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Abstract 

The inability to correctly account for unmeasured confounding can lead to bias in parameter estimates, invalid 
uncertainty assessments, and erroneous conclusions. Sensitivity analysis is an approach to investigate the impact 
of unmeasured confounding in observational studies. However, the adoption of this approach has been slow 
given the lack of accessible software. An extensive review of available R packages to account for unmeasured 
confounding list deterministic sensitivity analysis methods, but no R packages were listed for probabilistic sensitiv-
ity analysis. The R package  unmconf  implements the first available package for probabilistic sensitivity analysis 
through a Bayesian unmeasured confounding model. The package allows for normal, binary, Poisson, or gamma 
responses, accounting for one or two unmeasured confounders from the normal or binomial distribution. The goal of  
unmconf  is to implement a user friendly package that performs Bayesian modeling in the presence of unmeasured 
confounders, with simple commands on the front end while performing more intensive computation on the back 
end. We investigate the applicability of this package through novel simulation studies. The results indicate that cred-
ible intervals will have near nominal coverage probability and smaller bias when modeling the unmeasured 
confounder(s) for varying levels of internal/external validation data across various combinations of response-unmeas-
ured confounder distributional families.
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Introduction
Estimating the causal relationship between an expo-
sure/treatment variable and a desired outcome is often 
of general interest in observational studies. While rand-
omized clinical trials are recognized as the gold standard 
in investigating this relationship, observational studies 
have long been important in healthcare research. Since 
the subjects are not randomized to treatments, address-
ing problems due to selection bias and unmeasured con-
founding are vital for making appropriate inferences [1, 
2]. For the issue of unmeasured confounding, researchers 

in non-randomized studies often claim the ignorabil-
ity assumption (i.e., causal framework can only address 
bias due to measured/observed confounders), where it is 
assumed any bias from unmeasured confounding is neg-
ligible. This dismissal can lead to bias in parameter esti-
mates and erroneous conclusions [3–6].

Sensitivity analysis, or quantitative bias analysis (QBA), 
provide tools to account for the potential existence of 
unmeasured confounders in observational research 
[7–9]. Under QBA, the investigator may choose to use 
a deterministic or probabilistic approach to quantify the 
potential direction and impact of the bias. Determinis-
tic QBA specifies a range of values for bias parameters, 
φ , and then calculates the bias-adjusted estimate of the 
exposure effect assuming φ for all combinations of the 
specified values of φ . A bias parameter is defined here to 
be any parameter that explains the association between 
the unmeasured confounder and another variable. 
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Probabilistic QBA, on the other hand, involves the ana-
lyst’s explicit modeling of probable occurrences of vari-
ous combinations of φ . The bias parameters are assigned 
a joint probability distribution (a joint prior distribution 
in Bayesian terminology) to depict the analyst’s uncer-
tainty in the true value of the bias parameters. Monte 
Carlo sensitivity analysis (MCSA), considered a partial 
Bayesian analysis and a simple approach to probabilistic 
QBA, iteratively samples the bias parameters from the 
joint distribution and fits those sampled values into the 
same sensitivity analysis formulas used in a fixed-value 
analysis [10]. Bayesian sensitivity analyses have also been 
proposed, where the bias parameters are assumed to be 
unknown and are assigned mildly informative priors in 
order to avoid non-identifiable models [11, 12]. These 
methods all rely on additional sources of information on 
the relationships between the unmeasured confounder 
and both the response and exposure variables. This infor-
mation can be from internal validation data, external val-
idation data, or elicited from subject matter experts.

Adoption of sensitivity analysis methods has been slow 
due to the lack of easily accessible software as well as a 
focus of methods for binary outcomes and exposures. 
To aid in the awareness of software developed, a litera-
ture search of available software for sensitivity analysis 
on unmeasured confounders was performed on articles 
published since 2010 [13]. Twelve packages were imple-
mented in R. These packages, such as  treatSens  [14, 
15],  causalsens  [16],  sensemakr  [17],  EValue  
[18], and  konfound  [19], implement deterministic 
QBA. The R package,  episensr , appears to be the 
only known package that performs probabilistic QBA 
via MCSA to account for unmeasured confounders [20]. 
However, only summary-level data can be supplied to 
this package. With record-level analysis missing from the 
package, Fox et al. [21] later adopt MCSA for record-level 
data and provide modifiable R scripts in a supplementary 
appendix to be tailored to an analyst’s data set. They end 
their discussion with an encouragement to the user to 
explore formal Bayesian approaches to overcome some 
obstacles in their MCSA code.

To address these limitations, we have developed an R 
package called  unmconf  that uses a Bayesian regres-
sion framework to assess the impact of unmeasured con-
founding in observational studies. To our knowledge,  
unmconf  implements the first available package for a 
fully Bayesian sensitivity analysis and expands beyond 
the events of binary outcomes and exposures.  unmconf  
is available through CRAN at https:// cran.r- proje ct. org/ 
web/ packa ges/ unmco nf/ index. html. Bayesian sensitivity 
analysis is often viewed as difficult to implement due to 
requiring special Markov Chain Monte Carlo (MCMC) 
software packages and checking convergence of the fitted 

model.  unmconf  overcomes these common challenges 
through a handful of user friendly functions that resem-
bles the glm() framework on the front end. The package 
requires that the user has Just Another Gibbs Sampler 
(JAGS) installed on their computer, but a user does not 
need to be proficient in this software.

The introduced package can facilitate sensitivity analy-
ses by leveraging informative priors to explore the influ-
ence of unknown unmeasured confounders. Should 
validation data be accessible, the package enables users 
to adjust inferences for either one or two unmeasured 
confounders. In cases where more than two unmeas-
ured confounders are present, the package generates 
editable JAGS code, offering scalability to accommodate 
additional confounders. In “Methods” section, we briefly 
review the statistical model behind  unmconf. “Exam-
ple”  section compares our model’s results to the MCSA 
found in Fox et al. [21]. With this new software, we pro-
vide simulation studies to elaborate on the applicability 
of the package in “Simulation” section. Lastly, in “Discus-
sion” section, we discuss the strengths and limitations of 
the underlying model in  unmconf.

Methods
Motivating example
Consider a study where interest is in the relation-
ship between body mass index (BMI) and hyperten-
sion among adults, with age, gender, and cholesterol 
level as other covariates recorded in the study. For the 
case where n = 1000 , BMI, hypertension, age, and gen-
der are fully observed for all subjects but cholesterol is 
only tracked for 10% of observations. If one wished to 
perform causal inference using glm() in R, the model 
would estimate the regression coefficients with a message 
in the summary saying, “900 observations deleted due 
to missingness”. A summary will output the results, but 
the conclusions drawn from the subset of 100 observa-
tions may or may not accurately capture the true, latent 
relationship between hypertension and BMI. Additional 
information through the other observations are dis-
carded due to the missing data in cholesterol. Rather than 
discarding the data,  unmconf  estimates cholesterol 
as part of the overall Bayesian unmeasured confound-
ing model. Of course, in some cases the information on 
cholestorol may come from other sources, either data or 
expert opinion, and the standard glm() function cannot 
address the unmeasured confounder at all.

The choice of methodologies for addressing unmeas-
ured confounders relies on the availability of information 
regarding the unmeasured confounders and the objec-
tives of assessing such confounding. The level of infor-
mation can vary, ranging from expert opinion to either 
internal or external data sources. Internal validation is 
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available when the unmeasured confounder is ascer-
tained for a, typically, small subset of the main study 
data. In certain cases, only internal validation data may 
be accessible and information on the unmeasured con-
founder is only known for a subset of the patients. 
Provided that the internal validation data is a well repre-
sentative sample, a small subsample of the unmeasured 
confounder variable can effectively calibrate estimation 
in Bayesian analysis [22, 23]. External validation data is 
data from previous studies where the unmeasured con-
founder is fully observed. External data methods make 
the cautious assumption of transportability across study 
populations in comparing them to the main study. The 
external data often captures the relationship between the 
unmeasured confounder and the response yet lacks infor-
mation on the exposure. A combination of external data 
and mildly informative priors can calibrate the estima-
tion through the transportability assumption.  unmconf  
handles both of these events for up to two unmeasured 
confounders. The Bayesian approach we apply here is 
related to missing data methods where the unmeasured 
confounder is treated as missing data and is imputed sim-
ilar to missing at random (MAR) models.

Bayesian unmeasured confounding model
For the statistical model, we denote the continuous or 
discrete response Y, the binary main exposure variable 
X, the vector of p other perfectly observed covariates C , 
and the unmeasured confounder(s) relating to both Y 
and X U. In the event of more unmeasured covariates, we 
denote them U1 , U2 , and so forth; these unmeasured con-
founders can be either binary or normally distributed.

In the scenario where there is a single unmeasured 
confounder, Lin et  al. [24] suggest the factorization 
f (y,u|x, c) = f (y|x,u, c)f (u|x, c) , which yields

where v′ = [x c′]′ denotes the vector of the main expo-
sure variable and all of the perfectly observed covariates. 
(1) is defined as a Bayesian unmeasured confounding 
model with one unmeasured confounder, where the dis-
tribution for Y pertains to the response model and the 
distribution for U pertains to the unmeasured con-
founder model. This model is completed by the specifica-
tion of a link function g∗ and some family of distributions 
D∗ . Additional parameters for certain distributions–if 
any–are denoted ξy and ξu . Examples of these would be 
σ 2 for the variance of a normal distribution or α for the 
shape parameter in the gamma distribution. For the cases 
of binomial and Poisson distributions, these parameters 
are absent.  unmconf  allows the user to work with a 

(1)
Y |x, c,u ∼ DY (g

−1
Y v′β + �u), ξy

U |x, c ∼ DU g−1
U (v′γ ), ξu ,

response from the normal, Poisson, gamma, or bino-
mial distribution and unmeasured confounder(s) from 
the normal or binomial distribution. The package sup-
ports the identity (normal), log (Poisson or gamma), and 
logit (Bernoulli) link functions. Here we build a condi-
tional distribution model on Y given treatment, perfectly 
observed confounders, and unmeasured confounders 
in addition to a marginal distribution model on U given 
treatment and measured confounders. The joint mod-
eling is able to provide an adjusted estimate of the treat-
ment-outcome effect [12, 22, 23, 25]. This goes beyond 
previous works only allowing for either a binary or con-
tinuous response [13].
unmconf  also extends beyond previous soft-

ware packages by allowing for a second unmeas-
ured confounder. For the second unmeasured 
confounder, the joint distribution can be factorized as 
f (y,u1,u2|x, c) = f (y|x, c,u1,u2)f (u1|x, c,u2)f (u2|x, c)  , 
giving the Bayesian unmeasured confounding model:

where again v′ = [x c′]′ so that the coefficients of all per-
fectly observed covariates in the response model are β’s, 
and � denotes the coefficients on the unmeasured con-
founders in the response model aggregated together as 
u = [u1 u2]

′ . For the first unmeasured confounder model 
in (2), the coefficients on all perfectly observed covari-
ates are γ’s, and ζ denotes the coefficient on the second 
unmeasured confounder in this model. The remaining 
parameters in δ denote the relationship between U2 and 
perfectly known covariates. Any parameter that models 
an association with U1 or U2 is defined as a bias param-
eter and requires either validation data or an informa-
tive prior to be estimated. The bottom two equations in 
(2) do not require conditional dependence between the 
two unmeasured confounders but rather grants the user 
flexibility to apply knowledge of one unmeasured con-
founder to estimate the other. Likewise, a multivariate 
distribution for U1,U2|x, c would align with this frame-
work. If a multivariate distribution is desired on U1,U2 , 
the user would need to edit the JAGS code provided by  
unmconf. This same construction is generalizable to an 
arbitrary number of unmeasured confounders, the nota-
tion simply becomes a bit more cumbersome. We intro-
duce the concept here, however, because the scenario of 
two unmeasured confounders is not uncommon, shows 
the general character of the construction, and illustrates 
how the implementation provided by  unmconf  works. 
The model in (2) is referenced throughout this paper. 
Given that we are interested in the exposure effect on Y 

(2)
Y |x, c,u1,u2 ∼ DY (g

−1
Y (v′β + �

′u), ξy)

U1|x, c,u2 ∼ DU1(g
−1
U1

(v′γ + ζu2), ξu1)

U2|x, c ∼ DU2(g
−1
U2

(v′δ), ξu2),
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conditional on X ,C ,U , βx is the primary parameter of 
interest for this study.

Prior distributions
Prior distributions for the model parameters will be 
jointly defined as π(θ) , where θ = (β , �, γ , ζ , δ) with 
bias parameters φ = (�, γ , ζ , δ, ξu1 , ξu2) . The bias param-
eters in an unmeasured confounder model can only 
be inferred through either validation data or informa-
tive priors. The default prior structure in  unmconf  is 
in Table  1. The regression coefficients have a relatively 
non-informative prior with a mean of 0 and precision 
(inverse of the variance) of 0.1 when the response is dis-
crete. When the response is continuous, the regression 
coefficients have a relatively non-informative prior with 
a mean of 0 and precision of 0.001. To further custom-
ize the analysis, users can specify custom priors using 
the priors argument within the modeling function, 
unm_glm(). The format for specifying custom priors 
is c("{parameter}[{covariate}]" = "{dis-
tribution}"). Example code eliciting informative 
priors is provided in “Example” section.

Families specified for the response and unmeasured 
confounder(s) may present nuisance parameters, neces-
sitating the inclusion of their prior distributions as well. 
The precision parameter, τ∗ , on a normal response or nor-
mal unmeasured confounder will have a Gamma(0.001, 
0.001) as the default prior. Priors can also be elicited in 
terms of σ∗ or σ 2

∗  through priors. The nuisance param-
eter, αy , for a gamma response has a gamma distribution 
as the prior with both scale and rate set to 0.1. The afore-
mentioned nuisance parameters are tracked and poste-
rior summaries are provided as a default setting in the 
package, but this can be modified.

Posterior inference
When data is observed, scalar-valued objects in (2) 
become vectors and vectors become matrices, one for 
each response indexed i = 1, . . . , n . Thus, data is consti-
tuted of the observed response values y , exposure values 
x , covariates C . The exposure values and covariates can 
be combined columnwise to form the matrix V whose 
rows correspond to the same observation. Similarly, 
the unmeasured or partially unmeasured confounders 
would be denoted u1 and u2 , perhaps aggregated together 
as the columns of a matrix U . Combining the Bayesian 
unmeasured confounding model with two unmeasured 
confounders in (2) with π(θ) , we get the joint posterior 
distribution,

We sample from this posterior distribution via Gibbs 
sampling to obtain approximate marginal posterior distri-
butions for the parameters of interest. For modeling pur-
poses, unmeasured confounders can be viewed as missing 
variables and thus are treated as parameters in the Bayes-
ian paradigm. Bayesian computation in a missing data 
problem is based on the joint posterior distribution of the 
parameters and missing data conditioned on the modeling 
assumptions and observed data [26]. Using (2), we com-
pute the joint posterior of (β , �, γ , ζ , δ,u1mis,u2mis) given 
the observed (y, x, c,u1obs,u2obs) , where the subscripts 
“mis” and “obs” indicate the values that were missing and 
observed, respectively. The posterior simulation then uses 
two or three Gibbs sampling steps, depending on the num-
ber of unmeasured confounders.

Example
We illustrate the applicability of our package by first 
considering a simple example found in Fox et  al. [21]. 
We consider the data provided in their paper, mod-
eling a binary unmeasured confounder, binary response, 
and binary exposure. Summary-level data from the 
paper is displayed in Table  2. No additional measured 

f (u1mis,u2mis, θ |y, x,C,u1obs,u2obs)

∝ π(θ)

n
∏

i=1

f (yi|xi, ci,u1i,u2i)f (u1i|xi, ci,u2i)f (u2i|xi, ci).

Table 1 Default prior structure for regression coefficients and 
nuisance parameters in unmconf 

Parameter Default prior

β∗ , �∗ , γ∗ , ζ∗ , δ∗ dnorm(0, 0.1) when model is discrete;

dnorm(0, 0.001) when model is continuous

τ∗ dgamma(0.001, 0.001) when * is normal

αy dgamma(0.1, 0.1) when response is gamma

Table 2 Observed record-level data

Exposed Unexposed

Disease 40 20

No Disease 60 80

Total 100 100

Risk 0.4 0.2

Risk Ratio 2.0
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confounders are accounted for. The relationship between 
the exposure and response, accounting for the presence 
of an unmeasured confounder, is of interest.

Fox et  al. [21] define P(C + |E+) as the prob-
ability of the unmeasured confounder among those 
with the exposure, P(C + |E−) as the probability of 
the unmeasured confounder among those without 
the exposure, and RRCE as the relative risk. They set 
P(C + |E+) ∼ Beta(10, 20) , P(C + |E−) ∼ Beta(5, 20) , 
and RRCE ∼ trapezoidal(min = 1.5,mod1 = 1.7,mod2 = 2.3,max = 2.5) to 
be the distributions on the bias parameters. The algo-
rithm for the probabilistic QBA by Fox et  al. [21] is 
detailed in their paper. They base their Monte Carlo sen-
sitivity analysis m = 100, 000 times on record-level data 
and results are summarized by the median, 2.5th percen-
tile, and 97.5th percentile of the distribution in terms of 
a relative ratio. The run time was 11 minutes. We note 
that the summary-level code by Fox et al. [21] runs much 
faster, but we use their record-level code for comparison 
with  unmconf  given that model is built on a regression 
framework.

We apply the Bayesian unmeasured confounding model 
in (1) using  unmconf. The distributions on Y and U are 
Bernoulli with no C covariates. This simplifies to

Fox et  al. [21] generated the unmeasured con-
founder through sampling from the bias param-
eters’ distributions. With U completely missing in 
our model, informative priors are needed on the bias 
parameters to converge to meaningful results. We 
use the information from Fox et  al. [21] and apply 
the conditional means prior approach of [27, 28] to 
determine priors for the bias parameters. Note that 
the package uses the parameterization of JAGS for 
the normal, that is, mean and precision, where pre-
cision is the reciprocal of the variance. Using the 
P(C + |E−) ∼ Beta(5, 20) and P(C + |E+) ∼ Beta(10, 20) , we 
induce γ1 ∼ N (−1.5, τγ1 = 3.7) and γx ∼ N (.747, τγx = 2.31) 
priors for the unmeasured confounder/expo-
sure model. We also require a prior for � . Using 
RRCE ∼ trapezoidal(min = 1.5,mod1 = 1.7,mod2 = 2.3,max = 2.5)  , 
we induce � ∼ N (0.99, τ� = 26.70).

We fit the model using our package across 4 chains, 
each with 25,000 iterations of which 4,000 were burn-in 
for a total of 100,000 posterior draws. We note that the 
MCMC algorithm does not require 25,000 iterations for 
the sake of convergence. When comparing time, we set 
the iterations to be the same for the posterior sampling 
as Fox et al. [21] did for MCSA. This took about 50 sec-
onds compared to the 11 minutes from their code. The 

Y |x,u ∼ Bernoulli(logit−1(β1 + βxx + �u))

U |x ∼ Bernoulli(logit−1(γ1 + γxx)).

2.5th percentile, median, and 97.5th percentile from 
their simulation along with the 95% credible interval 
and posterior median from  unmconf  are displayed in 
Table 3 in terms of the odds ratio. Despite using a trap-
ezoidal for the risk ratio for Fox et  al. [21] versus the 
normal distribution for the logistic regression param-
eter in our model, inferences are very similar. We add 
the code to convey the user friendliness of this package. 

To investigate whether priors on the non-bias param-
eters impacted the width of the intervals, we performed 
the analysis again with a precision of 0.01 on the regres-
sion parameters’ priors instead of the default precision of 
0.1 for the Bayesian model. Similarly, fitting the model via 
MCMC across 4 chains with 25,000 iterations of which 
4,000 were warm-up, the model again took about 56 sec-
onds. The 2.5th percentile, median, and 97.5th percen-
tile from the Fox et  al. [21] simulation are displayed in 
Table  3, in terms of the odds ratio, along with the 95% 
credible interval and posterior median from  unmconf. 
As expected, the 95% credible interval is slightly wider 
with the more diffuse priors.

To see if the two methods have similar results for 
larger samples, we multiplied the counts in Table  2 by 
10. Using this larger record-level data, we again used the 
Fox et al. [21] code with 100,000 iterations. The analysis 
took approximately 40 minutes to run. The analysis using  

Table 3 Results in terms of odds ratio for each sensitivity analysis

Model Data type 2.5th Median 97.5th Run time

Fox et al. [21] Original data 1.075 2.258 5.714 11 min.

 unmconf Original data 1.168 2.350 4.837 50 sec.

 unmconf Original data 
w/ more diffuse 
priors

1.157 2.353 4.808 56 sec.

Fox et al. [21] 10x original data 1.559 2.246 3.288 40 min.

 unmconf 10x original data 1.623 2.390 3.267 20.5 min.
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unmconf , with 25,000 iterations and a burn in of 4,000 
across 4 chains took just under 20.5 minutes to run. The 
results from both packages are displayed in Table 3. Not 
surprisingly, for this larger data set, the 95% intervals are 
more similar than in the small sample case.

The code supplied by Fox et  al. [21] is currently 
structured to handle the case of modeling with no 
measured covariates. If a researcher’s data matches 
this code structure, then there is no concern from the 
user to conduct a sensitivity analysis. If other covari-
ates are in a data set, then the authors assume that the 
researchers interested in conducting a simulation are 
proficient enough with R to modify the scripts in order 
to match their data. This may not always be the case. 
Our framework for modeling in  unmconf  allows for 
user ease in adjusting the model as needed and adding 
measured covariates. The modeling function, unm_
glm(), carries a structure much like glm() in R, and 
the researchers can simply add measured covariates to 
the right hand side of the equation if desired.

Simulation
A useful aspect of the  unmconf  package is that it 
provides a convenient framework to perform simula-
tion studies to determine how large validation sam-
ple sizes need to be. In practice, these sizes might be 
fixed, but researchers could see in advance how pre-
cise inference will be and if supplementing with other 
external information might be needed. To assess the 
performance of the proposed Bayesian unmeasured 
confounding model with different levels of information 
on unmeasured confounder(s), coverage probabilities, 
average bias, and average lengths of 95% quantile-
based credible intervals were compared against a naive 
model for simulated data sets. The naive model here 
ignores all unmeasured confounders and is of the form

In logistic regression, we note that the difference 
between the parameter estimate from the naive model 
and the parameter estimate from the confounder-
adjusted model can come from a combination of con-
founding bias and the noncollapsibility effect [29]. To 
avoid confusion of what is meant by bias we consider 
the difference between the conditional odds ratio of 
the estimated model (either naive or corrected) and 
the “true” conditional odds ratio for the full model. For 
further understanding of noncollapsibility and quan-
tifying the bias that derives from confounding bias in 
logistic regression models, refer to Schuster et al. [30], 

Y |x, c ∼ DY

(

g−1
Y (v′β), ξy

)

= DY

(

g−1
Y (β0 + βxx + βc1c1 + · · · + βcpcp), ξy

)

.

Pang et al. [31], and Janes et al. [32]. We compare the 
Bayesian unmeasured confounding model and the 
naive model under the presence of internal and exter-
nal validation data.

Sensitivity analysis – internal validation data
Performance metrics of coverage, bias, and length were 
assessed for combinations of n = 500, 1000, 1500, 2000 , 
internal validation data of p = 15%, 10%, 5%, 2% , 
response = norm,bin,gam,pois , u1 = norm,bin , 
and u2 = norm,bin across m = 1000 data sets, where 
p denotes the fraction of the main study used for vali-
dation. The data is generated as follows. First, a sin-
gle, perfectly measured covariate, z, was modeled as 
a standard normal for the desired sample size, n. The 
unmeasured confounders were then generated inde-
pendently as either a normal distribution with a mean 
and variance of 1 or a Bernoulli distribution with prob-
ability of success being 0.7 depending on the family 
requested in the simulation. The binary exposure vari-
able is generated conditioned on the unmeasured con-
founders and perfectly measured covariate with the 
parameters θE = (η1 = −1, ηz = .4, ηu1 = .75, ηu2 = .75) 
in the inverse logit link of the exposure model. 
Lastly, the response model is either gener-
ated normally with variance of 1, Bernoulli, Pois-
son, or Gamma with shape parameter αy = 2 , 
given the requested family, with parameters 
θR = (β1 = −1,βx = .75,βz = .75, �u1 = .75, �u2 = .75) 
in the inverse link function. Thus, we have the design 
points θ = (θR, θE) for our data generation. Once all var-
iables are modeled for our data sets, we denote a propor-
tion, 1− p , of the unmeasured confounders observations 
as missing. Our JAGS model results are based on 40000 
posterior samples across 4 chains with a burn in of 4000. 
The algorithm for this simulation study is as follows: 

1. Select parameter values for θ.
2. Generate m data sets on combinations of n, p,u1,u2 

using runm() for selected parameter values.
3. Build the model and call JAGS using unm_glm() 

with n.iter = 10000, n.adapt = 4000, 
n.thin = 1, n.chains = 4.

4. For each data set, monitor all parameters and 
whether the “true” parameters are contained in the 
95% credible intervals.

5. Compute the average posterior mean, average poste-
rior standard error, coverage, average bias, and aver-
age credible interval length across replications.
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6. Assess convergence of the Bayesian model.

We note that, in step 1 above, using either validation 
data or informative priors to set initial values for the 
bias parameters on the “correct side of 0” leads to better 
results in terms of convergence. The simulation fits mod-
els with default priors, thus no informative priors. Out-
put is only displayed for a binary response and two binary 
unmeasured confounders. We leave the Bayesian sen-
sitivity analysis for all other combinations of responses 
(normal, binary, Poisson, gamma) and unmeasured con-
founders (normal, binary) as supplemental material.

For all levels of internal validation investigated, we 
obtain near nominal coverage. The coverage for the 
naive model is generally well below nominal, as noted in 
Table 4. For small sample sizes and small internal valida-
tion proportions, the average bias is similar to the naive 
model. Rarely a study is performed with only 2% inter-
nal validation for a sample size of n = 500 being low, 
but we choose to incorporate the results to display that 
the model may not be robust under extreme circum-
stances. The credible interval length largely increases 
with the decrease in proportion of internal validation 

data acquired, which demonstrates why smaller valida-
tion samples have higher coverage in our study. For inter-
nal validation data at 2%, the 95% credible intervals may 
not be of practical significance due to the range of values 
covered when the true value of βx is 0.75. For instance, 
the average length of the 95% credible intervals when 
the response is binary, the two unmeasured confound-
ers are binary, and the sample size is 500 was 3.601. As 
the sample size increases and internal validation data 
increases for any combination of response and unmeas-
ured confounders, the bias shows a trend of decreasing 
towards zero. For these parameters values of θ , the naive 
model overestimates the truth to a larger magnitude rela-
tive to any instance where the unmeasured confounders 
are accounted for in the model. This may not be the same 
direction of bias for other values of θ . The median cred-
ible interval length and median bias are also displayed in 
Table 4.

Sensitivity analysis – external validation data
Performance metrics of coverage, bias, and length were 
assessed for combinations of n = 500, 1000, 1500, 2000 , 
external validation data with p = 50%, 100% of the 

Table 4 Breakdown of 95% Credible Intervals when βx = 0.75 for the case of a binary response and two binary unmeasured 
confounders

n Validation Coverage Avg. CI length Med. CI length Avg. bias Med. bias

500 Naive 0.846 0.781 0.780 0.198 0.202

500 2% 0.994 3.601 3.453 0.189 0.192

500 5% 0.978 2.223 2.093 0.161 0.169

500 10% 0.951 1.451 1.408 0.080 0.077

500 15% 0.968 1.169 1.150 0.061 0.063

500 Full 0.954 0.815 0.814 0.020 0.022

1000 Naive 0.728 0.550 0.549 0.189 0.187

1000 2% 0.978 2.390 2.266 0.168 0.172

1000 5% 0.959 1.291 1.242 0.081 0.093

1000 10% 0.956 0.877 0.862 0.036 0.041

1000 15% 0.951 0.749 0.740 0.025 0.023

1000 Full 0.942 0.572 0.572 0.006 0.008

1500 Naive 0.629 0.449 0.448 0.187 0.188

1500 2% 0.961 1.757 1.663 0.104 0.122

1500 5% 0.954 0.948 0.926 0.042 0.057

1500 10% 0.942 0.677 0.669 0.016 0.023

1500 15% 0.939 0.590 0.586 0.015 0.017

1500 Full 0.938 0.466 0.466 0.004 0.004

2000 Naive 0.523 0.388 0.388 0.188 0.187

2000 2% 0.958 1.430 1.374 0.096 0.113

2000 5% 0.955 0.772 0.753 0.038 0.050

2000 10% 0.946 0.566 0.560 0.019 0.022

2000 15% 0.953 0.502 0.500 0.011 0.012

2000 Full 0.948 0.403 0.404 0.002 0.001
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original sample size, response = norm,bin,gam,pois , 
u1 = norm,bin , and u2 = norm,bin across m = 1000 
data sets. For the simulation with external validation 
data, the main study data has no information on the 
unmeasured confounders. Typically, the external data has 
information on the unmeasured confounder-response 
relationship but not the exposure. Thus, informa-
tive priors on the bias parameters for this relationship 
are needed to achieve convergence. That is, using (2), 
γ1, γx, δ1 , and δx . For the sensitivity analysis, we again 
model z from a standard normal for the desired sam-
ple size, n. The unmeasured confounders were then 
generated independently as either a standard normal 
or a Bernoulli distribution with probability of suc-
cess being 0.5 depending on the family requested in the 
simulation. Using the notation for the design points, θ , 
in “Sensitivity analysis – internal validation data”  sec-
tion, θE = (η1 = −1, ηz = .4, ηu1 = .75, ηu2 = .75) and 
θR = (β1 = −1,βx = .75,βz = .75, �u1 = .75, �u2 = .75)  . 
Once all variables are modeled for our data sets, we 
designate a proportion, 1− p , of the unmeasured con-
founders observations as missing. We additionally gener-
ate external validation data of size np where there is no 
treatment effect in θE (i.e., βx = 0 ). Then, we combine 
the main study data and external validation data into 
one large data set. Our JAGS model results are based 
on 40000 posterior samples across 4 chains, with a burn 
in of 4000. The algorithm for this simulation study is as 
follows: 

1. Select parameter values for θ.

2. Generate m data sets on combinations of n, p,u1,u2 
using runm() for selected parameter values.

3. Elicit informative priors on γX and δX.
4. Build the model and call JAGS using unm_glm() 

with n.iter = 10000, n.adapt = 4000, 
n.thin = 1, n.chains = 4. Specify the 
informative priors through the argument, priors.

5. For each data set, monitor all parameters and 
whether the “true” parameters are contained in the 
95% credible intervals.

6. Compute the average posterior mean, average poste-
rior standard error, coverage, average bias, and aver-
age credible interval length across replications.

7. Assess convergence of the Bayesian model.

In the algorithm above, the unmeasured confound-
ers were either u∗ ∼ N (0, 1) or u∗ ∼ Bernoulli(0.5) 
depending on the family requested in the simulation. 
The simulation fits models with default priors and no 
informative priors beyond those for γX and δX . Here, 
γX ∼ N (.65, σ 2 = 1/.32) and δX ∼ N (.65, σ 2 = 1/.32) . 
We again leave the the Bayesian sensitivity analysis for all 
other combinations of responses and unmeasured con-
founders as supplemental material.

For all levels of external validation investigated, we 
obtain near nominal coverage. The slight over-coverage 
likely derives from the increase in uncertainty when the 
model accounts for missing data through the unmeas-
ured confounders. The naive model under performs in 
terms of coverage, as noted in Table 5. The credible inter-
val lengths appear to be relatively similar for the naive 

Table 5 Breakdown of 95% Credible Intervals when βx = 0.75 for the case of a binary response and two binary unmeasured 
confounders

n Validation Coverage Avg. CI length Med. CI length Avg. bias Med. bias

500 Naive 0.846 0.781 0.780 0.198 0.202

500 250 0.966 0.771 0.766 0.009 0.005

500 500 0.960 0.717 0.715 -0.007 -0.002

500 Full 0.954 0.815 0.814 0.020 0.022

1000 Naive 0.728 0.550 0.549 0.189 0.187

1000 500 0.975 0.559 0.557 0.005 -0.001

1000 1000 0.963 0.524 0.523 -0.022 -0.028

1000 Full 0.942 0.572 0.572 0.006 0.008

1500 Naive 0.629 0.449 0.448 0.187 0.188

1500 750 0.974 0.470 0.467 -0.005 -0.007

1500 1500 0.962 0.443 0.442 -0.020 -0.020

1500 Full 0.938 0.466 0.466 0.004 0.004

2000 Naive 0.523 0.388 0.388 0.188 0.187

2000 1000 0.972 0.419 0.417 -0.007 -0.006

2000 2000 0.971 0.396 0.395 -0.025 -0.028

2000 Full 0.948 0.403 0.404 0.002 0.001



Page 9 of 10Hebdon et al. BMC Medical Research Methodology          (2024) 24:195  

model as with external validation data. The naive model 
performs much worse in terms of bias, often overestimat-
ing the true effect. Yet, the external validation data sup-
plemented with informative priors tends to remove the 
bias for even half of the number of original observations 
for all sample sizes tested. Average and median credible 
interval length as well as average and median bias are also 
displayed in Table 5.

Discussion
When performing causal inference in observational 
studies, accounting for the presence of unmeasured 
confounders has often been overlooked by researchers 
due to the lack of easily accessible software. Quantita-
tive bias analysis, both deterministic and probabilistic, 
can quantify the magnitude and direction of the bias on 
the exposure effect when ignoring the presence of an 
unmeasured confounder by considering possible sce-
narios for the unmeasured confounder. Previous work 
focuses on deterministic QBA, likely due to its simplic-
ity, with no R packages published for probabilistic QBA. 
Fox et  al. [21] contribute R scripts in the supplemental 
material of their work to provide the first known openly 
accessible probabilistic QBA with unmeasured con-
founders.  unmconf  provides a package on CRAN to 
help resolve the disconnect between methodology for 
Bayesian sensitivity analysis with unmeasured confound-
ers and its implementation through easily accessible 
software. A more thorough introduction to the package 
is provided in the package vignette, accessible via the 
command vignette("unmconf”, package = 
"unmconf”). The package is also documented via R’s 
standard documentation system and provides several 
examples therein.

We note the limitations of the package through its ina-
bility to model more than two unmeasured confounders. 
However, we combat that limitation by enabling the user 
to extract the JAGS model from the modeling function in 
order to adjust as needed. With additional (important) 
unmeasured confounders, a causal inference assessment 
may not be feasible. This package is not meant to com-
pare to other Bayesian regression modeling packages 
such as  brms. Rather, it merely overcomes the obsta-
cle of modeling unmeasured confounders, which  brms  
does not. For future work, we aim to create a similar 
function structure using the programming language Stan. 
Stan implements Hamiltonian Monte Carlo and the No-
U-Turn Sampler (NUTS), which tends to converge more 
quickly for high-dimensional models. We hope to have 
provided a detailed process that can be utilized in epide-
miological research to address unmeasured confounders 
through the discussed Bayesian unmeasured confound-
ing model.
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