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Abstract 

Background Experimental studies of wound healing often use survival analysis and time to event outcomes or dif-
ferences in wound area at a specific time point. However, these methods do not use a potentially large number 
of observations made over the course of a trial and may be inefficient. A model-based approach can leverage all trial 
data, but there is little guidance on appropriate models and functional forms to describe wound healing.

Methods We derive a general statistical model and review a wide range of plausible mathematical models 
to describe wound healing. We identify a range of possible derived estimands and their derivation from the models. 
Using data from a trial of an intervention to promote ulcer healing in patients affected by leprosy that included three 
measurement methods repeated across the course of the study, we compare the goodness-of-fit of the models using 
a range of methods and estimate treatment effects and healing rate functions with the best-fitting models.

Results Overall, we included 5,581 ulcer measurements of 1,578 unique images from 130 patients. We examined 
the performance of a range of models. The square root, log square root, and log quadratic models were the best 
fitting models across all outcome measurement methods. The estimated treatment effects magnitude and sign 
varied by time post-randomisation, model type, and outcome type, but across all models there was little evidence 
of effectiveness. The estimated effects were significantly more precise than non-parametric alternatives. For example, 
estimated differences from the three outcome measurements at 42-days post-randomisation were − 0.01  cm2 (-0.77, 
0.74), -0.44  cm2 (-1.64, 0.76), and 0.11  cm2 (-0.87, 1.08) using a non-parametric method versus − 0.03  cm2 (-0.14, 0.06), 
0.06  cm2 (-0.05, 0.17), and 0.03  cm2 (-0.07, 0.17) using a square-root model.

Conclusions Model-based analyses can dramatically improve the precision of estimates but care must be taken 
to carefully compare and select the best fitting models. The (log) square-root model is strongly recommended reflect-
ing advice from a century ago.
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Introduction
Ulcers, traumatic wounds, burns and other open wounds 
present serious health risks to patients. The wound can 
become infected and without respite and treatment, wounds 

and ulcers can grow and cause deformities and issues with 
mobility. Social stigma is also associated with ulcers and 
related wounds. Medical interventions that can improve 
healing times and rates are therefore highly desirable.

As with many other types of medical intervention, experi-
mental methods, particularly randomised controlled trials 
(RCT), present the best way of establishing what works to 
promote wound healing. There have been a large number of 
randomised trials and other studies of interventions to pro-
mote wound healing: for examples of systematic reviews in 
this area see [1–5]. Time to healing outcomes are frequently 
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used in evaluations of wound healing interventions to esti-
mate hazard ratios. However, there are many other esti-
mands that may be relevant, such as differences in wound 
area or the proportion of wounds healed at a given time 
post study entry. Some trials use relatively complex derived 
outcomes, although often without clear justification. For 
example, previous studies have used: mean difference in 
proportionate reduction in wound area or a derived effect 
such as the mean difference in the proportion of patients 
who achieve a pre-specified proportionate reduction in 
wound area, mean difference in absolute wound area reduc-
tion or a relative ratio, the odds ratio or relative risk com-
paring the proportion of patients whose wounds had healed 
by a pre-specified time, and time to healing, among others. 
Almost exclusively, previous studies using outcomes based 
on wound area, rather than time-to-healing, use non-para-
metric estimators (like a difference in means or proportions) 
that compare mean values at a fixed time point. While these 
estimators have relatively weak assumptions, one limita-
tion in this context is that they do not incorporate measure-
ments made between baseline and the final study endpoint, 
and so do not make use of all the available data.

A model-based analysis may be of interest in studies of 
interventions to promote wound healing as it can “com-
bine” all the observations made during the study. How-
ever, it must account for the healing rate of the wound 
likely not being linear with respect to time, measurement 
error, and repeated measures on the same wounds. There 
are multiple treatment effects that can be derived from 
these models. Yet there is little guidance available on best 
practice for wound area modelling.

There are several plausible mathematical models that 
describe the (proportionate) area of a healing wound as a 
function of time. The earliest reference we identified on 
the topic was published in 1916, which suggested a model 
including a linear function and square root of time [6]. 
There have been very few similar comparisons in the time 
since. Cukjati et al. compared a range of models for wound 
healing using data from a study of electrical stimulation 
of chronic wounds to promote healing [7]. They included 
exponential, Gompertz, and logistic type functions. Their 
models included an additional delay between the develop-
ment of the wound and the start of the healing process. 
Their methods of model comparison were relatively limited 
and based on statistical significance of tests of residual sums 
of squares. This approach may be limited compared to the 
Bayesian methods we use in this article [8]. They concluded 
an exponential decay model was the best fitting. Wallen-
stein et al. fit Gompertz-like functions to data describing the 
healing of pressure ulcers in an RCT, although they did not 
compare the goodness-of-fit to other possible specifications 
[9]. Finally, Gorin et  al. fit a linear, additive model to data 
following the healing of venous stasis ulcers to estimate the 

association between different aspects of the wound and its 
healing rate, although again they did not examine the good-
ness-of-fit of their models [10]. 

The aim of this article is to describe and compare 
models of wound healing and estimators of the effects 
of interventions to promote wound healing. We identify 
the range of relevant estimands and describe their esti-
mation from models that allow for measurement error 
and cohort effects. We re-analyse data from a RCT of an 
intervention to promote healing of neuropathic ulcers in 
patients affected by leprosy. We compare the goodness-
of-fit using a variety of methods and compare treatment 
effect estimates from the best-fitting models to illustrate 
the use of the proposed methods.

Methods
Wound area statistical models
Our objective is to model the area of a wound over the 
course of a study with the intention of estimating the 
effects of an intervention designed to improve healing 
times and rates. We make some assumptions:

 (i) The wound begins (or continues) healing once the 
patient has entered the study (i.e. there is no lag 
phase);

 (ii) The area of the wound is measured with random 
error proportionate to the area of the wound. 
Wound area is typically ascertained by imaging 
the wound and then using software to identify and 
trace its borders. So, both the cumulative size of 
deviations when tracing a wound’s boundary and 
the number of opportunities for such deviations 
will be greater for larger wounds.

 (iii) Random variation in ulcer healing is proportionate 
to wound area.

 (iv) The wounds heal, on average, following a common 
function describing the relationship between propor-
tionate wound area and time from entry to the study.

If yi(t) represents the observed area of patient i ’s 
wound at time t ∈ [0,T ) then the above assumptions 
imply the following data generating process:

 where y∗i (0) represents the true (i.e. without measurement 
error), but unknown, wound area at the time of first meas-
urement t = 0 , ui(t) represents the random error includ-
ing measurement error, and ρ represents the parameter(s) 
of the healing rate function. This model is linear on the log 
scale and so leads us to a statistical model:

yi(t) = y∗i (0)f (t; ρ )ui(t)

logyi(t) = wi(0)+ logf (t; ρ )+ ǫi(t)
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where wi(t) = log(y∗i (t)) and ǫi(t) = log(ui(t))  . We 
can assign distributions to the unknown components: 
wi(0)∼N (µ τ 2) and ǫi(t)∼N (−w2

2 ,w2) where the mean of 
this distribution is used to ensure E(ui(t)) = 1 , i.e. that 
the measurements are correct on average. We can gather 
terms for our final, parameterised model:

Where α i ∼ N
(

0, τ 2
)

 is an individual random effect and 
eit ∼ N

(

0,ω 2
)

 is the random error term.
Table  1 shows the different specifications of f (t; ρ ) 

we compare. Mathematical models of wound healing 
and similar physiological phenomena that consider the 
underlying behaviour of relevant processes like hor-
mone release by platelets and macrophages, and angio-
genesis, suggest a non-linear function that heals fast and 
slows down as the wound decreases in size. For example, 
models of tumour growth often include exponential or 
Gompertz functions [11, 12]. An autoregressive model 
would also be relevant on this basis. Empirical analyses in 
the early 20th Century suggested that functions of time 
and its square root well describe wound area with respect 
to time [6, 13]. A simple model of a circle in which the 
radius decreased linearly with time would imply a quad-
ratic function of time. In all these cases, one may argue 
that the function applies on the absolute or relative area 
scale, and so we include both linear and log versions.

We also include two “compactly supported” functions: 
“Wendland 0” and “Wendland 1” after their proposer 

logyi(t) = β 0 + α i + logf (t; ρ )+ eit

[14]. These are functions that feature an exponential-type 
decay, but where a value of zero can be achieved. The two 
functions we include have this property but also only on a 
compact support t ∈ [0, 1] : they reach a value of zero when 
t = 1 [15]. We must therefore transform our time variable 
to the range [0,1] by dividing by a maximum value tMAX 
beyond which we expect all ulcers to have healed. Finally, 
a semiparametric approach may be preferred given that the 
true functional form is unknown. For the applied analyses 
below we select degree-3 basis functions for the splines and 
select five knot values spaced evenly over the time range.

To incorporate the effect of an intervention versus con-
trol, the healing rate function parameters vary by treatment 
and control status. To make this explicit, we notate the 
function f1(t; ρ 1) for treatment and f0

(

t; ρ 0

)

 for control.

Treatment effects
One of the advantages of using model-based approaches 
in interventional studies is that we can use all measures of 
wound area over the course of the trial to estimate a treat-
ment effect, as opposed to comparing average area at a 
pre-specified time point. An obvious output from the anal-
ysis would be a graphical comparison of estimated healing 
rate functions. Other estimands that compare the out-
comes in intervention and control conditions may include 
the following population-level summary measures, where 
d = 1 indicates treatment allocation and d = 0 control.

Mean difference in wound area at time T

Mean difference in proportionate wound area at time

Other treatment effects
In the Supplementary Information we derive similar 
expressions for the differences in healing rates up to time 
T. We can also estimate a survival function and related 
effects, including differences in the proportion of healed 
wounds up to time T  , which is also shown in the Supple-
mentary Information.

Model fitting and comparison
We fit all the statistical models described. We use a 
Bayesian approach to model estimation and compari-
son. We fit the models using Markov Chain Monte Carlo 

δ 1 = E[yi(t)|d = 1]−E[yi(t)|d = 0] = E
[

y∗i (t)
](

f1(t)− f0(t)
)

= exp

(

β 0 +
τ 2 + ω 2

2

)

(

f1(t)− f0(t)
)

δ 2 = E

[

yi(t)

y∗i (0)
|d = 1

]

− E

[

yi(t)

y∗i (0)
|d = 0

]

= f1(t)− f0(t)

Table 1 Healing rate functions describing the relationship 
between time and proportionate wound area. Time t  is assumed 
to be positive

a In this specification h(t) represent basis functions

Model Function Specificationf (t; ρ )

1 Exponential exp(−ρt)

2 Gompertz exp(1− exp (pt))

3 Linear 1 + pt

4 Quadratic 1+ p1 t + p2 t
2

5 Square root 1+ p1 t + p2
√
t

6 Wendland 0 (1− t)p

7 Wendland 1 (1+ (p+ 1)t)(1+ t)p+1

8 Semiparametrica 1−
m
pmh(t)

9 Log-linear exp (1+ pt)

10 Log-quadratic exp
(

1+ p1t + p2t
2
)

11 Log-square root exp
(

1+ p1t + p2
√
t
)
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(MCMC) using the Stan probabilistic programming lan-
guage [16]. As described below, there were three separate 
measures for each wound in the data used in this article. 
We fit them all separately to compare model fit.

We use the leave-one-out cross validation score (LOO-
CV) and widely applicable information criterion (WAIC) 
to compare the models for goodness of fit [17]. These cri-
teria can only provide comparisons of models using the 
same data, and not between models fit with different data 
(i.e. outcomes from different measurement software). To 
compare models more broadly we also conduct a series of 
graphical posterior predictive model checks [8]. For each 
model we sample from the posterior predictive distribu-
tions of the wound area over time and graphically com-
pare with the density of the data.

Prior distributions
To complete the model specification we require the 
priors and hyperpriors. We use weakly informative 
priors, which constrain the parameters to a plausible 
range but provide little information within this range. 
We specify µ ∼ N

(

1,22
)

 , τ ∼ N
(

0,22
)

[0,∞ ) , and 
ω ∼ N

(

0,0.52
)

[0,∞ ) . These priors constrain the mean 
baseline ulcer area µ is between approximately 0 and 
20  cm2 determined by the inclusion criteria (see Data 
below), and the variance parameters’ hyperpriors allow 
for relatively large values including noise of +/- 100%.

Data
We re-analyse data from an individual-level randomised 
controlled trial of leukocyte and platelet rich fibrin gel 
(LPRF; treatment) versus standard saline dressing (con-
trol) to promote ulcer healing in patients affected by lep-
rosy. Patients were randomly assigned to receive either 
treatment or control in a 1:1 ratio. The ulcer dressings 
were changed every three or four days (twice weekly) 
during the trial at which point the ulcer was imaged for 
its area to be measured. The objectives of our re-analy-
sis of these data are: (i) compare the range of models to 
identify the best fitting model(s); and (ii) estimate and 
critically appraise the range of treatment effect estimates 
derived from the best fitting model(s).

Full details of the trial methods are published else-
where, [18] we provide a brief summary here. Overall, 
130 patients were enrolled in the trial. Informed consent 
was obtained from all participants. The inclusion criteria 
included that the ulcer area at enrolment was between 
 2cm2 and  20cm2. Two primary outcomes were speci-
fied: ulcer area at 42 days post-randomisation and time 
to complete healing. For the former outcome, the area of 
each ulcer was measured in three ways by two independ-
ent assessors. First, an image of the wound was taken 
using a Tablet computer device following a standardised 

protocol, which incorporated a measuring rule in the 
image. The area was then estimated by an independ-
ent assessor using “PUSH” software. For the other two 
methods, an image of the wound was taken using an 
“ARANZ” device, which is designed to capture high-reso-
lution images of wounds and includes laser-based guides 
for establishing its position in 3D space. The area of the 
wound can then be measured in one of two ways: using 
the ARANZ software and manually tracing the wound 
or having the ARANZ software automatically detect the 
wound boundary and estimate the area. We refer to these 
methods as “ARANZ Manual” and “ARANZ Automatic”, 
respectively. Healing (complete re-epithelialisation of the 
ulcer) was assessed by the treating clinician and the inde-
pendent assessors. Patients remained in the trial up to 70 
days post-randomisation after which healing times would 
be right-censored and no more measurements taken. The 
maximum duration of the trial was 72 days. We choose 
tMAX = 100 for the analyses here: the function has value 
zero at tMAX and not all ulcers may be healed by trial end, 
so setting tMAX to larger than the total trial time allows 
for non-zero values.

Results
Overall, our dataset contains 5,581 ulcer measurements 
of 1,578 unique images from 130 patients in the trial 
between zero- and 70-days post-randomisation. The 
mean baseline ulcer sizes from the three different meas-
urement methods were 4.57  cm2 (ARANZ Manual), 4.20 
 cm2 (ARANZ Automatic), and 4.07  cm2 (PUSH). Sum-
mary statistics for the trial data are published in the main 
trial report.[submitted].

Table 2 reports the goodness of fit statistics for the dif-
ferent models and Fig.  1 shows the posterior predictive 
model checks for ARANZ Automatic data, the other 
posterior predictive model checks are shown in the Sup-
plementary Information. The relative ordering of models 
in terms of goodness-of-fit was approximately the same 
across all three outcomes. The best three fitting models 
in all cases were the log-square root, log-quadratic, and 
square root functions, although the single best performing 
model differed between outcomes. The Gompertz func-
tion and compactly supported functions (Wendland 0 and 
1), performed the worst. Graphically, the models revealed 
relatively large predictive uncertainty with the log-square 
root and log-quadratic models appearing to provide the 
most parsimonious set of predictive data sets. The sem-
iparametric model overestimated the variance in the data 
relative to the other models.

We compared the estimated functions and treat-
ment effects for the best three fitting models described 
above. Figure  2 shows estimated healing rate func-
tions for treatment and control groups up to 70 days 
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post-randomisation for ARANZ Automatic, overlayed 
on the data. Equivalent plots for the other outcomes are 
provided in the Supplementary Information. Notably, 
none of the functions start at one, and there is a large 
variance of ulcer sizes around the mean function. There 
is no clear difference between the estimated functions 
for the treatment and control groups. Figure 3 shows the 
estimated mean difference in ulcer area and 95% credible 
intervals for the three best-fitting models for all three 
sets of outcome data. The sign of the posterior mean dif-
ference (either favouring treatment or control) differs 
by both function and outcome type, however, all cred-
ible intervals overlap zero (and each other) for the whole 

course of the trial. The largest posterior mean difference 
was estimated using the log-square root model with the 
PUSH data nine days post-randomisation at -0.14  cm2 
(95% credible interval: -0.55, 0.26). However, the same 
model estimated differences at the same time point of 
0.02  cm2 (-0.32, 0.37) and − 0.02  cm2 (-0.44, 0.39) with 
the ARANZ Automatic and ARANZ Manual data, 
respectively, suggesting little evidence of effectiveness.

For comparison with non-parametric estimators, we 
examine estimates at 42 days post-randomisation, the pri-
mary end point of the original trial. The estimated mean 
differences in ulcer area using a non-parametric approach 
were − 0.01  cm2 (-0.77, 0.74), -0.44  cm2 (-1.64, 0.76), and 
0.11  cm2 (-0.87, 1.08) for PUSH, ARANZ Automatic, and 
ARANZ Manual respectively. The equivalent figures for 
the square-root model were − 0.03  cm2 (-0.14, 0.06), 0.06 
 cm2 (-0.05, 0.17), and 0.03  cm2 (-0.07, 0.17).

Discussion
There are multiple functions that may usefully describe 
the healing rate of a wound. However, there have been 
few studies to compare their performance using “real-
world” wound healing data. Within a log-linear model, 
we identified that a square-root, log-square root, or 
log-quadratic healing rate function best fit data from a 
trial evaluating an intervention to promote ulcer heal-
ing. While the precise point estimates of the effect of the 
treatment differed between models and outcome data 
sets, all gave qualitatively similar conclusions about the 
(in-)effectiveness of the intervention.

In other settings and trials, it is possible that other func-
tions than those we identified as best-fitting may better 
describe the data. We posit that large discrepancies in the 
relative healing rates would be unlikely between the data 
observed here and in other contexts. Indeed, the earliest 
paper we could identify on the topic of modelling wound 
healing, using data from frogs, also suggested the use of 
a square-root function. However, for different shaped 
wounds, different pathologies, or location on the body, 
the best fitting function may well differ. For example, the 
wounds in our data set may not well represent deeper, 
irregular, or “non-saucer shaped” wounds, like a pressure 
ulcer or a dehisced surgical wounds. We would advocate 
that a full model-based analysis includes a comparison of 
different candidate models, a good number of which we 
have described in this article. There are other non- and 
semi-parametric estimators of functions that may also 
be of interest, such as kernel-based estimators; there is 
a bias-variance trade-off involved with making stronger 
functional and parametric assumptions. However, our 
results indicated that the semi-parametric comparator did 
not perform as well as the functional alternatives.

Table 2 Goodness of fit statistics for the different models 
continued. The three best fitting models are in bold

Model Outcome measure LOO-CV WAIC

Exponential ARANZ Manual 50,861.04 39,532.72

Gompertz 33,343.06 24,782.54

Linear 18,859.66 14,619.62

Quadratic 46,253.63 35,023.48

Square root 56,276.46 44,050.30
Wendland 0 38,931.13 29,467.40

Wendland 1 27,546.86 20,496.48

Semiparametric 45,445.80 38,364.32

Log-linear 51,670.29 39,954.78

Log-square root 59,979.63 43,483.61
Log-quadratic 56,170.34 43,947.12
Exponential ARANZ Automatic 48,035.34 37,359.80

Gompertz 32,060.78 23,299.23

Linear 18,602.89 14,043.35

Quadratic 44,084.41 32,863.08

Square root 53,363.95 42,715.13
Wendland 0 36,639.66 27,092.26

Wendland 1 24,862.11 18,366.37

Semiparametric 40,965.34 34,337.78

Log-linear 48,016.31 37,298.21

Log-square root 52,868.86 41,384.16
Log-quadratic 52,703.47 42,295.78
Exponential PUSH 37,709.15 24,471.70

Gompertz 24,275.96 18,229.65

Linear 14,111.45 11,592.73

Quadratic 32,488.15 23,452.82

Square root 40,212.90 29,386.88
Wendland 0 28,516.35 21,235.42

Wendland 1 20,404.63 15,812.56

Semiparametric 37,784.01 30,014.45

Log-linear 37,224.10 27,337.31

Log-square root 39,154.33 29,054.99
Log-quadratic 38,912.37 29,058.61
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Fig. 1 Graphical posterior predictive model checks for the ARANZ Automatic data. Blue lines represent samples from the posterior predictive 
distribution and the red line shows the density of the data
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We showed how the model estimates may be trans-
formed into estimates of treatment effectiveness. The 
treatment effect varied by both time of assessment, 
type of model, and type of outcome measure. While no 
combination suggested strong evidence in favour of the 
intervention, the differences do suggest caution should 
be exercised when just considering a single time point 
and outcome measure in a trial evaluation. A model-
based analysis would permit estimation of the effects 
across the course of the trial.

We argued that a log-linear model would be appropriate 
given assumptions about the measurement error inher-
ent to measuring wounds. There are other plausible alter-
natives, such as an additive error on the linear scale. We 

conducted a brief exploratory analysis of alternative over-
all specifications, and found they performed significantly 
worse that the overarching model structure described 
here, and so were not investigated further. The trial that 
produced the data analysed in this article, [18] of which 
we were collaborators, included the mean difference in 
healing rate at 42 days post-randomisation as a primary 
treatment effect. This effect was estimated using a linear 
model of absolute ulcer area with a quadratic function of 
time post-randomisation. The trial analysis was planned 
before the analyses in this article were conducted, but 
given our results, we would now recommend against 
the model used by the trial. We would also recommend 
against comparing differences in healing rate as opposed 

Fig. 2 Estimated proportionate healing rate functions for the three best-fitting models using the ARANZ Automatic data. The lines show 
the estimated function for treatment and control groups with 95% credible intervals, the points are the data from the study

Fig. 3 Estimated mean difference in ulcer area and 95% credible intervals derived from the three best-fitting models for all three sets of outcome 
data
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to healing area for two reasons: differences in rates are 
hard to interpret clinically, mean differences in healing 
rate are complex to estimate given the need to average the 
first derivative with respect to time over the course of the 
trial. Despite these differences, at the time the trial report 
concluded there was little evidence of effectiveness of the 
intervention, but that there may be a small benefit. The 
new results we show here would suggest that even that 
conclusion may be too strong given how much it depends 
on specific assumptions about the healing process.

Model-based analyses can provide a principled way of 
combining large amounts of data from across the course of 
a trial. However, one must be careful not to allow the con-
clusions to depend heavily on modelling choices. A grow-
ing body of work discusses principled statistical “workflow” 
[19], a major component of which is model selection. For 
wound healing there are multiple plausible models: model 
comparison in terms of goodness of fit can be included as 
part of a trial protocol, which provides an opportunity to 
estimate a wide range of measures of effectiveness.

Abbreviation
RCT   Randomised controlled trial
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