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Abstract
Background The prognosis, recurrence rates, and secondary prevention strategies varied significantly among 
different subtypes of acute ischemic stroke (AIS). Machine learning (ML) techniques can uncover intricate, non-linear 
relationships within medical data, enabling the identification of factors associated with etiological classification. 
However, there is currently a lack of research utilizing ML algorithms for predicting AIS etiology.

Objective We aimed to use interpretable ML algorithms to develop AIS etiology prediction models, identify critical 
factors in etiology classification, and enhance existing clinical categorization.

Methods This study involved patients with the Third China National Stroke Registry (CNSR-III). Nine models, 
which included Natural Gradient Boosting (NGBoost), Categorical Boosting (CatBoost), Extreme Gradient Boosting 
(XGBoost), Random Forest (RF), Light Gradient Boosting Machine (LGBM), Gradient Boosting Decision Tree (GBDT), 
Adaptive Boosting (AdaBoost), Support Vector Machine (SVM), and logistic regression (LR), were employed to predict 
large artery atherosclerosis (LAA), small vessel occlusion (SVO), and cardioembolism (CE) using an 80:20 randomly 
split training and test set. We designed an SFS-XGB with 10-fold cross-validation for feature selection. The primary 
evaluation metrics for the models included the area under the receiver operating characteristic curve (AUC) for 
discrimination and the Brier score (or calibration plots) for calibration.

Results A total of 5,213 patients were included, comprising 2,471 (47.4%) with LAA, 2,153 (41.3%) with SVO, and 589 
(11.3%) with CE. In both LAA and SVO models, the AUC values of the ML models were significantly higher than that of 
the LR model (P < 0.001). The optimal model for predicting SVO (AUC [RF model] = 0.932) outperformed the optimal 
LAA model (AUC [NGB model] = 0.917) and the optimal CE model (AUC [LGBM model] = 0.846). Each model displayed 
relatively satisfactory calibration. Further analysis showed that the optimal CE model could identify potential CE 
patients in the undetermined etiology (SUE) group, accounting for 1,900 out of 4,156 (45.7%).
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Introduction
Stroke is the second leading cause of global mortality and 
the primary contributor to both morbidity and disability 
in China. Acute ischemic stroke (AIS) represents a preva-
lent form of stroke [1–3]. Different subtypes of AIS have 
varying prognostic trajectories, recurrence patterns, and 
strategies for secondary prevention. Accurate identifica-
tion of AIS subtypes is pivotal for developing effective 
secondary prevention strategies and alleviating the bur-
den associated with AIS.

The most widely accepted AIS subtyping system is 
the Trial of ORG 10,172 in Acute Stroke Treatment 
(TOAST) classification scheme [4]. However, the initial 
assessment of AIS is often time-consuming and uncer-
tain, requiring expert reviewers to thoroughly interpret 
clinical indicators, conduct laboratory tests, and analyze 
electrocardiography and imaging results [5, 6]. This pro-
cess is highly dependent on the expertise and experience 
of the doctors [7, 8]. Despite rigorous training, physicians 
frequently encounter challenges in identifying AIS sub-
types. Reports also indicate that primary psychiatrists 
exhibit low accuracy in assessing AIS etiology due to the 
requirement for extensive experience accumulation [5, 
6, 9]. Therefore, it is crucial to develop rapid etiological 
classification prediction models that can accurately iden-
tify AIS subtypes during the acute stage after admission.

Recent advancements in machine learning (ML) appli-
cations across various healthcare domains have sparked 
innovations in developing novel ML-based etiological 
classification technologies [10, 11]. The non-parametric 
nature of ML and its ability to capture non-linear rela-
tionships make it well-suited for identifying AIS sub-
types, given the complex and non-normal nature of most 
medical data. Studies have demonstrated the potential of 
ML in this field. For instance, one study used ML algo-
rithms to automatically identify and quantify carotid 
artery plaques in MRI scans, achieving 91.41% accuracy 
in LAA classification using Random Forest (RF) [12]. 
Wang et al. developed a predictive model for patients 
with large vessel occlusion using an RF model, achieving 
an area under the receiver operating characteristic curve 
(AUC) of 0.831 [13]. This study concluded that ML out-
performed logistic regression (LR) in identifying patients 
with large vessel occlusion. Sun et al. employed vari-
ous ML algorithms to develop an etiological prediction 

model for large artery atherosclerosis (LAA) using 62 fea-
tures [14]. However, these studies have limitations such 
as small sample sizes, single-center retrospective designs, 
and poor interpretability.

To address these limitations, it is imperative to use large 
prospective cohort data and advanced ML algorithms to 
develop more accurate etiological prediction models with 
fewer predictive variables. This study aims to develop 
predictive models for LAA, small vessel occlusion (SVO), 
and cardiogenic embolism (CE) using interpretable ML 
algorithms based on high-quality, prospective cohort 
studies to provide explanations for predictive factors and 
complement existing etiological classifications.

Methods
Study design and participants
We extracted data from the Third China National Stroke 
Registry (CNSR-III), a large-scale nationwide prospec-
tive registry of acute ischemic cerebrovascular events 
in China. The study design and patient identification 
details for CNSR-III have been reported previously [2]. 
Imaging data were collected in the Digital Imaging and 
Communications in Medicine (DICOM) format on 
discs and interpreted by trained professional physicians. 
Stroke subtypes were classified into five major categories 
according to TOAST classification: LAA, SVO, CE, other 
determined etiology (SOE), and undetermined etiology 
(SUE) [4]. Additionally, our data included the Causative 
Classification System (CCS), which integrates etiological 
and phenotypic classifications [15].

A total of 44 biomarkers identified in this study were 
extracted from these samples. We excluded 4,190 patients 
without baseline plasma, serum, or imaging data and also 
excluded patients with SOE from the analysis. Ultimately, 
we enrolled 5,213 patients (including LAA, SVO, and CE) 
for the main study and included 4,156 SUE patients for 
subsequent analysis (Fig. 1).

Data information
Based on published literature and pathophysiological 
considerations, the candidate variables included in our 
study comprised demographic characteristics, medical 
history, family history, and imaging and laboratory data. 
Detailed information can be found in the supplementary 
materials (Table S1).

Conclusions The ML algorithm effectively classified patients with LAA, SVO, and CE, demonstrating superior 
classification performance compared to the LR model. The optimal ML model can identify potential CE patients 
among SUE patients. These newly identified predictive factors may complement the existing etiological classification 
system, enabling clinicians to promptly categorize stroke patients’ etiology and initiate optimal strategies for 
secondary prevention.

Keywords Acute ischemic stroke, Clinical prediction, Etiological classification, Prospective cohort study, Machine 
learning
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ML algorithms
In this study, we developed and compared eight ML pre-
dictive models to assess their performance against the LR 
model. The models included Natural Gradient Boosting 
(NGBoost [NGB]) [16], Light Gradient Boosting Machine 
(LGBM) [17], Categorical Boosting (CatBoost [CAT]) 
[18], Extreme Gradient Boosting (XGBoost [XGB]) [19], 
Gradient Boosting Decision Tree (GBDT) [20, 21], Ran-
dom Forest (RF) [22, 23], Adaptive Boosting (AdaBoost 
[Ada]) [24, 25], and Support Vector Machine (SVM) 
[26]. The dataset was randomly divided into a training 
set (80%) and a testing set (20%). We used 10-fold cross-
validation for parameter optimization in the training set. 
Details of the parameters for different algorithms can be 
found in the supplementary materials (Table S6).

(1) NGB: NGB is a novel algorithm for regression 
prediction tasks. It extends conventional gradient 
boosting algorithms by incorporating natural 
gradients to optimize model parameters, enhancing 
its ability to adapt to the probability distribution 
characteristics of the data. The primary objective of 
NGB is to directly model the predictive distribution, 
moving beyond mere predictions of expected values 
[16].

(2) LGBM: LGBM is a robust gradient-boosting 
framework known for its computational efficiency. 
Compared to traditional gradient-boosting decision 

tree algorithms, LGBM offers faster training speeds 
and lower memory consumption [17].

(3) CAT: CAT is an innovative ordered gradient 
boosting algorithm that utilizes ordered target-based 
statistics to handle categorical features and employs 
permutation strategies to prevent prediction shifts 
[18].

(4) XGB: XGB is a robust ML algorithm used for 
classification and regression problems. It enhances 
gradient-boosting trees by combining multiple 
decision trees to improve predictive capabilities [19].

(5) GBDT: GBDT employs the gradient descent method 
to reduce error. This model can automatically 
capture interactions between features without the 
need for manually specifying interaction terms and is 
relatively robust to outliers and noisy data [20].

(6) RF: RF is an ensemble supervised learning method 
consisting of multiple decision trees, each trained 
on different subsets of the data. The results from 
each tree are averaged, which reduces variance and 
improves predictive performance [22].

(7) Ada: Ada is an iterative ensemble learning method. 
Its core idea is to combine multiple weak learners, 
typically weak classifiers like decision trees or Naive 
Bayes, to create a strong learner [24].

(8) SVM: SVM is a robust algorithm used for 
classification tasks. It finds the optimal hyperplane 
that maximizes the margin between classes, 

Fig. 1 Study flowchart
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ensuring effective separation of data points. SVM is 
particularly effective in high-dimensional spaces and 
can handle non-linear classification using various 
kernel functions [26].

Features selections
We employed our custom-designed Sequential Forward 
Selection with XGB (SFS-XGB), utilizing 10-fold cross-
validation to maximize performance. Within the train-
ing set, we implemented 10-fold cross-validation with 
SFS, varying the parameter k from 3 to 10. The optimal 
feature set was evaluated based on AUC values. From 
the SFS-XGB results, we identified the top 10 variables 
as candidates. Our objective was to pinpoint the optimal 
feature set with the highest AUC values while minimiz-
ing the number of variables. This approach was applied 
separately to identify the best predictive feature subsets 
for LAA, SVO, and CE. Notably, to ensure specificity in 
CE models—especially concerning conditions like atrial 
fibrillation (AF)—we excluded medical histories of AF 
and heart valve disease (HVD) during feature selection 
for CE models.

Data preprocessing
For data preprocessing, we employed multiple imputa-
tions to complete missing values in continuous variables 
from laboratory data, while categorical variables were 
imputed using the mode. The distribution of laboratory 
data was evaluated both before and after imputation, 
with detailed statistics provided in Table S2.

To standardize laboratory data, we utilized MinMax-
Scaler, which linearly transformed the features, scaling 
them to fit within the [0, 1] range.

Addressing the imbalance in our dataset, particularly 
for the classification of CE against other categories (LAA 
and SVO), where the sample ratio was 589:4,624 = 1:7.893, 
indicating significant class imbalance, we applied random 
undersampling to the training set using the imblearn 
library. The sampling strategy was set to achieve a bal-
anced ratio, specifically 0.5.

Subsequent analysis
In our subsequent analysis, we divided it into two parts: 
1) We utilized our best models for LAA, SVO, and CE to 
identify potential patients within the SUE group. Using 
an 80% probability cutoff, patients below this thresh-
old were categorized as UND, while those above were 
selected. The group with the highest probability was con-
sidered the final prediction group.2) We extended our 
analysis by applying the LAA, SVO, and CE models to 
further study the CCS subtypes. Based on their AUC per-
formance, we assigned weights ranging from 0 to 1 to the 
top four models in each etiology prediction category. ML 

scores were calculated by multiplying these weights by a 
total score of 12, as detailed in Table S10. In cases where 
a model was duplicated, scores were summed. By com-
bining predictors from LAA, SVO, and CE, we created a 
comprehensive set of predictors.

Definitions of metrics
We evaluated our models’ performance using discrimi-
nation and calibration as primary measures. Discrimina-
tion, measured by the AUC, indicates the model’s ability 
to distinguish, with higher values indicating better per-
formance. Calibration was assessed using the Brier score, 
which ranges from 0 to 1, with a lower score indicating 
better calibration [27]. Calibration plots were also uti-
lized for visual assessment.

Additional metrics used in this study included accu-
racy, sensitivity, specificity, Youden’s index, and F1-score. 
These metrics utilize True Positives (TP), True Negatives 
(TN), False Positives (FP), and False Negatives (FN) to 
describe correct and incorrect predictions of unknown 
etiology types. The calculations for these measures were 
as follows:

 accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

 sensitivity = TP/(TP + FN) (2)

 specificity = TN/(TN + FP)  (3)

 Youden′ s index = sensitivity + specificity − 1 (4)

 F1 score = 2 (precision*sensitivity) /(precision + sensitivity) (5)

Statistical analysis
Baseline characteristics were presented using means 
and standard deviations or medians and interquartile 
ranges for continuous variables, and frequencies and 
percentages for categorical variables. The chi-square 
test or Fisher’s exact test was used to compare baseline 
characteristics among categorical variables, while analy-
sis of variance (ANOVA) or the Kruskal-Wallis test was 
employed for continuous variables. Differences in AUC 
values among various models were assessed using the 
DeLong test [28], and model interpretations were facili-
tated using SHapley Additive exPlanations (SHAP) [29]. 
The suitability of ML research was evaluated based on 
TRIPOD and PROBAST guidelines [30, 31]. Data analy-
sis was performed using SAS software (version 9.4) and 
Python (version 3.9.7). All comparisons were two-sided, 
with statistical significance defined as P < 0.05.
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Results
Baseline characteristics
From an initial cohort of 15,166 patients with AIS or 
transient ischaemic attack (TIA), 4,190 patients with-
out serum, plasma, or imaging data were excluded, leav-
ing 9,485 patients for analysis (Fig.  1). Among these, 
5,213 patients diagnosed with LAA, SVO, and CE were 
included. The distribution among these groups was as 
follows: 47.4% (n = 2,471) were LAA, 41.3% (n = 2,153) 
were SVO, and 11.3% (n = 589) were CE. The average age 
was 62.9 ± 11.1 years, with 30.0% (n = 1,563) females. The 
median (IQR) admission NIHSS score was 3.0 (2.0–6.0). 
The most prevalent medical history was hypertension 
(64.8%, n = 3,380), followed by diabetes (24.4%, n = 1,273) 
and prior stroke (23.4%, n = 1,218). More than half of 
the patients presented with a single infarction (51.7%, 
n = 2,697) or anterior circulation infarction (56.6%, 
n = 2,951). Demographic details for the LAA, SVO, and 
CE groups can be found in Table S1.

Feature selection of LAA, SVO, and CE models
The dataset was randomly divided into training and test-
ing sets at an 80:20 ratio. The training set initially com-
prised 70 variables from Table S1. As shown in Table S2, 
there was no statistically significant difference between 
the data before and after multiple imputation of missing 
values (P > 0.1).

Feature selection was exclusively conducted in the 
training set, and the process is detailed in Fig.  2 and 
Tables S3-S5. For the LAA models, seven features were 
selected: number of acute infarctions, history of AF, 
blood glucose level, age, longitude, admission NIHSS 
score, and total cholesterol (CHOL). The SVO models 
utilized ten variables: age, number of acute infarctions, 
history of AF, infarction circulation, admission NIHSS 
score, C-reactive protein (hs-CRP), absolute lymphocyte 
count (LYM), low-density lipoprotein (LDL-C), smoking 
history, and history of diabetes. In CE models, AF and 
the history of HVD demonstrated strong discriminatory 
power (Figure S1). Optimal performance for CE models 
was achieved with six features: history of heart disease 

Fig. 2 Feature selection plots of LAA, SVO and CE models (in the training set). A, the Feature selection diagram of the LAA etiology classification predic-
tion models; B, the Feature selection diagram of the SVO etiology classification prediction models; C, the Feature selection diagram of the CE etiology 
classification prediction models
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(HD), age, history of coronary heart disease (CHD), 
direct bilirubin (DBIL), adiponectin, and international 
normalized ratio (INR).

Model construction and evaluation
In the training set, we optimized parameters for con-
structing nine prediction models, detailed in Table S6. 
Table 1 was presented the performance metrics for each 
model evaluated on the test set. Among the nine models, 
the ML models outperformed the LR model. Specifically, 
the NGB model excelled in predicting LAA, while the 
RF model performed best in predicting SVO. Addition-
ally, the LGBM model demonstrated superior efficacy in 
predicting CE. The AUC values of ML models for LAA 
and SVO predictions were significantly better than those 
of the LR model according to Delong’s test results with a 
p-value less than 0.001. For CE predictions, although not 
reaching statistical significance based on Delong’s test 

results with a p-value greater than 0.05, the AUC per-
formance of LGBM, XGB, GBDT, CAT, and NGB mod-
els surpassed the LR model. The ROC curves presented 
in Fig. 3 illustrate the performance of prediction models 
for LAA, SVO, and CE, respectively. Among them, SVO 
models exhibited superior performance followed by LAA 
models and then CE models. All these predictive models 
demonstrated excellent calibration, as evidenced by the 
calibration curves shown in Fig. 4 and Figures S8-S10.

Visualization of feature importance
SHAP was employed to illustrate our LAA, SVO, and 
CE models (Fig.  5). This plot visualized the relationship 
between feature values and SHAP values in the test set, 
highlighting higher SHAP values as indicators of greater 
influence on classification under each etiology. Depen-
dence plots (Figure S2-S4) further elucidated the impact 

Table 1 Comparative analysis results of nine etiology prediction models (in the test set)
Models AUC Accuracy Sensitivity Specificity F1 score Youden’s index Brier score
LAA
NGB 0.917 0.881 0.789 0.964 0.863 0.753 0.096
RF 0.916 0.881 0.789 0.964 0.863 0.753 0.112
CAT 0.913 0.881 0.789 0.964 0.863 0.753 0.097
LGBM 0.913 0.881 0.789 0.964 0.863 0.753 0.097
XGB 0.912 0.881 0.789 0.964 0.863 0.753 0.098
Ada 0.912 0.880 0.796 0.956 0.863 0.752 0.170
GBDT 0.910 0.878 0.789 0.958 0.860 0.748 0.099
SVM 0.897 0.882 0.796 0.960 0.865 0.755 0.098
LR 0.841 0.849 0.713 0.973 0.818 0.68 0.151
SVO
RF 0.932 0.892 0.988 0.824 0.883 0.812 0.110
LGBM 0.930 0.894 0.995 0.822 0.885 0.817 0.083
GBDT 0.930 0.882 0.956 0.830 0.870 0.786 0.086
NGB 0.929 0.893 0.995 0.820 0.885 0.816 0.084
XGB 0.929 0.890 0.984 0.824 0.881 0.807 0.085
CAT 0.928 0.895 0.993 0.825 0.886 0.818 0.084
Ada 0.924 0.882 0.956 0.830 0.870 0.786 0.151
SVM 0.900 0.891 0.981 0.827 0.881 0.808 0.091
LR 0.835 0.775 0.763 0.783 0.737 0.546 0.152
CE
LGBM 0.846 0.895 0.576 0.935 0.553 0.511 0.091
XGB 0.846 0.890 0.585 0.929 0.545 0.513 0.093
GBDT 0.845 0.887 0.568 0.928 0.532 0.495 0.094
CAT 0.844 0.899 0.559 0.943 0.557 0.502 0.092
NGB 0.842 0.895 0.559 0.937 0.545 0.497 0.089
LR 0.842 0.904 0.559 0.948 0.569 0.507 0.090
RF 0.839 0.897 0.559 0.941 0.552 0.500 0.094
Ada 0.832 0.877 0.585 0.915 0.519 0.499 0.181
SVM 0.780 0.893 0.492 0.944 0.509 0.435 0.103
Abbreviations: AUC, area under the curve; LR, logistic regression; RF, random forests; XGB, extreme gradient boosting; NGB, Natural Gradient Boosting; LGBM, Light 
Gradient Boosting Machine; CAT, Categorical Boosting; GBDT, Gradient Boosting Decision Tree; Ada, Adaptive Boosting; SVM, Support Vector Machine

AUC [LAA-CAT] = 0.91324, AUC [LAA-LGBM] = 0.91308, AUC [LAA-XGB] = 0.91205, AUC [LAA-Ada] = 0.91196; AUC [SVO-LGBM] = 0.92992, AUC [SVO-GBDT] = 0.92953, 
AUC [SVO-NGB] = 0.92903, AUC [SVO-XGB] = 0.92864; AUC [CE-LGBM] = 0.84601, AUC [CE-XGB] = 0.84553, AUC [CE-NGB] = 0.84162, AUC [CE-LR] = 0.84150
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of the single feature on the output of the etiological clas-
sification models.

As shown in Fig. 5, the contributions of each predictor 
variable to LAA, SVO, and CE models were highlighted. 
The number of infarctions and history of AF were iden-
tified as the most significant variables in LAA and SVO 
models. Admission NIHSS score and age were found to 
be common predictors for both models. Optimal variable 
combinations for classifying LAA, SVO, and CE patients 

were illustrated in partial dependence plots (Figure 
S2-S4).

Subsequent analysis

(1) Additional analysis for SUE: A total of 4156 SUE 
patients were included (Fig. 1), with a mean age 
of 61.9 ± 11.4 years and 1369 females (32.9%). 
The distribution of different genders in SUE was 
presented in Table S8. The established optimal 

Fig. 3 ROC curves plots of LAA, SVO and CE models (in the test set). A, the ROC curves of the LAA etiology classification prediction models; B, the ROC 
curves of the SVO etiology classification prediction models; C, the ROC curves of the CE etiology classification prediction models
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LAA (NGB), SVO (RF), and CE (LGBM) models 
were utilized to identify potential LAA, SVO, or CE 
patients in SUE. Results indicated that 1900 (45.7%) 
potential CE patients could be identified in SUE, 
with 2256 SUE patients (UND) having a predicted 
probability below 80%. Detailed results can be 
found in Table S7 and Figure S5. We compared 1900 
potential CE and UND within SUE and observed 

statistically significant differences (P < 0.05) in several 
heart-related variables between these two groups 
(Table S9).

(2) Extended analysis for CCS: Out of 4,642 patients 
in the CCS classification, there were 2,163 LAA 
patients, 2,020 SVO patients, and 459 CE patients. 
In the test set, there were 433 LAA patients, 404 
SVO patients, and 92 CE patients. For CCS analysis, 

Fig. 5 SHAP summary plot of the LAA, SVO and CE models (in the test set). A, the SHAP summary plot of the LAA etiology classification prediction models; 
B, the SHAP summary plot of the CE etiology classification prediction models; C, the SHAP summary plot of the SVO etiology classification prediction 
models

 

Fig. 4 Calibration curves for the top four models in each etiology classification model (in the test set). A, the calibration curves of the LAA etiology clas-
sification prediction models; B, the calibration curves of the SVO etiology classification prediction models
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predictors such as age, smoking, admission NIHSS 
score, longitude, diabetes, AF, HD, CHD, infarction 
circulation, number of acute infarctions, blood 
glucose, INR, CHOL, LDL-C, hs-CRP, DBIL, 
Adiponectin, and LYM were used. Models were 
scored as follows: RF (18), LGBM (16.8), NGB (15.6), 
GBDT (10.2), CAT (4.92), and XGB (1.2) (Table S10). 
Subsequent analysis combined the top 2 models (RF, 
LGBM) with these 18 variables. In the test set, the 
RF model accurately predicted 392 LAA (90.5%), 72 
CE (78.3%), and 404 SVO (100.0%). LGBM correctly 
predicted 393 LAA (90.8%), 72 CE (78.3%), and 404 
SVO (100.0%). The highest accuracy in predicting 
SVO was demonstrated by ML models, followed by 
LAA and CE (Figure S6-S7).

Discussion
To our knowledge, this study was the first application 
of ML algorithms for classifying AIS etiology within a 
prospective high-quality Chinese AIS cohort. Notably, 
this study also marks the initial utilization of the NGB 
algorithm in this specific field. We comprehensively 
integrated clinical, imaging, and laboratory data to accu-
rately classify AIS subtypes. The ML algorithms success-
fully constructed predictive models for LAA, SVO, and 
CE, demonstrating robustness consistent with findings 
in other fields [10, 11, 13, 32, 33]. Among the developed 
models, the SVO model showed superior performance, 
followed by the LAA and CE models. It is worth noting 
that the top-performing models for etiological classifi-
cation were LAA-NGB, SVO-RF, and CE-LGBM. Our 
CE-LGBM model successfully identified 1,900 (45.7%) 
potential CE patients in SUE. Our study revealed the fol-
lowing clinical findings:

(1) Individuals aged 57–70 with multiple infarcts, high 
NIHSS scores (> 8), no history of AF, elevated blood 
glucose (> 6 mmol/L), and high CHOL levels (≥ 5 
mmol/L) in regions like Northeast China, North 
China, and East China were more likely to develop 
LAA than CE or SVO.

(2) Those without a history of AF, under 61 years old, 
with low NIHSS scores (< 7), a single infarct in one 
circulation (anterior or posterior), and smokers 
(maintaining low lymphocyte, hs-CRP, and LDL-C 
levels) were more likely to develop SVO instead of 
LAA or CE.

(3) Besides strong CE indicators like AF and HVD, older 
age (> 69 years), history of HD, impaired coagulation 
(INR > 1.15), no CHD history, and elevated DBIL 
(> 5µmol/L) and adiponectin (> 2.5 mg/ml) levels 
indicated a higher likelihood of developing CE rather 
than LAA or SVO.

LAA significantly contributes to disability and mortality 
in China [34], commonly associated with risk factors like 
high cholesterol, hypertension, smoking, diabetes, and 
older [35]. SVO results from small blood vessel occlu-
sion or narrowing, leading to limited blood supply to the 
brain. It typically presents mild symptoms like dizziness 
and limb numbness. Compared to LAA and CE, SVO has 
a better prognosis due to its limited impact on smaller 
brain areas [36]. CE is characterized by heart-related 
clots that travel to the brain, causing cerebral vascular 
embolism and subsequent ischemic injury. It is associ-
ated with conditions such as AF, rheumatic heart disease, 
and heart valve issues. CE has a less favorable progno-
sis and a higher disability rate compared to other stroke 
types. Accurate identification of CE is crucial for person-
alized treatment, often involving anticoagulant medica-
tions. This study attempted to identify additional factors 
to distinguish CE from other subtypes, utilizing interpre-
table ML models to aid clinical decision-making. There-
fore, this is one of the reasons why this study separately 
constructed three etiological prediction models of LAA, 
CE, and SVO.

Age, NIHSS score, AF, and CHD history were com-
mon factors influencing stroke classification [4]. It’s 
essential to note that a fasting blood glucose level below 
5.6 mmol/L was considered normal, but our study sug-
gests that LAA risk increases with blood glucose levels 
exceeding 6 mmol/L. Elevated blood glucose levels may 
contribute to LAA stroke risk through several mecha-
nisms: (1) The promotion of atherosclerosis occurs 
through the damage to arterial endothelial cells, inflam-
mation induction, and encouragement of cholesterol and 
lipid accumulation in arterial walls. This leads to plaque 
formation and narrowing of arteries; (2) hyperglycemia 
increases the risk of platelet aggregation and coagula-
tion, promoting thrombus formation and embolism in 
narrowed arteries, contributing to LAA; (3) high blood 
glucose levels affect arterial wall elasticity, inflammation, 
and oxidative stress, potentially damaging arterial endo-
thelial cells, accelerating atherosclerosis, and increasing 
LAA risk [37–39]. The NIHSS score provides valuable 
insights into the clinical symptoms and neurological con-
ditions of LAA and SVO, but it does not specifically indi-
cate the etiological subtype. Therefore, combining the 
NIHSS score with other clinical and imaging data is cru-
cial for a comprehensive evaluation of LAA. Individuals 
born in Northeast China, North China, and East China 
showed higher susceptibility to LAA compared to other 
subtypes. Various factors, such as dietary habits, natu-
ral environmental factors, and genetic influences, may 
have contributed to this heightened susceptibility. For 
instance, the prevalence of high-fat and high-salt diets in 
Northeast China could have elevated the risk of hyper-
tension and hyperlipidemia, potentially leading to arterial 
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wall damage and lipid deposition, thereby increasing the 
likelihood of atherosclerosis [40–43]. However, further 
research and validation are needed to fully understand 
the specific impact of different regions on stroke etiology 
classification.

To our knowledge, our study was the first to utilize 
ML in discovering adiponectin and DBIL as a potential 
novel biomarker associated with CE. Adiponectin was a 
peptide substance secreted from adipose tissue with anti-
inflammatory and anti-atherosclerotic effects [44]. Previ-
ous studies have linked it to various diseases, including 
energy metabolism [45], immune response, chronic 
inflammatory conditions [46], and atherosclerosis [47, 
48]. Low adiponectin levels may make individuals more 
susceptible to LAA rather than CE. Additionally, elevated 
adiponectin levels could serve as a biomarker for CE, 
indicating underlying biological mechanisms that war-
rant further investigation. Elevated DBIL levels are indic-
ative of liver and biliary system disorders. High DBIL 
levels have been associated with increased stroke sever-
ity and poorer prognosis [49]. However, the role of DBIL 
as a stroke risk factor or prognostic indicator remained 
uncertain due to potential confounding factors [50]. 
Further research is needed to establish the causal rela-
tionship between DBIL and CE. Elevated INR indicated 
prolonged coagulation time in patients, likely due to the 
frequent use of anticoagulant medications in individuals 
with CE, thus displaying this distinctive characteristic.

Our feature selection utilized SFS-XGB with 10-fold 
cross-validation, optimizing predictor selection based 
on AUC performance. This method effectively removed 
irrelevant features, reduced dimensionality, and 
enhanced model accuracy. Addressing the imbalance 
between CE and other stroke subtypes (LAA and SVO) 
through random undersampling ensured reliable model 
training, mitigating bias towards the majority class and 
improving prediction reliability. The existing reports and 
guidelines provide support for AF and HVD as high-risk 
cardiogenic sources of CE [4, 51–53], which aligns with 
our results (Table S1 and Fig. 1). To uncover other vari-
ables linked to CE etiology classification, a strategy was 
adopted that excluded atrial fibrillation and heart valve 
disease.

Among our LAA prediction models, NGB demon-
strated the highest performance (AUC = 0.917), closely 
followed by RF (AUC = 0.916). Importantly, all ML mod-
els significantly outperformed the LR model (P < 0.001). 
Notably, the NGB model exhibited superior calibration 
compared to RF (Brier score: NGB = 0.096, RF = 0.112), 
further validating its predictive accuracy. As far as we 
know, this study also represents the first attempt to inves-
tigate the use of the NGB model for predicting stroke 
etiological classification. NGB was developed by the ML 
team at Stanford in 2019; NGB is a boosting algorithm 

designed to provide probabilistic forecasts through a 
full probability distribution rather than point predic-
tions [16]. Here’s a detailed breakdown of the NGB algo-
rithm, including the mathematical formalisms: For many 
ML models, we seek to optimize the parameters θ  to 
minimise loss L (y, f (x; θ ))  where y  was the target and 
f (x; θ )  was the prediction. The gradient boosting algo-
rithm improved the model iteratively by fitting new base 
models to the negative gradient of the loss with respect 
to the current prediction. Instead of point predictions, 
consider a distribution Pθ (y|x)  parameterized by θ  to 
represent the prediction. The objective was to minimise 
the expected value of some scoring rule S (y, Pθ (y|x)). 
A common choice for S  was the negative log-likelihood: 
S (y, Pθ (y|x)) = −logPθ (y|x) . NGB generalises gradi-
ent boosting to parameterized probability distributions 
[16]. The updated to θ  were done using the natural gradi-
ent instead of the gradient. Given the scoring rule S , the 
steepest descent direction (natural gradient) was given 
by:

 g (θ ) = I−1 (θ ) ∇ θ S (y, Pθ (y|x))

where I (θ )  is the Fisher Information matrix.
NGB overcame the challenge of probabilistic predic-

tions with gradient boosting, showing high accuracy in 
predicting structured or tabular data and excelling in 
LAA etiology prediction. Despite its advantages, NGB 
did not guarantee superior performance in all scenar-
ios, with the RF model’s classification effect being only 
slightly lower (difference of 0.001). The RF model per-
formed best in predicting SVO (AUC = 0.932), closely 
followed by LGBM (AUC = 0.930). All ML models sig-
nificantly outperformed the LR model (P < 0.001). RF’s 
robustness in LAA and SVO models stemmed from con-
structing multiple decision trees based on Gini Impu-
rity or Information Gain, random sampling to prevent 
overfitting, and displaying good noise resistance and fast 
training speed.

LGBM showed the best predictive performance for 
CE models (AUC = 0.846). Known for its speed and suit-
ability for large-scale datasets, LGBM employs efficient 
strategies like leaf-wise tree growth and histogram-based 
training. Future improvements could involve integrat-
ing heart-related examination variables to enhance CE 
differentiation. Although our study did not fully utilize 
LGBM’s potential due to feature selection constraints, it 
holds promise for improved performance in larger datas-
ets. Additionally, excluding correlated factors like AF and 
HVD in the initial CE model might have affected overall 
performance compared to SVO and LAA models. Diag-
nosing CE is complex, requiring thorough cardiogenic 
source identification and high-risk factor consideration. 
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Subsequent research could explore LGBM further for 
enhanced results.

Our analysis identified 45.7% (1900) of SUE patients 
as potential CE patients (Table S7), showing significant 
differences in heart disease-related variables compared 
to the remaining UND group (P < 0.05, Table S9). Pre-
cise ML models effectively identified LAA, SVO, and CE 
patients among SUE, easing diagnostic challenges and 
improving treatment accuracy. We ranked RF, LGBM, 
NGB, GBDT, CAT, and XGB as top performers. RF and 
LGBM, particularly in SVO predictions, demonstrated 
high accuracy within the CCS system. This aligns with 
our initial models’ performance, indicating their robust-
ness. Regarding the selection of these three algorithms, 
we would like to offer the following recommendations:

(1) Each algorithm came with its own set of 
hyperparameters. Proper tuning was crucial for 
optimal performance. An improperly tuned NGB 
might underperform compared to a well-tuned 
LGBM or RF.

(2) RF combined predictions from multiple decision 
trees to produce a more robust and accurate 
outcome.

(3) NGB focused on probabilistic predictions and used 
natural gradients. If the problem did not require 
probabilistic forecasting, the added complexity might 
not be beneficial.

(4) LGBM was efficient and scalable, especially for large 
datasets. When dealing with substantial data, using 
LGBM is advisable.

(5) The choice of algorithm should be based on the 
nature of the data, the specific problem context, and 
thorough experimentation and validation.

Despite data normalization efforts, the SVM model 
underperformed in predicting LAA, SVO, and CE com-
pared to other ML models. SVM’s preference for limited 
samples and numerous features hindered its effective-
ness with our larger sample size. Additionally, SVM’s dif-
ficulty in finding suitable kernel functions and its focus 
on boundary data points resulted in lower AUC per-
formance, highlighting its limitations relative to other 
models.

Our ML models demonstrated exceptional predictive 
efficiency while maintaining precision. Given the simplic-
ity and accessibility of the variables used in this study’s 
prediction model, these three etiological prediction 
models can be easily integrated into web pages or clini-
cal decision support systems (CDSS) for practical appli-
cation. This will enable clinicians to efficiently classify 
patients’ etiological factors. By utilizing ML algorithms to 
identify new variables, we have filled gaps in existing clin-
ical knowledge regarding variable selection. We firmly 

believe that there is no universally superior method; the 
key lies in selecting the appropriate algorithm and vari-
ables for specific clinical challenges. Although using three 
etiological prediction models may seem more complex 
than using a single model in clinical practice, it is impor-
tant to note that core predictors differ among patients 
with different etiological subtypes. Therefore, segregating 
the prediction of these subtypes could lead to improved 
accuracy for each subtype. Additionally, our three predic-
tion models can also be employed to forecast potential 
LAA, SVO, and CE patients within the SUE population. 
The ability of our model to identify potential CE patients 
among those with SUE has significant implications in 
clinical practice as it addresses the challenge of delayed 
anticoagulation treatment due to ambiguous etiological 
diagnoses. In our subsequent analysis section, we found 
that the results of our LAA, SVO, and CE etiological pre-
diction models were in good agreement with actual clas-
sifications. Future studies seeking to establish a singular 
predictive model can reference our discovered predictor 
variables when building their models. Both the TOAST 
classification and our models provide valuable insights 
for clinicians, facilitating precise patient assessment. 
By integrating our models with guidelines and clinical 
expertise, clinicians can thoroughly evaluate patients and 
implement optimal preventive or intervention measures 
that ultimately improve patient prognosis.

However, this study had several limitations. Firstly, the 
predictors used to establish CE models had limited abil-
ity to identify CE patients (AUC ≤ 0.846). Future research 
should incorporate additional brain imaging, ECG, and 
echocardiographic data to uncover more relevant vari-
ables. Secondly, while ML algorithms, especially RF, 
LGBM, and NGB, showed high accuracy and AUC per-
formance in SVO and LAA models, further external vali-
dation is essential. Suitable external validation data were 
not available in our existing databases due to the origin 
of predictor variables from clinical, imaging, and labo-
ratory data. We plan to establish an appropriate cohort 
for external validation. Currently, we recommend apply-
ing the etiological prediction model to retrospective 
data while prospective prediction needs to be evalu-
ated. Thirdly, this analysis used multiple imputations to 
handle missing values. The majority of missing variables 
accounted for less than 5%, but we couldn’t confidently 
assert that variables with missing values exceeding 5% 
were randomly missing, as there was no direct method 
to test this [54]. Nonetheless, we minimized selection 
bias, and the data distribution after multiple imputations 
did not significantly differ from the distribution before 
imputations.
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Conclusions
In conclusion, our interpretable ML models, which com-
bine clinical, imaging, and lab data, successfully classify 
patients with LAA, SVO, and CE, outperforming tradi-
tional LR models. Additionally, our model can identify 
potential CE patients within the SUE group, supplement-
ing existing classifications. This potentially enables cli-
nicians to promptly categorize stroke patients based on 
their etiologies and initiate optimal prevention and treat-
ment strategies.
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