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Abstract 

Background  Synthetic Electronic Health Records (EHRs) are becoming increasingly popular as a privacy enhancing 
technology. However, for longitudinal EHRs specifically, little research has been done into how to properly evaluate 
synthetically generated samples. In this article, we provide a discussion on existing methods and recommendations 
when evaluating the quality of synthetic longitudinal EHRs.

Methods  We recommend to assess synthetic EHR quality through similarity to real EHRs in low-dimensional projec-
tions, accuracy of a classifier discriminating synthetic from real samples, performance of synthetic versus real trained 
algorithms in clinical tasks, and privacy risk through risk of attribute inference. For each metric we discuss strengths 
and weaknesses, next to showing how it can be applied on a longitudinal dataset.

Results  To support the discussion on evaluation metrics, we apply discussed metrics on a dataset of synthetic EHRs 
generated from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) repository.

Conclusions  The discussion on evaluation metrics provide guidance for researchers on how to use and interpret dif-
ferent metrics when evaluating the quality of synthetic longitudinal EHRs.
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Introduction
Synthetic data is an emerging method to mitigate pri-
vacy concerns when dealing with sensitive personal 
information [1]. Domains with a large amount of sensi-
tive information, like Electronic Health Records (EHRs) 
in healthcare, stand to gain the most from this. However, 
generating high-quality synthetic EHRs is a difficult task 
for multiple reasons. For example, EHRs potentially span 
multiple modalities including static demographics and 
attributes, longitudinal measurements on health factors, 

clinical text notes, and images [2]. EHRs are commonly 
used to provide evidence for a wide variety of research 
topics, like population health [3], risk prediction [4], and 
medical imaging [5]. In this research we focus on longi-
tudinal EHRs: a combination of static patient attributes 
and varying-length sequential health measurements, of 
mixed numerical and categorical data types.

Longitudinal EHRs pose many challenges for which 
some may be mitigated by employing synthetic data. 
Firstly, personal information contained in EHRs may 
hinder their usage in research due to ethical or privacy-
related concerns [6]. Synthetic EHRs may mitigate these 
concerns, since they are ideally untraceable to real indi-
viduals [7]. Next to research applicability, secondary 
applications may be available in educational contexts. 
Secondly, longitudinal EHRs are often costly to collect 
since many variables have to be collected over extended 
periods of time [8]. Through synthetic data generat-
ing techniques additional records may be generated at 
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a highly reduced cost. This may be especially helpful in 
scenarios where data requirements are large [9]. Lastly, 
EHRs have been shown to potentially induce biases [10, 
11]. By generating synthetic records for underrepre-
sented groups, biased datasets can be rebalanced. This 
may improve outcome equality across subgroups when 
EHRs are used in downstream tasks [12]. In this research, 
we mainly focus on the usage of synthetic EHRs instead 
of real EHRs when these cannot be utilized due to pri-
vacy concerns.

Synthetic data can be defined as data sampled from 
a generative model, designed to mimic the properties 
of real data [13]. Here, generative models can be rule-
based, based on known probability functions, or based 
on learning and sampling from the latent data space [14]. 
Recent advancements in generative modelling bring forth 
model architectures which are able to learn and gener-
ate synthetic samples for almost any data structure [15]. 
Likewise, many model architectures have been devel-
oped which are able to generate synthetic longitudinal 
EHRs [16–18]. However, in current research there is a 
lack of focus on how to properly evaluate the quality of 
synthetic longitudinal data. Employed metrics should 
account for the temporal aspect of the data, and inform 
the researcher on if and how the generating model is fail-
ing in an interpretable manner - for example mode col-
lapse or mode invention [19]. This is also the problem 
this research focuses on, namely providing recommenda-
tions on evaluation metrics suitable for longitudinal syn-
thetic data, whilst extensively discussing their strengths 
and weaknesses. This way, we aim to provide guidance 
for researchers interested in employing synthetic longitu-
dinal EHRs.

To this end, we first discuss how to use t-distributed 
Stochastic Neighbour Embedding (tSNE) [20] and Uni-
form Manifold Approximation and Projection (UMAP) 
[21] in combination with Dynamic Time Warping (DTW) 
[22] to effectively visualize longitudinal EHRs. This way 
we provide an evaluation method which accounts for 
temporal structure (through DTW), whilst providing an 
intuitive assessment of real to synthetic EHR similarity.

Secondly, we discuss how a Recurrent Neural Network 
(RNN) classifier can be used to compare synthetic and 
real distributions whilst accounting for temporal correla-
tions in the data. We show that this metric requires some 
care however, since results may be influenced not only by 
whether real and synthetic data are indeed similar, but 
also by whether the choice of classifier is appropriate.

Next, we discuss how to assess real-world utility of syn-
thetic longitudinal EHRs by comparing performance of 
synthetically versus real trained machine learning mod-
els in clinical tasks. Lastly, we recommend to assess pri-
vacy risk of disclosing synthetic EHRs by performing an 

Attribute Inference Attack (AIA) [23] on several sensitive 
patient attributes. If successful, the AIA exposes the risk 
of real sensitive attributes being inferred by malicious 
parties from synthetic data.

We support the discussion on our recommended met-
rics by applying them on synthetic longitudinal EHRs 
generated from a dataset from the Medical Information 
Mart for Intensive Care-IV (MIMIC-IV) repository [24], 
using models from open-source libraries |Synthetic Data 
Vault|1 [25] and |Gretel-Synthetics|2. Both the data and 
the methods used to generate and evaluate synthetic 
data are publicly available, and the code to reproduce our 
results is available via our public GitHub repository3.

Background
Longitudinal EHRs
Generating longitudinal instead of row-summarized 
EHRs provides a rich data representation required in 
a wide variety of research and real-world applications. 
Sequential patterns present in EHRs provide additional 
information for example in early disease detection [26], 
disease progression modelling [27, 28], and mortality 
prediction [29, 30]. Furthermore, longitudinal synthetic 
datasets can be used to construct a variety of simpler 
cross-sectional synthetic datasets for other purposes.

Synthetic data evaluation
When evaluating synthetic data three aspects are typi-
cally investigated [31]:

•	 Fidelity: resemblance to real data
•	 Utility: usefulness in real-world tasks
•	 Privacy risk: risk of disclosing real sensitive information

Fidelity
Regarding synthetic data fidelity, we can differentiate 
between feature-wise similarity, and similarity across 
features and the sequential (or other) dimension. 
Feature-wise similarity can be investigated through 
descriptive statistics, plots, statistical tests, or other 
metrics. Descriptive statistics provide a first sanity 
check on whether high-level statistics like mean, vari-
ance, and range, are similar. Furthermore, feature-wise 
drift measures [32] and Goodness-of-Fit (GoF) tests 
like Kolmogorov-Smirnov (KS) [33] provide statistical 
confidence on whether feature distributions of real data 
are accurately captured in synthetic data.

1  https://​sdv.​dev/
2  https://​gretel.​ai/​synth​etics
3  https://​github.​com/​JimAc​hterb​ergLU​MC/​SynLo​ngEHR

https://sdv.dev/
https://gretel.ai/synthetics
https://github.com/JimAchterbergLUMC/SynLongEHR
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To further evaluate synthetic data fidelity, plots of 
low-dimensional projections can be provided using 
dimensionality reduction algorithms [34]. This way, 
compressed and intuitive representations of similarity 
between synthetic and real data in the original feature 
space are provided.

Although they provide intuition, low-dimensional projec-
tion plots do not provide a clear numerical representation 
of synthetic and real distributional similarity. For this pur-
pose, a classification model can be trained to discriminate 
synthetic from real samples [16, 35, 36]. Here, high accu-
racy on a test set indicates a classifier easily distinguishes 
synthetic from real samples, implying their distribution is 
different. Accuracy close to 50% implies the opposite - that 
the synthetic and real data distribution are similar. Other 
metrics exist which are based on this method, like the pro-
pensity score Mean Squared Error [37].

Utility
Synthetic data utility is typically assessed by investigat-
ing whether it can be used instead of real data in common 
tasks whilst retaining performance. Here, we compare 
performance of models trained on synthetic and real data 
when tested on a real test set - also called the Train Syn-
thetic Test Real approach (TSTR) [38]. If performance is 
similar, synthetic data reflects complexities of real data 
necessary for commonly performed tasks. Then, if privacy 
metrics indicate adequate privacy preservation, it can be 
used in practice instead of real data to preserve privacy. 
This approach is widely used to assess the utility of syn-
thetic medical data [16, 34, 35].

Privacy risk
To evaluate privacy-preserving capabilities of synthetic 
EHRs, many metrics exist. Differential privacy [39] pro-
vides mathematical guarantees on individual-level pri-
vacy, but is often difficult to interpret in a practical setting 
[40]. Membership inference attacks [41] indicate whether 
third parties can infer which real individuals were used in 
training the synthetic data generating model. However, 
this requires a subset of patients to already be known to 
the attacker. In this research, we assess privacy risk by 
performing an AIA [23]. Specifically, an AIA where the 
attacker has access to a set of incomplete EHRs without 
access to the synthetic data generating model - and tries 
to infer the missing sensitive information.

Limitations of existing works
There are many limitations to synthetic data generating 
techniques, which have previously been attempted to over-
come. Examples include mode collapse [42, 43], training 

instability [44, 45], imbalanced training data [46, 47], and 
more. However, since this research focuses on limitations 
of synthetic data evaluation rather than generation, this is 
what the rest of this section focuses on.

To evaluate synthetic data fidelity, Pei et  al. [34] pro-
vide plots of low-dimensional projections using tSNE. 
However, for varying-length sequences, computing 
sample distances required for projection algorithms like 
tSNE is non-trivial: it is not directly clear how datapoints 
within sequences map to each other. For this purpose, 
we propose to use DTW to first align varying-length 
sequences.

Other methods exist to project data to a low-dimen-
sional space with the purpose of visualization. Gisbre-
cht and Hammer [48] provides a review of similarities 
and differences between popular methods, and argues 
that they can be categorized according to (among other 
things) whether they are linear, non-linear, parametric or 
non-parametric. As we assume no prior knowledge on 
the data generating process and the data might exhibit 
complex non-linear patterns, we opt for a non-linear and 
non-parametric method. For this, tSNE is an apt candi-
date. Interestingly, the authors of UMAP [21] claim it is 
potentially better at visualizing global data structure than 
tSNE, so we include UMAP (also non-linear and non-
parametric) next to tSNE for comparison.

The tSNE and UMAP algorithm have some notable 
limitations however. Firstly, both are stochastic algo-
rithms which may produce different outputs depend-
ing on initialization and hyperparameters [49, 50]. To 
account for this, we can show outputs for different values 
of influential hyperparameters. Secondly, the output of 
both algorithms relies heavily on the distance metric cho-
sen to compute distances between samples in the dataset. 
Studies like Smets et  al. [51] have shown the sensitivity 
of tSNE and UMAP to different distance metrics. Thus, 
choosing an apt distance metric and understanding its 
limitations is vital.

To provide a numerical representation of synthetic to 
real similarity, Li et al. [16], Lee et al. [35], Kaur et al. [36] 
train a classifier to discriminate synthetic from real sam-
ples and report the accuracy on a test set. However, we 
will show that reporting only the accuracy metric does 
not provide the full picture when evaluating synthetic 
records. This metric might be an oversimplification of 
distributional similarity, and analyzing classifier predic-
tions through plots or statistical tests may be useful.

Kaur et  al. [36], Choi et  al. [52], Goncalves et  al. [53] 
assess risk of attribute inference in tabular synthetic 
records. To our knowledge, no literature exists on assess-
ing this risk in longitudinal health records. AIAs in lon-
gitudinal records require appropriate inference models, 
which are able to capture sequential correlations.
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Methods
Dataset description
We select a dataset of longitudinal EHRs to illustrate 
our discussion on evaluation metrics. The dataset was 
obtained from the MIMIC-IV repository [54] on Physio-
net [55] (version 2.2), a freely available resource consist-
ing of de-identified EHRs from the Beth Israel Deaconess 
Medical Center in Boston, Massachusetts, between 2008 
and 2019. We select patients who suffered ischemic heart 
disease, selecting ICD-9 (International Classification 
of Diseases-9) code sequences and static patient attrib-
utes age, race, gender, and deceased (whether a patient 
passed away in-hospital). Since there are over 13,000 pos-
sible ICD-9 codes, we encode diagnoses by their ICD-9 
chapter4 to reduce computational complexity. Since the 
chapters complications of pregnancy, childbirth, and the 
puerperium, congenital anomalies, and certain conditions 
originating in the perinatal period are extremely rare in 
patients with ischemic heart disease, we omit these diag-
noses completely.

Regarding missing data, this plays a role mostly in 
patient attributes. In sequences of diagnoses codes, miss-
ingness shows as a sequence being of different length 
than it would otherwise be - although it cannot be said if 
values are missing in a specific sequence. Variable-length 
sequences are handled by using appropriate methods 
such as DTW. In patient attributes, there is 11% missing-
ness in race, and no missingness in age and gender. Since 
values might be missing not-at-random, we encode miss-
ing values as a separate category (unknown).

The final dataset contains 18,245 patients, with 4 static 
attributes and a single diagnoses sequence with length 
between 5 and 37 each. Note that this dataset of longi-
tudinal EHRs is less complex than required for many 
real-world clinical tasks. ICD-9 codes are encoded by 
their chapter, and only a small set of patient attributes 
and sequential health data is selected. This is because this 
dataset is only used for illustrative purposes, to support 
the discussion on evaluation metrics for synthetic EHRs.

Synthetic data generating models
We generate synthetic patient data using two distinct 
deep learning models contained in open-source soft-
ware libraries. Firstly, a Generative Adversarial Network 
(GAN) [56] with DoppelGANger5 [57], and secondly 
a Conditional Probabilistic Auto-Regressive network6 
(CPAR) [58]. The DoppelGANger implementation used 

does not provide support for mixed-length sequences, 
so we implement a mask following Lin et al. [57] in the 
package. Both models generate data in two steps, by gen-
erating static attributes followed by sequential data con-
ditional on generated attributes. This allows the models 
to capture the relationship between patient attributes 
and the progression of diagnoses codes. For both Dop-
pelGANger and CPAR we generate the same number of 
records as present in the real dataset.

Note that other models have been developed which are 
able to generate EHRs with static attributes and sequen-
tial data. We opt for DoppelGANger and CPAR since 
they are contained in easy-to-use open-source libraries, 
promoting reproducibility of this research. Generating 
synthetic data of the highest quality is not the goal here, 
as we are providing a discussion of and recommendations 
on evaluating the quality of synthetic longitudinal EHRs. 
Other notable methods include Li et al. [16], Theodorou 
et al. [17], Mosquera et al. [18], Lee et al. [35], where we 
recommend using deep generative models like GANs and 
VAEs in the case of high-dimensional datasets. Since, 
these methods reduce the complexity of the learning task 
to a lower-dimensional continuous latent space.

Evaluating fidelity
Descriptive statistics
The first step in evaluating synthetic data fidelity is inves-
tigating descriptive statistics. We evaluate boxplots of 
numerical variables, and relative frequencies of categori-
cal variables. For sequential features we compute these 
statistics at each step.

Low‑dimensional projections
To intuitively assess synthetic to real data similarity, we 
visualize synthetic and real multivariate samples in two 
dimensions. If synthetic and real samples mostly over-
lap in the plot, this indicates they are similar. Addition-
ally, this method may indicate whether mode collapse 
is present, which is the case when synthetic samples are 
realistic but of very low variety. In a plot, this may show 
as synthetic samples clustered into one or more dense 
clouds, instead of following the same dispersion as real 
datapoints.

Visualizing multivariate samples in two dimensions 
requires an algorithm which can adequately project 
multivariate samples to two dimensions. We use tSNE 
and UMAP for this purpose. Both algorithms compress 
datasets by constructing datapoints in a low-dimen-
sional space, which exhibit similar divergence between 
datapoints as the original data, according to some met-
ric. This way, they aim to preserve the overall structure 
of the data, even after major compression of the feature 
space [20, 21]. An important hyperparameter in both 

4  ICD-9 chapters can be found on the CDC website https://​www.​cdc.​gov/​
nchs/​icd/​icd9cm.​htm
5  Implementation available at https://​synth​etics.​docs.​gretel.​ai/​en/​stable/​
models/​times​eries_​dgan.​html
6  Implementation available at https://​docs.​sdv.​dev/​sdv/​seque​ntial-​data/​
model​ing/​parsy​nthes​izer

https://www.cdc.gov/nchs/icd/icd9cm.htm
https://www.cdc.gov/nchs/icd/icd9cm.htm
https://synthetics.docs.gretel.ai/en/stable/models/timeseries_dgan.html
https://synthetics.docs.gretel.ai/en/stable/models/timeseries_dgan.html
https://docs.sdv.dev/sdv/sequential-data/modeling/parsynthesizer
https://docs.sdv.dev/sdv/sequential-data/modeling/parsynthesizer
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algorithms is the number of neighbours (called perplexity 
in tSNE), which controls the amount of datapoints which 
are considered when calculating divergences.

Although there are similarities, many differences exist 
between tSNE and UMAP. For example, tSNE calculates 
divergence between all datapoints using Kullback-Leibler 
divergence, whereas UMAP calculates divergence only 
between k-nearest neighbours and uses cross-entropy. 
UMAP intends to improve upon tSNE in terms of speed 
and quality [21], but some research claims differences in 
quality are mainly due to choice in initialization and can 
thus easily be mitigated [50].

However, when considering longitudinal datasets, cal-
culating divergence between datapoints in tSNE and 
UMAP adds another dimension of difficulty. For sequen-
tial features of variable length, standard metrics do not 
directly apply since it is unclear how datapoints between 
samples map to each other. For this reason we first apply 
the DTW algorithm, which finds a mapping between 
datapoints of two sequences which minimizes the total 
divergence between them - subject to some conditions. 
The mapping starts and ends at the start- and end-point 
of both samples, and is monotonic and continuous [22].

Lastly, in order for the DTW algorithm to find a map-
ping between datapoints of two sequences, it requires 
choosing an appropriate divergence metric. Since we 
consider features of mixed data types, we use Gower dis-
tance [59], which is fit for this purpose.

Since the DTW algorithm returns the cumulative 
Gower distance over aligned sequence steps, this needs 
to be scaled to a similar range before averaging static 
and sequential feature distances. We use the |DtwParal-
lel| package to execute the DTW algorithm, which scales 
distances with the geometric mean of sequence lengths. 
This choice can be justified over the use of arithmetic 
mean-based scaling, since it ensures that sequence length 
variability is penalized more heavily.

Finally, it should be noted that using Gower distance 
as a divergence metric significantly impacts results. Con-
tinuous feature distances are at most 1, but only for the 
most dissimilar case. However, categorical feature dis-
tances are 1 in case of any difference - so possibly for 
many cases. For this reason, differences in categorical 
features tend to overshadow differences in continuous 
features when measured through Gower distance.

Goodness‑of‑Fit
The next step in evaluating synthetic data fidelity, is a 
numerical assessment of synthetic to real data GoF. In other 
words, measuring the similarity between the synthetic 
and real data density. However, some method to approxi-
mate these densities is required, since they are (usually) 
intractable. This is often framed as a classification task to 

discriminate synthetic from real samples, where accuracy 
close to 50% signifies densities are similar [16, 35, 36]. Note 
that this closely relates to classification-based GoF test-
ing as in Friedman [60], although synthetic data literature 
omits explicit testing. In this section we describe strengths 
and weaknesses of this metric, and how it can be used to 
statistically test whether the synthetic and real data density 
are the same in the scenario of longitudinal datasets.

Firstly, comparing synthetic to real data density through 
this classification task may in some cases be an oversimpli-
fication of the problem. Since, we can show mathematically 
that it implies the following: the entire multivariate data 
distribution can be encoded as a simple univariate binary 
feature, for which we approximate its density using a classi-
fier. Below follows the mathematical proof.

Let XR be the original dataset of real samples, XS 
a generated synthetic dataset, and pooled dataset 
X = XR ∪ XS . Since densities p(XR), p(XS) are intrac-
table, we encode them with the univariate binary feature 
z = 1XS

: X → {0, 1} and approximate its posterior p(z|X) 
with q�(z) through variational inference [61]. Here, we 
choose q� as some machine learning model where � are its 
parameters. Now, we can optimize for � when minimizing 
the Kullback-Leibler divergence [62] between the true and 
approximated posterior of z:

, where zi are binary labels and qi label predictions from 
q�(z) . This is equivalent to optimizing a binary classifier 
fθ for minimal cross-entropy between true labels and 
predictions:

, such that approximating p(z|X) can be framed as a 
simple binary classification task, since the optimiza-
tion problems in Eqs.  (1) and (2) are equivalent. In this 
case, note that we make a continuous approximation of 
the binary latent variable on the (0,1) interval. Lastly, 
note that training, optimizing and reporting results in 
the classification should be done with independent train, 
validation and test sets. This is to avoid overfitting the 

(1)

q
�̂
(z) = arg min

�

KL(q�(z)�p(z|X))

= arg min
�

−

i

zi log
zi

qi

= arg min
�

i

− log qi

(2)

f
θ̂
(z|X) = arg min

θ
H(fθ (z|X), p(z|X))

= arg min
θ

−
∑

i

zi log qi

= arg min
θ

∑

i

− log qi



Page 6 of 14Achterberg et al. BMC Medical Research Methodology          (2024) 24:181 

training data, and results in a more reliable approxima-
tion of p(z|X).

Encoding the multivariate synthetic and real distribu-
tion as univariate binary labels has some clear advan-
tages. It allows for relatively simple approximation 
through classification, and consequently a univariate rep-
resentation of the multivariate distributions. This allows 
for intuitive visualization to inspect model failures such 
as mode collapse, but also explicit GoF testing of the 
latent distribution. When H0 : q�(zS) = q�(zR) is rejected 
after performing a univariate GoF test like the KS test, we 
can be certain also H0 : p(XS) = p(XR) is rejected. By 
explicit GoF testing, we can provide statistical confidence 
on whether the synthetic and real data density are similar.

However, when H0 : q�(zS) = q�(zR) holds it does not 
necessarily follow that H0 : p(XS) = p(XR) also holds. 
Firstly, the chosen family of densities (machine learn-
ing classifiers) q� might not be suitable. Secondly, the 
compression of the multivariate dataset into a univari-
ate binary feature z might be too simplistic. This metric 
should thus be approached with care.

To mitigate the risk of binary classification being an 
oversimplification of the problem, an option is to let z 
be a multidimensional Gaussian and approximate p(z|X) 
using a Variational Auto-Encoder (VAE) [63]. Then, test-
ing H0 : q�(zS) = q�(zR) can be done through a multi-
variate GoF test. This way, the added dimensions allow 
for capturing more intricate differences between the syn-
thetic and real distribution.

In the scenario of longitudinal datasets, the classi-
fier should capture differences across the time dimen-
sion as well. An appropriate classifier which can 
handle mixed-length sequences of mixed data types, 
is an RNN classifier. This is the classifier we use to ana-
lyze classifier predictions and perform the KS test to test 
H0 : q�(zS) = q�(zR).

Whenever we use an RNN we specifically mean a 
neural network with at least one layer containing Gated 
Recurrent Units (GRU) [64] to process sequential inputs. 
Long Short-Term Memory (LSTM) cells [65] are likely 
not necessary since sequences are relatively short [66].

Evaluating utility
Typical clinical tasks involving patient attributes and 
diagnoses sequences are, among other things, in-hospital 
mortality prediction using RNNs [30, 67] and next-step 
diagnoses prediction using RNNs and attention networks 
[27, 28, 68]. To assess utility of the generated synthetic 
EHRs, we can compare performance in these respective 
tasks with the TSTR approach.

It should be noted that we do not aim for the best per-
formance possible here. The dataset was not selected 
with a specific use case in mind, and serves an illustrative 

purpose to support the discussion on evaluation metrics. 
For showcasing the TSTR approach the comparison in 
performance is key, the level of performance less so - as 
long as the algorithm has at least some predictive power. 
When aiming for the best performance possible in these 
tasks, we recommend to include additional features like 
socioeconomic status, physiological measurements and 
medications, which have empirically shown to be impor-
tant [30, 67, 69–71] - next to omitting chapter encoding 
of ICD-9 codes.

Evaluating privacy risk
To assess risk of attribute inference, we train an RNN to 
predict sensitive attributes from all non-sensitive fea-
tures. Here, we take every possible combination from the 
feature set {age,gender,race} as sensitive target attributes 
- so 7 sets in total. Every feature not in the set of target 
attributes, is used as a non-sensitive input feature in that 
iteration.

We assess the risk of attribute inference through the 
predictive accuracy of this AIA. Here, we focus on inter-
pretable metrics such as accuracy and Mean Absolute 
Error (MAE) to assess the potential privacy risk in a real-
world setting.

Results
As mentioned in Synthetic data generating models  sec-
tion, the generated synthetic datasets contain the same 
number of records as the real dataset: 18,245. The data-
sets contain 4 static attributes age, gender, race, deceased, 
next to diagnoses sequences consisting of anywhere 
between 5 and 37 diagnoses per patient.

Fidelity
To evaluate fidelity of synthetic EHRs, we assess descrip-
tive statistics, two-dimensional plots through tSNE and 
UMAP, and a classification-based GoF metric.

Descriptive statistics
Figure 1 shows descriptive statistics of static features age, 
gender, deceased, and race for real EHRs and synthetic 
EHRs generated from CPAR and DoppelGANger. Over-
all, the frequency of the categorical features from syn-
thetic EHRs closely match those of real EHRs. For the 
age feature, synthetic EHRs from DoppelGANger more 
closely match the real EHR statistics than those gener-
ated from CPAR.

Figure  2 shows descriptive statistics of the sequential 
ICD chapters for real EHRs and synthetic EHRs gener-
ated from CPAR and DoppelGANger. For synthetic EHRs 
from CPAR, ICD chapter frequencies are generally well 
captured at each step - except for diseases of the res-
piratory system (Resp), which CPAR overestimates. For 
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synthetic EHRs from DoppelGANger, the variability of 
generated ICD chapters is much lower than in real EHRs. 
Although diseases of the circulatory system (Circ) are the 
most prevalent in real EHRs, DoppelGANger overesti-
mates the frequency of this diagnosis - this is a potential 
sign of mode collapse.

Low‑dimensional projections
Figure  3 shows scatter plots of low-dimensional projec-
tion plots made using tSNE and UMAP. Since the num-
ber of neighbours - or for tSNE, perplexity - chosen in 
the corresponding algorithm can highly influence the 
projections, we plot them for three different values (15, 
25 and 50).

Figure 3 shows that for both CPAR and DoppelGANger, 
synthetic samples are projected as clouds of points within 
larger clouds of real samples. This is line with the idea 
that both CPAR and DoppelGANger output somewhat 
realistic samples, but of too small variety - indicating 
mode collapse. This issue seems especially prevalent in 
samples generated from DoppelGANger.

Goodness‑of‑Fit
To evaluate H0 : p(XS) = p(XR) we encode the multivar-
iate distributions as latent feature z = 1XS

: X → {0, 1} 
and approximate p(z|X) through classification with an 
RNN, to test H0 : q�(zS) = q�(zR) . For the RNN, the 
hidden layers consist firstly of separate dense units and 
GRUs for static and sequential input respectively, fol-
lowed by a joint fully-connected layer.

On 10-fold cross-validated test sets we achieve aver-
age classification accuracy for CPAR: 0.83 (0.01), Dop-
pelGANger: 0.89 (0.02), with standard deviation between 
brackets. Additionally, we find H0 : q�(zS) = q�(zR) does 
not hold ( p < .000 ) for both.

The distributions of classifier predictions in Fig.  4 
show the generated samples from both CPAR and Dop-
pelGANger are too simplistic, even when compressed 

univariately by a classifier. The plots indicate mode col-
lapse, since the synthetic compressed distributions seem 
collapse to one of the (smaller) modes of the real com-
pressed distribution. This is in line with results from 
descriptive statistics and low-dimensional projection plots.

Utility
To evaluate synthetic EHR utility, we compare perfor-
mance in the TSTR approach in clinical tasks mortality 
prediction and next-step diagnoses prediction.

Mortality prediction
We evaluate in-hospital mortality predictions using an 
RNN (similar architecture as in Goodness-of-Fit section), 
from ICD chapters and static patient attributes.

On 10-fold stratified cross-validated test sets we achieve 
average Area Under Curve (AUC) [73], when trained 
on real and synthetic data respectively, for CPAR: (0.57 
(0.01), 0.56 (0.01)) and for DoppelGANger: (0.58 (0.01), 
0.57 (0.01)), with standard deviation between brackets.

We achieve poor AUC scores (< .60) in mortality pre-
diction, even when using real data. This comes as no 
surprise, since our dataset was not selected with the 
aim of predicting mortality - diagnoses are encoded by 
their chapter, and we omit clinically import features like 
patient socioeconomic status and physiological measure-
ments and medication. Nonetheless, the RNN consist-
ently achieves AUC > 0.55 across all folds and thus has 
some (small) predictive power. This allows us to use these 
models as a comparison between real and synthetic train-
ing data, in which the difference in resulting performance 
is more important than the predictive power by itself.

The synthetically trained models achieve similar AUC 
as the models trained on real data - and thus, synthetic 
EHR could replace real EHRs in mortality prediction 
using RNNs. In practice, this should be validated with a 
more complete synthetic dataset, containing more fea-
tures relevant in mortality prediction.

Fig. 1  Descriptive statistics of static features (Shows numerical feature age divided by 100 and categorical features by frequency)
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Fig. 2  Descriptive statistics of sequential features (Heatmaps show the frequency of ICD chapters at each sequence step)
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Next‑step diagnoses prediction
We evaluate next-step diagnoses predictions using an 
RNN (similar architecture as in Goodness-of-Fit section), 
from previous-step diagnoses and static patient attributes.

On 10-fold cross-validated test sets we achieve aver-
age accuracy, when trained on real and synthetic data 
respectively, for CPAR: (0.31 (0.01), 0.31 (0.00)) and for 
DoppelGANger: (0.31 (0.01), 0.31 (0.00)), with standard 
deviation between brackets. Again, accuracy when trained 
on real and synthetic data is similar, indicating good utility. 

However, the overall accuracy is poor due to the simplistic 
nature of the dataset, albeit in a 14-class classification prob-
lem. In practice, this should also be validated with a more 
complete synthetic dataset, just as in mortality prediction.

Implications of fidelity and utility
In the results on fidelity and utility, we mention several 
times that the output indicates mode collapse in the 
generated synthetic datasets. This means the synthetic 
dataset contains many realistic samples of low variety. 

Fig. 3  Scatter plots of projections by tSNE and UMAP
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Fig. 4  Kernel density estimate plot of classifier predictions (Example of a kernel density estimate plot of classifier predictions from the first 
of 10-fold cross-validated results, discriminating synthetic from real samples. Bandwidth is selected using Scott’s rule [72])
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Depending on the context in which the synthetic EHRs 
are used, this may or may not be a large issue.

Synthetic data can be used to inform a public which is 
not allowed access to real data, on what a realistic dataset 
looks like. An example of this is an educational context, 
where (medical) students learn through examining syn-
thetic data [74]. Here it is crucial that minimal mode col-
lapse occurs, as students should learn about the full range 
of possible records. Relating that to this research, using 
models like GANs which may exhibit mode collapse 
might not be recommended.

Another context is using a synthetic dataset in a specific 
modelling task, for example in answering a research ques-
tion or developing a data-driven application [75]. In this 
context, mode collapse may be less of an issue. Since, as 
shown in Xing et al. [76], synthetic data does not always 
have to have high variety to have high utility in specific 
tasks. When a low variety of synthetic samples still exhibit 
realistic patterns required in a task, a dataset where mode 
collapse occurred may still be adequate. However, it is still 
possible that a specific task requires a wide variety of sam-
ples, so this should be examined on a case-by-case basis. 
As we found comparable utility of synthetic data to real 
data, mode collapse may not be a large issue in this work.

Privacy risk
To evaluate privacy-preserving capabilities of synthetic 
EHRs, we assess the risk of inference of sensitive real 
information through an AIA.

Attribute inference attack
We evaluate real sensitive feature ({age, gender, race}) 
predictions using an RNN (similar architecture as in 
Goodness-of-Fit section) trained on synthetic EHRs.

Table  1 shows average results from the 10-fold cross-
validated AIA. For the attribute age, the AIA has an MAE 
of over 13 years on a mean age of 71 years. This is likely 
not considered a privacy risk in practice, as this error is 
quite large. For the attribute gender, the AIA has an accu-
racy of close to 50% - indicating the attack is only slightly 
more accurate than random guessing. Lastly, for the 
attribute race, the AIA is not able to perform much bet-
ter than exclusively voting for the majority class (white). 
So, the AIA has again little discriminative power on an 
individual level, and thus seems to pose little privacy risk. 
This is the case for synthetic samples from both CPAR and 
DoppelGANger.

Discussion
This research provides a discussion on methods to evalu-
ate the quality of synthetic longitudinal EHRs, which 
should guide researchers in the future. We observed that 
previously used methods often fail to address specific weak 

points, like mode failures and the restrictive assumptions 
under which results hold.

Firstly, two-dimensional plots constructed through 
tSNE and UMAP - and DTW to align variable-length 
sequences - provide an intuitive visualization of synthetic 
to real data similarity. We recommend to use dimension-
ality reduction algorithms like tSNE and UMAP, in com-
bination with DTW when handling longitudinal data, 
when there is suspicion of mode collapse or other related 
issues in synthetic data generation.

Furthermore, we recommend to assess the distribution of 
classification scores to assess synthetic to real GoF, instead 
of only relying on average classification accuracy. This way, 
we can test equivalence between the latent synthetic and 
real distribution, and univariately assess the latent distribu-
tion - for example for mode collapse. Moreover, we recom-
mend to take any positive conclusions from this metric with 
a grain of salt, as it places very restrictive assumptions on the 
latent dimensionality of the synthetic and real distribution.

Regarding synthetic data utility, the pragmatic TSTR 
approach is popular for good reason. It is the closest one 
can get to evaluating usefulness in a specific real-world 
setting. Since this approach is already popular, we place 
little emphasis on it in this research, but include it to 
show it is good practice.

Instead of mathematical privacy guarantees like in differ-
ential privacy, the results from our AIA provide a measure 
of privacy risk in a real-world setting with malicious attack-
ers. However, we perform the AIA ourselves, and it is pos-
sible that an attacker is able to construct a more powerful 
AIA model. We try to mitigate this risk by using flexible 
and powerful neural networks. Additionally, in real-world 
settings, the acceptable amount of privacy risk depends on 
both use case and the specific dataset sensitivity.

Table 1  Accuracy of attribute inference attack

Note: First column denotes target features of the inference attack, second 
column denotes the metric corresponding to the feature, last two columns 
provide average results after 10-fold cross-validation with standard deviation 
between brackets

Feature set Feature:Metric CPAR DoppelGANger

{Age} Age:MAE 13.39 (1.15) 13.73 (1.17)

{Gender} Gender:Accuracy 0.56 (0.01) 0.56 (0.01)

{Race} Race:Accuracy 0.75 (0.02) 0.76 (0.03)

{Age, Gender} Age:MAE 13.81 (1.34) 13.71 (1.34)

Gender:Accuracy 0.56 (0.01) 0.56 (0.01)

{Age, Race} Age:MAE 14.03 (1.45) 13.88 (1.39)

Race:Accuracy 0.76 (0.02) 0.77 (0.02)

{Gender,Race} Gender:Accuracy 0.54 (0.01) 0.56 (0.01)

Race:Accuracy 0.76 (0.01) 0.77 (0.02)

{Age,Gender,Race} Age:MAE 15.91 (1.81) 14.18 (1.57)

Gender:Accuracy 0.57 (0.01) 0.57 (0.01)

Race:Accuracy 0.73 (0.01) 0.77 (0.02)
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Practical implications
To guide researchers on which evaluation metrics proposed 
in this research should be considered, it is vital to consider 
the specific context in which synthetic EHRs are used. Phe-
nomena like mode collapse are especially hurtful in  situ-
ations where realism is key, like education. Thus, in these 
contexts metrics which can expose these phenomena, like 
visualization through tSNE, UMAP and classifier prediction 
plots, should be considered. On the other hand, in contexts 
where performance in a specific modelling task is consid-
ered, utility metrics like TSTR are more important. Since, 
utility may potentially be high even when fidelity is not.

Conclusions
This research provides a discussion on methods to evalu-
ate synthetic longitudinal EHRs to guide researchers.

Next to descriptive statistics, we utilized tSNE and 
UMAP to visually assess synthetic to real data similarity, 
due to their ability to realistically display local and global 
structure of a dataset in low dimensions. Here, we first 
use DTW to compute distances between variable-length 
sequences. When applied to synthetically generated data-
sets, we found that tSNE and UMAP were able to visual-
ize mode collapse in synthetic data generating models.

Next, for numerical assessment, we discussed the use 
of a classifier to discriminate synthetic from real samples. 
When applied to synthetic datasets, the classifier shows 
that synthetic and real samples are easily separable, and 
plots of classification scores again indicate mode collapse.

However, we also showed that this metric has 
some clear drawbacks, namely that it places restric-
tive assumptions on how the real and synthetic multi-
variate dataset can be compressed. Further research 
should investigate methods to alleviate these restric-
tive assumptions, while still providing a clear numerical 
representation of the GoF. A possible avenue of explo-
ration is using a VAE to embed synthetic and real data 
to a multidimensional Gaussian latent space, to subse-
quently test equivalence of the latent distributions with 
a multivariate GoF test.

Also, we evaluate real-world utility of synthetic EHRs 
through performance in the TSTR approach in the clini-
cal tasks mortality prediction and next-step diagnoses 
prediction. Since comparable performance was achieved 
from synthetic and real datasets, we conclude that syn-
thetic datasets retain adequate utility. However, although 
comparable, overall performance was quite low and the 
methods we use should be validated in future research 
with larger datasets containing more variables.

Lastly, AIAs on real sensitive information using syn-
thetic datasets indicated little risk of inferring real sen-
sitive information from synthetic data. This generally 
indicates little risk of leaking sensitive information 

through synthetic data. However, other privacy-related 
metrics exist (such as membership inference) which 
should be explored in future research.

This research offers recommendations on metrics suit-
able for evaluating synthetic longitudinal EHRs. These 
recommendations can serve as a valuable resource for 
researchers and data scientists in the healthcare sec-
tor who are involved in generating synthetic records. In 
addition to these recommendations, the comprehensive 
discussions on the strengths and weaknesses of the met-
rics facilitate accurate interpretation, thereby supporting 
the appropriate adoption of synthetic data in healthcare.
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