , in 
practice, to make the most of the follow-up information 
possible, one can empirically choose the maximum time 
interval. Specifically, set tL to be the minimum time satis-
fying Pr(T < tL) > 0 , and set tU to be the maximum time 
satisfying Pr(X > tU ) > 0 . If one simultaneously consid-
ers a time interval of clinical interest, the final choice may 
be the intersection of these two time intervals [31].

Simulation studies
Simulation design
We designed a Monte Carlo simulation study to inves-
tigate the performance of aRMTLd at restricted time 
points. Our simulation study was based on the simu-
lation design framework by Conner [17]. We adjusted 
some parameters to consider more scenarios. The sim-
ulation is conducted in two groups of comparisons, 
setting up an event of interest ( j = 1 ) and a compet-
ing event ( j = 2 ). The comparison methods included 
RMTLd without adjustment for covariates and aRMTLd 

Pr





sup

tǫ[tL, tU ]

������

n−1/2
�n

i=1

�
�ξwi1

�
t, �β

�
− �ξwi0

�
t, �β

��
Ri

�σw(t)

������
> �qα




 = α

with IPW after covariate adjustment. Time points 
τ = 182.5, 360, 730  days were selected for analysis. The 
simulation design is carried out under the condition that 
the model assumptions are correct. Four covariates are 
set to affect the allocation of treatment groups and are 
independent prognostic factors at the same time, that is, 
they are all confounding factors and need to be adjusted. 
The reported performance measures include the mean 
bias, empirical root mean squared error (RMSE), empiri-
cal coverage, and relative standard error (RSE).

Data generation
First, we generate four independent covariates Z =

(Z1, Z2, Z3, Z4)
T from the standard normal distribution. The 

grouping variable Ki  is then generated from the Bernoulli 
distribution with probability p = 1/(1+ exp(−αZ)) , where 
α=(ln (0.6), ln (0.5), ln (0.7), ln (0.8)) . Because of E[αZ] = 0 , 
the individuals assigned to the two groups are basically 
equal, which is a balanced sample size.

Let Z̃ =
(
K ,ZT

)T , For the event of interest ( j = 1 ), 
assuming that the event time obeys Gompertz distribution, 
the baseline risk function is �10(t) = γ exp(ρt) , where 
γ  and  ρ  represent the corresponding parameters of the 
Gompertz distribution. The sub-distribution risk function 
based on covariates is �1

(
t; Z̃

)
= �10(t)exp

{
β1

∼

Z+ β2

∼

Zt

}
 , where 

β1 =

{
β11, ln (0.8), ln (0.7), ln (0.6), ln (0.5)

} , β2 = {β21, 0, 0, 0, 0} , 
where β11 and β21 represent the fixed effects and time-vary-
ing effects of the grouping variables respectively. The condi-
tional cumulative incidence function of events of interest 
based on covariates is F1

(
t; Z̃

)
= P

(
T ≤ t, j = 1

∣∣∣Z̃
)
=

1− exp

[
−
∫ t
0
γ exp

{
β1

∼

Z+ β2

∼

Zs + ρs

}
ds

]
 . Then when 

β2

∼

Z+ ρ<0 , the marginal probability of the event of 
interest is 

P

(
j = 1

∣∣∣Z̃
)
= 1− exp

{
γ exp

{
β1Z̃

}

β2Z̃+ρ

}
 . Therefore, the 

cumulative incidence function of competing events is 

F2

(
t; Z̃

)
= P

(
T ≤ t, j = 2

∣∣∣Z̃
)
= exp

{
γ exp

{
β1Z̃

}

β2Z̃+ρ

}

[
1− exp

{
−t exp(β3Z̃)

}]
 , where β3 = {ln (0.67), ln (0.5),

ln (0.6), ln (0.7), ln (0.8)}.
For the generation of event type and event time, first 

generate event type j from Bernoulli distribution accord-
ing to probability P

(
j = 1

∣∣∣Z̃
)
 . Then simulate a random 

variable from uniform distribution U(0, 1)  to determine 
the inverse of the conditional cumulative incidence func-
tion at time t to generate event time. For  j = 1, 2 , the 
corresponding conditional cumulative incidence func-
tion is  P

(
T ≤ t

∣∣∣ j = 1, Z̃
)
= F1(t)/P

(
j = 1

∣∣∣Z̃
)
  and 

P
(
T ≤ t

∣∣∣ j = 2, Z̃
)
= F2(t)/P

(
j = 2

∣∣∣Z̃
)
 respectively.
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At the same time, an independent right censor-
ing situation is set up. By generating a censoring time 
C that obeys a uniform distribution U(0, c) , different 
parameters c are selected to produce censoring rates of 
15% and 30%. The final observed time is the minimum 
value of the event time T and the censoring time C, 
δ = I(T ≤ C)j indicates whether an observation is cen-
sored and serves as an indicator for the type of event 
that occurred.

Scenarios and true values
By setting different parameters (γ , ρ,β11,β21) , we  
considered three scenarios, namely Scenario A 
(1.5,−1, 5, ln (0.7), 0)  when the risk rate of the sub-
distribution of the grouping effect is proportional, 
Scenario B  (1.5− 1, 5, ln (0.6), ln (1.8))  of the attenua-
tion effect and Scenario C (1.5,−1.2, ln (1.1), ln (0.4))  
of the delayed effect when the risk rate of the sub- 
distribution of the grouping effect is disproportionate.  
A total of 12 situations were considered with total  
sample sizes of 500 and 1000 and censoring rates of 
15% and 30%.

We determine the true marginal difference in RMTL 
by generating a sample of size n = 1,000,000. We first 
generate data for the treatment group ( k = 1 ), gen-
erating event types and corresponding event times 
based on the simulation settings. The process is then 
repeated for the treatment group ( k = 0 ), producing 
two sets of event results (event type and time) for each 
person. Selecting time points τ = 182.5, 360, 730  days 
(corresponding to 0.5, 1, and 2  years respectively), the 
true marginal difference of the events of interest is the 
RMTLd of k = 1  and k = 0 . The real cumulative inci-
dence function is shown in Fig.  1. The corresponding 
calculated true value of marginal RMTLd is shown in 
Supplemental Table 1.

Assessment of statistical performance
In this study, the number of simulations is set to 
nsim = 5000 . We estimated the aRMTLd in the i-th repe-
tition as △̂i(i = 1, 2, ..., nsim ) and the true value of the esti-
mand as Δ, which was obtained from Scenarios and true 
values section. We examined four performance measures 
in estimating the true marginal RMTLd: the mean bias, 
1

nsim

∑nsim
i=1

(
△̂i −△

)
 ; the RMSE, 

√
1

nsim

∑nsim
i=1

(
△̂i −△

)2
 ; 

the empirical coverage rate, estimated as the proportion 
of 95% confidence intervals that covered △̂ ; and the RSE  
is defined as the ratio of the average model standard  
error and Monte Carlo empirical standard error, √√√√ 1

nsim

nsim∑
i=1

V̂ar
(
△̂i

)

√√√√ 1

nsim − 1

nsim∑
i=1

(
△̂i−△

)2
.

Simulation results
The simulation results demonstrate that the unadjusted 
RMTLd exhibits substantial average bias across differ-
ent scenarios, with the deviations increasing as the time 
points increase. Specifically, within 180.5 days, 365 days, 
and 730  days, the unadjusted RMTLd deviates from 
the true values by approximately 18 to 20  days, 46 to 
50 days, and 104 to 108 days, respectively. After adjust-
ing for covariates, the aRMTLd consistently demon-
strated a small average bias across various scenarios and 
time points, with differences from the true values con-
sistently occurring within 0.42 days. Similarly, the RMSE 
of aRMTLd was consistently lower than of unadjusted 
RMTLd and decreased as the sample size increased. The 
coverage of unadjusted RMTLd is generally less than 
10%, remaining below 5% as time progresses, which 
due to the substantial bias. The coverage of aRMTLd 
approaches the nominal level of 95%, mostly remain-
ing within a reasonable range (94.4% to 95.6%) based on 

Fig. 1 Real CIF under large samples under three scenarios in simulation study
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5000 simulations. Additionally, the estimated RSE for 
aRMTLd is close to 1, indicating that this method pro-
vides standard deviation estimates that closely resemble 
true variability. In summary, the adjusted RMTL estima-
tor exhibits smaller biases compared with unadjusted 
RMTL in all scenarios and provides robust interval 
estimates. Table  1 present the simulation performance 
comparisons of the RMTLd and aRMTLd estimators at 
different time points.

Application of the adjusted RMTLd in patients 
with small cell carcinoma of the cervix
The data for this study were sourced from the SEER data-
base. We extracted information on patients diagnosed 
with SCCC between 2000 and 2020. The detailed data 
collected from the SEER database and variable classifica-
tion are provided in Web Appendix 2. In this study, the 
event of interest for patients with SCCC was death due to 
cervical cancer, while death from other causes was con-
sidered a competing event.

Previous studies have indicated that surgery, radio-
therapy, and chemotherapy each have certain thera-
peutic effects on SCCC. In this study, we investigated 
the impact of surgery, radiotherapy, and combined 
radiotherapy with chemotherapy on the prognosis of 
patients with SCCC. First, we examined the distribu-
tion of covariates across different treatment groups 
(Supplemental Tables  3–5). To estimate treatment 
effects, we included all variables except for the treat-
ment group when constructing a logistic regression to 
estimate weights, allowing us to construct the points 
and intervals of the aRMTLd estimates. The unadjusted 
RMTLd was used for comparison. To further explore 
the time-varying effects of treatment, we employed 
aRMTLd curves and simultaneous confidence bands to 
depict the dynamic changes. The analysis considered 
fixed time points at 36  months (3  years), 60  months 
(5 years), and 120 months (10 years). The time interval 
for assessing the dynamic aRMTLd curve was chosen 
as [3, 120] months.

Additionally, we present the results from Fine-Gray 
models, employing both univariate and multivariate 
regression models to derive the SHR and adjusted SHR 
(aSHR). Notably, the SHR can be considered the weighted 
average of various time points before a specified time 
point [32]. The study also conducted tests on the propor-
tional hazards (PH) assumption for the sub-distribution 
hazards of the model [33].

Surgical groups
There was an imbalance in the distributions of all the 
other covariates between the groups of patients who did 
and did not undergo surgical treatment (Supplemental 

Table  3). The results of Fine-Gray model showed that 
SHR < 1, suggesting surgery as a protective factor with 
statistical significance, while the aSHR value increased 
compared with SHR, and its confidence interval included 
1 (Table 2). Nevertheless, at all three time points, surgery 
did not satisfy the PH assumption according to neither 
univariate nor multivariate analyses. This finding indi-
cates that the SHR and aSHR may vary over time, and a 
single regression coefficient may not accurately indicate 
treatment efficacy.

Compared with the unadjusted CIF curves, the dif-
ference between the two CIF curves decreased after we 
adjusted for covariates (Fig.  2-A). The absolute values 
of aRMTLd are smaller than those of the unadjusted 
RMTLd. Taking 36  months as an example, the RMTLd 
is -7.56 m (95% CI: -9.65 ~ -5.48 m), while the aRMTLd 
is -1.95  m (95% CI: -4.66 ~ 0.77  m) (Table  2). The inter-
pretation is that within 36 months, when other covariates 
are controlled, compared to patients with SCCC who did 
not receive surgery, patients with SCCC who did receive 
surgery experienced an average reduction of 1.95 months 
in the time lost due to death from cervical cancer. At all 
three time points, consistent results were obtained using 
the Fine-Gray model and RMTL estimates. The univari-
ate analysis indicated significant improvements in patient 
prognosis after surgery, whereas after covariate adjust-
ment, the differences were not statistically significant. 
This finding suggests that the unadjusted results might 
be influenced by confounding factors, emphasizing the 
importance of evaluating treatment effects accurately 
using results adjusted for covariates.

The results of the dynamic aRMTLd curve analysis showed 
that the absolute values of the unadjusted RMTLd were 
relatively large, and the confidence intervals did not include 
0. In contrast, the aRMTLd absolute values decreased, and 
the confidence intervals included 0 from 24 to 120 months, 
with the simultaneous confidence band including 0 from 20 
to 120 months (Fig. 2-B). The findings suggest that the sta-
tistically significant impact of surgery on patient outcomes is 
limited to the initial 20 months of follow-up, with no signifi-
cant long-term improvement in prognosis.

Radiotherapy groups
There was an imbalance in the distribution of covari-
ates, except for tumor size and lymph node involvement, 
between the groups of patients who did and did not 
receive radiotherapy (Supplemental Table 4). The results 
of the Fine‒Gray model showed that SHR was < 1 while 
after adjusting for covariates, the aSHR increased, and 
its confidence interval included 1 (Table 2). Similarly, at 
all three time points, radiotherapy did not satisfy the PH 
assumption according to neither univariate nor multivar-
iate analyses.
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Table 1 Results of the simulation study comparing the RMTLd and aRMTLd estimators

Performance measures Bias (days) RMSE Coverage RSE

Method RMTLd aRMTLd RMTLd aRMTLd RMTLd aRMTLd RMTLd aRMTLd

N CR

τ = 182.5 days

 Scenario A

  500 15% 19.1811 -0.1309 0.0550 0.0165 0.1028 0.9438 0.9999 0.9785

30% 19.2024 -0.0953 0.0551 0.0167 0.1090 0.9446 1.0015 0.9819

  1000 15% 19.3225 -0.0414 0.0542 0.0115 0.0036 0.9460 0.9940 0.9914

30% 19.3002 -0.0658 0.0541 0.0117 0.0040 0.9502 0.9940 0.9917

 Scenario B

  500 15% 18.8975 -0.0838 0.0541 0.0161 0.0984 0.9440 1.0114 0.9903

30% 18.9158 -0.0467 0.0542 0.0163 0.1042 0.9424 1.0134 0.9937

  1000 15% 18.9997 -0.0121 0.0533 0.0114 0.0034 0.9482 0.9948 0.9885

30% 18.9774 -0.0365 0.0532 0.0117 0.0042 0.9468 0.9937 0.9866

 Scenario C

  500 15% 21.1005 -0.0076 0.0601 0.0169 0.0718 0.9456 1.0128 0.9855

30% 21.1036 0.0171 0.0602 0.0171 0.0722 0.9466 1.0168 0.9890

  1000 15% 21.2596 0.0867 0.0595 0.0119 0.0016 0.9452 0.9920 0.9859

30% 21.2463 0.0722 0.0595 0.0122 0.0018 0.9504 0.9898 0.9851

τ = 365 days

 Scenario A

  500 15% 47.1601 0.0556 0.1342 0.0353 0.0544 0.9412 0.9972 0.9748

30% 47.1560 0.1040 0.1344 0.0363 0.0634 0.9452 0.9994 0.9798

  1000 15% 47.4911 0.2807 0.1326 0.0245 0.0002 0.9462 0.9969 0.9919

30% 47.4260 0.2156 0.1326 0.0252 0.0010 0.9454 0.9970 0.9952

 Scenario B

  500 15% 46.6846 -0.1734 0.1327 0.0346 0.0504 0.9450 1.0130 0.9846

30% 46.6757 -0.1359 0.1329 0.0356 0.0598 0.9448 1.0135 0.9889

  1000 15% 46.9306 0.0015 0.1311 0.0243 0.0010 0.9462 0.9948 0.9877

30% 46.8711 -0.0592 0.1310 0.0251 0.0018 0.9460 0.9951 0.9887

 Scenario C

  500 15% 49.5109 -0.1858 0.1404 0.0355 0.0396 0.9440 1.0122 0.9857

30% 49.4543 -0.1843 0.1404 0.0365 0.0496 0.9512 1.0157 0.9927

  1000 15% 49.8856 0.0425 0.1391 0.0249 0.0002 0.9480 1.0017 0.9899

30% 49.8207 -0.0145 0.1391 0.0259 0.0004 0.9480 0.9961 0.9891

τ = 730 days

 Scenario A

  500 15% 104.1553 -0.4112 0.2960 0.0745 0.0480 0.9416 0.9913 0.9759

30% 104.1652 -0.2058 0.2970 0.0789 0.0704 0.9408 0.9910 0.9801

  1000 15% 104.8837 0.1431 0.2926 0.0515 0.0002 0.9456 1.0029 0.9964

30% 104.7054 0.0394 0.2926 0.0546 0.0008 0.9486 1.0002 0.9994

 Scenario B

  500 15% 104.4296 -0.1765 0.2960 0.0734 0.0362 0.9422 1.0073 0.9779

30% 104.4425 0.0438 0.2971 0.0780 0.0528 0.9446 1.0041 0.9811

  1000 15% 104.8975 0.1734 0.2925 0.0511 0.0008 0.9456 0.9969 0.9910

30% 104.7220 0.0771 0.2925 0.0543 0.0018 0.9474 0.9997 0.9948

 Scenario C

  500 15% 106.7363 -0.4194 0.3024 0.0736 0.0360 0.9458 1.0155 0.9924

30% 106.4953 -0.3891 0.3029 0.0786 0.0546 0.9494 1.0111 0.9936

  1000 15% 107.5512 0.1373 0.2997 0.0517 0.0002 0.9474 1.0091 0.9953

30% 107.3150 -0.0090 0.2997 0.0554 0.0006 0.9430 1.0019 0.9941

the reasonable range for empirical coverage is 0.9440∼0.9560, calculated using the following formula: 0.95± 1.96
√
0.95(1− 0.95)/5000 [15]

N Sample sizes, CR Censoring rates
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Compared with the unadjusted CIF curves, the dif-
ference between the two CIF curves decreased after 
adjusting for covariates (Fig.  2-C). The absolute val-
ues of aRMTLd were smaller than those of the unad-
justed RMTLd. Taking 60  months as an example, the 
RMTLd was -8.07  m (95% CI: -12.19 ~ -3.95  m), while 
the aRMTLd was -5.65  m (95% CI: -10.26 ~ -1.05  m) 
(Table  2). The interpretation is that within 60  months, 
when other covariates are controlled, patients with 
SCCC who received radiotherapy experienced an average 
reduction of 5.65  months in the time lost due to death 
from cervical cancer compared to those who did not. 
In other words, within 60  months, radiotherapy could 
increase the life expectancy free of cervical cancer death 
by 5.65 months.

The results of the dynamic aRMTLd curve analy-
sis showed that the absolute values of the unadjusted 
RMTLd were relatively large, and the confidence inter-
vals did not include 0. In contrast, the aRMTLd abso-
lute values decreased, and the confidence intervals 
excluded 0 from 3 to 90  months, with the simultane-
ous confidence band excluding 0 from 17 to 57 months 
(Fig.  2-D). In the interpretation of the simultaneous 
confidence band, taking 36 months as an example, the 
aRMTLd was -3.95 months, with a simultaneous confi-
dence band of (-7.35 m, -0.54 m). This finding indicates 
that, after adjustment for multiple comparisons over 
the entire time interval [3, 120] using the simultaneous 
confidence band, radiotherapy could still significantly 
increase life expectancy free of cervical cancer death by 
3.95 months within 36 months.

Treatment groups: combined radiotherapy 
with chemotherapy
Regarding the group of patients who received both radio-
therapy and chemotherapy treatment or not, there was 
an imbalance in the distribution of covariates, except 
for tumor size, lymph node involvement, and whether 
surgery was performed, with statistically significant dif-
ferences (Supplemental Table 5). The aSHR < 1 was con-
sidered to indicate a statistically significant difference, 
suggesting combined radiotherapy with chemotherapy 
as a protective factor with statistical significance after 
adjusting for covariates (Table  2). Similarly, at all three 
time points, combined radiotherapy with chemotherapy 

did not satisfy the PH assumption according to neither 
univariate nor multivariate analyses.

Compared with the unadjusted CIF curves, the dif-
ference between the two CIF curves decreased after 
adjusting for covariates (Fig. 2-E).The absolute values of 
the aRMTLd were smaller than those of the unadjusted 
RMTLd, with statistically significant differences observed 
before and after adjustment. Taking 120  months as 
an example, the aRMTLd was -10.90  m (95% CI: 
-19.23 ~ -2.58  m) (Table  2). This finding implied that 
within 120 months, when other covariates are controlled, 
patients with SCCC in the combined radiotherapy 
with chemotherapy group could achieve an additional 
10.90 months of life expectancy.

The confidence band of the aRMTLd curve does not 
include 0 during the entire period (Fig.  2-F). This indi-
cates that the improvement in prognosis for patients 
receiving combined radiotherapy with chemotherapy 
was statistically significant within the [3, 120] months 
duration.

Discussion
In summary, this study considered assessing treatment 
effects based on time scales in observational competing 
risk data. Depending on the purpose of the study, when 
the end point of interest is death from a specific cause, 
competing risks should be carefully considered to reduce 
bias (such as an overestimation of the occurrence rate of 
the events of interest). On the other hand, when obser-
vational study data are used to assess treatment effects, 
adjustment for covariates is necessary. The aRMTLd con-
structed in this study based on IPW, by directly weight-
ing each individual under given covariate conditions, can 
be applied to observational studies with competing risk 
data, providing a more accurate assessment of treatment 
effects after adjusting for covariates. The simulation study 
results indicate that in the presence of confounding fac-
tors, estimating the RMTLd without covariate adjustment 
leads to substantial bias. In contrast, the aRMTLd dem-
onstrates little bias, and the interval estimate is robust. In 
the prognostic study of patients with SCCC, the analysis 
of the three treatments revealed that unadjusted RMTLd 
indicated a significant improvement in patient progno-
sis for all treatments. However, after adjustment, the 
effects of aRMTLd were reduced, especially after surgery, 

(See figure on next page.)
Fig. 2 Unadjusted and adjusted CIF curves and dynamic RMTL difference curves of three treatment groups. A CIF plots for the surgery group, 
both unadjusted and adjusted; B dynamic RMTLd and aRMTLd curves for the surgery group; C CIF plots for the radiotherapy group, both unadjusted 
and adjusted; D dynamic RMTLd and aRMTLd curves for the radiotherapy group; E CIF plots for the combined radiotherapy with chemotherapy 
group, both unadjusted and adjusted; F dynamic RMTLd and aRMTLd curves for the combined radiotherapy with chemotherapy group. Note: 
the time range for dynamic aRMTLd curve plots is selected as [3, 120] months; in Fig. 2-B, D and F, the dashed lines represent pointwise confidence 
intervals, and the red shading represents the simultaneous confidence band for the aRMTLd curve
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Fig. 2 (See legend on previous page.)
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where long-term efficacy was not significant. This could 
be attributed to the fact that patients receiving treat-
ment may have better baseline health conditions than 
those not receiving treatment (e.g., younger age, smaller 
tumor size, or earlier stage) [34, 35]. Without controlling 
for the impact of covariates, the treatment effect may be 
exaggerated, leading to potentially erroneous conclusions. 
Overall, the aRMTLd can adjust for covariates and com-
plement risk-based measures, providing a "time" perspec-
tive for estimating treatment effects.

To date, some studies have considered RMTL adjusted 
for covariates and have developed corresponding models. 
Conner and Trinquart [17] applied IPW combined with 
RMTL to construct estimators and variance. Notably, they 
used a weighted Kaplan–Meier estimator to estimate the 
overall survival function in the weighted RMTL, while our 
study used a weighted Nelson-Aalen estimator to estimate 
the overall survival. These two estimators are asymptoti-
cally equivalent, but the Nelson–Aalen estimator has bet-
ter finite-sample properties [36]. Furthermore, previous 
works have treated the IPW estimator weights as fixed 
and derived the variance using Greenwood’s formula. 
The proposed variance of the RMTL does not account 
for variability in the estimated weights [17]. In contrast, 
our study considers the variability in weights estimated by 
logistic regression when deriving the variance. Therefore, 
simulation results show that the coverage estimated by 
our method are close to 0.95. The comparative results of 
these two methods under various simulation scenarios are 
provided in Supplemental Table 2.

Globally, cervical cancer is the fourth most common 
cancer among women, with SCCC being a relatively rare 
subtype. In the National Comprehensive Cancer Network 
(NCCN) guidelines [37], surgery, chemotherapy and radio-
therapy are advocated as the primary treatment modalities 
for SCCC. Previous studies have indicated that primary 
radiotherapy combined with aggressive chemotherapy 
yields better survival outcomes than surgery [35]. However, 
the efficacy of surgery for treating SCCC remains contro-
versial. Several retrospective studies have reported benefits 
from surgery [25, 34, 38]. In contrast, our study showed 
that the difference in surgical efficacy was statistically sig-
nificant only within the first 20 months of follow-up. In the 
long term, surgery does not significantly impact the progno-
sis of patients with SCCC, possibly because 2–3 years after 
surgical treatment is the period of high recurrence of cervi-
cal cancer [3]. Consequently, the prognosis of patients who 
undergo surgery may deteriorate due to recurrence during 
this period. The study utilized aRMTLd analysis to examine 
the common conservative treatment approach of radiother-
apy combined with chemotherapy, revealing a statistically 

significant improvement in patient prognosis. Notably, 
another study on SCCC, also derived from the SEER data-
base, reported the benefits of surgical treatment, with no 
significant improvement in prognosis from radiotherapy 
[38]. This discrepancy with our study’s conclusions may be 
attributed to the use of overall mortality as the endpoint, 
while our research included consideration of competing 
risks, focusing more on analyzing the treatment effects of 
different therapies on this specific cancer, with the primary 
event being death due to cervical cancer.

Furthermore, in practical applications, estimating the 
RMTL requires specifying fixed time points for analysis 
in advance. However, in clinical settings, it is sometimes 
challenging to rely solely on determining a single time 
point as a sufficient summary of treatment effects [39]. 
Moreover, once a specific time point is determined, sub-
sequent information may not be fully utilized [31]. From 
this perspective, this study further presents the dynamic 
aRMTLd curve over a specified time interval. For com-
prehensive observation of the entire curve, simultane-
ous confidence bands (rather than pointwise confidence 
intervals) are more appropriate. Compared to observing 
differences at a specific time, examining the entire dif-
ference curve in conjunction with confidence bands 
provides more information about treatment benefits. 
For instance, analyzing radiotherapy at fixed time points 
provides an estimate that, within 120  months, radio-
therapy can increase the life expectancy of patients free 
of cervical cancer death by approximately 7.5  months. 
However, further analysis incorporating dynamic curves 
revealed that the improvement in patient prognosis 
with radiotherapy was not significant between 3 and 
16  months. However, the effect is statistically signifi-
cant starting at 17 months, while it weakens in the later 
period (after 57 months) and is not significant. We spec-
ulate that this may be due to the occurrence of delayed 
treatment effects in the early stages, and when the treat-
ment has taken effect, the efficacy may gradually dimin-
ish over time.

Limitations and future work
Finally, there are some limitations to this study: (1) First, 
the method proposed in this study can only handle base-
line covariates. For time-dependent confounding fac-
tors, we can consider modifying the weight construction, 
which will be the focus of our future research. (2) Sec-
ondly, retrospective observational studies, when selecting 
databases for analysis, need to consider potential selec-
tion bias; (3) Furthermore, due to the lack of detailed 
information on treatment regimens in the SEER database, 
patient survival might be indirectly influenced.
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Conclusion
In conclusion, our study introduces the aRMTLd as an 
estimation of treatment effects in the context of com-
peting risk data, allowing for covariate adjustment. 
Simulation studies demonstrate the robust statistical 
performance of the proposed estimator. In the illustra-
tive analysis, we utilized long-term follow-up data from 
patients with SCCC to investigate the impact of differ-
ent treatments on the outcome of death due to cervical 
cancer. The aRMTLd curves are employed to depict the 
changing trends of treatment effects over time. Because 
this rare disease lacks clear treatment guidelines, the ana-
lytical findings regarding efficacy could guide future pro-
spective studies. Moreover, given the results of this study, 
we can recommend the application of the aRMTLd and 
dynamic curve to competing risk data from observational 
studies to provide a reference for clinical and public 
health policy decisions in practical applications.
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