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Abstract 

Background  Precision medicine has led to the development of targeted treatment strategies tailored to individual 
patients based on their characteristics and disease manifestations. Although precision medicine often focuses 
on a single health outcome for individualized treatment decision rules (ITRs), relying only on a single outcome rather 
than all available outcomes information leads to suboptimal data usage when developing optimal ITRs.

Methods  To address this limitation, we propose a Bayesian multivariate hierarchical model that leverages the wealth 
of correlated health outcomes collected in clinical trials. The approach jointly models mixed types of correlated 
outcomes, facilitating the “borrowing of information” across the multivariate outcomes, and results in a more accurate 
estimation of heterogeneous treatment effects compared to using single regression models for each outcome. We 
develop a treatment benefit index, which quantifies the relative benefit of the experimental treatment over the con-
trol treatment, based on the proposed multivariate outcome model.

Results  We demonstrate the strengths of the proposed approach through extensive simulations and an application 
to an international Coronavirus Disease 2019 (COVID-19) treatment trial. Simulation results indicate that the proposed 
method reduces the occurrence of erroneous treatment decisions compared to a single regression model for a single 
health outcome. Additionally, the sensitivity analyses demonstrate the robustness of the model across various study 
scenarios. Application of the method to the COVID-19 trial exhibits improvements in estimating the individual-level 
treatment efficacy (indicated by narrower credible intervals for odds ratios) and optimal ITRs.

Conclusion  The study jointly models mixed types of outcomes in the context of developing ITRs. By considering 
multiple health outcomes, the proposed approach can advance the development of more effective and reliable 
personalized treatment.

Keywords  Individualized treatment decision rule, Precision medicine, Treatment benefit index model, Bayesian 
multivariate hierarchical model, COVID-19

Introduction
In recent years, the growing emphasis on tailoring treat-
ment strategies for patients according to their unique 
characteristics and disease manifestations has fueled a 
surge of interest among researchers and clinicians in the 
development of individualized treatment decision rules 
(ITRs) [1–12]. Methods for developing ITRs typically 
rely solely on a single health outcome, thus limiting the 
full exploitation of the available outcomes data, resulting 
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in suboptimal data usage for individualized treatment 
decision-making.

To address this issue, we capitalize on the wealth of 
correlated and clustered health outcomes collected in 
trials by utilizing multivariate models. Multivariate 
models have demonstrated significant improvements in 
estimation and prediction accuracy compared to their 
univariate counterparts [13–19]. Although correlated 
and clustered observations are often modeled within the 
frequentist paradigm by a marginal model via generalized 
estimating equations or a generalized linear mixed model 
[20], Bayesian methods can handle highly complex hier-
archical structures and efficiently estimate parameters 
via Markov Chain Monte Carlo sampling, making it an 
appealing strategy [21–23].

We propose a Bayesian multivariate hierarchical model 
for treatment effect heterogeneity to enable the “borrow-
ing of information” among multiple correlated mixed 
types of outcomes, resulting in a more accurate estima-
tion of treatment effects. Based on the proposed model, 
we employ a treatment benefit index [24, 25] to optimize 
ITRs.

Existing methods for ITRs in the presence of multiple 
outcomes have been proposed [26–36], including estima-
tion of composite outcomes [34, 35], estimating patients’ 
outcome preferences [31, 33, 37], “set-valued” approaches 
[27, 28] and constrained estimation [26, 30] that focuses 
on balancing competing multiple outcomes. However, 
the emphasis of this paper is different in that we focus on 
improving the estimation efficiency through building the 
connection between correlated mixed types of outcomes 
using a Bayesian hierarchical model. This strategy is par-
ticularly effective when there is reason to believe that 
the treatment exerts similar influences on the outcomes. 
By accommodating dependency in multiple correlated 
health outcomes, our approach improves the estimation 
of treatment effects at both the patient and outcome-
specific levels. Simulation results demonstrate the sub-
stantial gains in performance offered by the proposed 
hierarchical model. The method is applied to data from 
a clinical trial of COVID-19 convalescent plasma treat-
ment. In the Continuous Monitoring of Pooled Inter-
national Trials of Convalescent Plasma for COVID-19 
Hospitalized Patients (COMPILE) trial [38–40], multiple 
correlated health outcomes were collected, including the 
primary ordinal outcome measure [41] and several sec-
ondary outcomes. By providing improved estimations 
of heterogeneous treatment effects and more accurately 
quantified uncertainty measurements that reflect all the 
available information from multiple health outcomes, the 

proposed modeling approach offers researchers a tool 
that allows taking advantage of the availability of multi-
ple outcomes, in addition to patient characteristics, when 
optimizing treatment decisions for individual patients.

We organize the paper as follows. In “Methods”  sec-
tion, we present the Bayesian multivariate model for esti-
mating heterogeneous treatment effects and developing 
ITRs and discuss the reasoning behind the selection of 
prior distributions. We also describe the simulation setup 
used to compare the performance of the proposed mul-
tivariate model with a univariate model for a single out-
come, and sensitivity analyses to assess the robustness of 
the proposed model, as well as outlining an application to 
data from an international COVID-19 study, COMPILE. 
In “Results”  section, we present extensive simulation 
results, including comparative analysis and sensitiv-
ity analyses, and the results from applying the proposed 
multivariate model to the COMPILE study, demonstrat-
ing its ability to provide more accurate estimations of 
heterogeneous treatment effects, as represented by odds 
ratios (ORs) with narrower credible intervals (CrIs) 
reflecting available correlated outcomes information. In 
“Discussion and conclusions”  section, we provide a dis-
cussion on potential future applications of our work.

Methods
In this section, we present a Bayesian approach for 
modeling mixed types of outcomes within the expo-
nential family of distributions. Let Y i represent the vec-
tor of treatment outcomes of length d for the ith subject 
( i = 1, . . . , n ), where each element Y (k)

i  ( k = 1, . . . , d ) 
follows an exponential family distribution. Let 
ηi = (η

(1)
i , . . . , η

(d)
i )⊤ ∈ R

d , where η(k)i  is the canonical 
parameter associated with the assumed distribution of 
Y
(k)
i  . Additionally, we define φ = (φ(1), . . . ,φ(d))⊤ ∈ R

d , 
where φ(k) > 0 is an unknown dispersion parameter. 
We consider a vector of pre-treatment characteristics 
X i ∈ R

p and the treatment indicator variable Ai ∈ {0, 1}.
Conditional on ηi and φ , the d components of 

Y i = (Y
(1)
i , . . . ,Y

(d)
i )⊤ ∈ R
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1 , . . . ,Y
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where ak(·) , bk(·) , and ck(·) are the exponential family 
distribution-specific known functions for the kth out-
come Y (k)

i  , whereas η(k)i ∈ R and φ(k) > 0 are unknown 
quantities.

In Eq. (2), we relate the expected kth outcome with 
covariates X i and treatment assignment Ai , via a canoni-
cal parameter η(k)i  (defined below) and the corresponding 
canonical link function g (k)(·) (e.g., identity function for a 
continuous outcome, logit function for a binary outcome, 
and log function for a count outcome):

In model (2), τ (k) ∈ R is the outcome-specific intercept, 
m(k) ∈ R

p is the main effect of the pre-treatment character-
istics X i on the kth outcome, β(k)

0
∈ R is the main effect of 

the experimental treatment ( A = 1 ) (vs. control A = 0 ) 
on the kth outcome, and β(k) ∈ R

p is the A-by-X interac-
tion effect coefficient vector for the kth outcome.

For patients with pre-treatment characteristics x , the 
treatment-control effect contrast based on model (2) can 
be written as:

This treatment-control effect contrast is the primary 
focus in clinical trials. For example, if the outcome is 
binary and the function g (k)(.) is a logit link, β(k)

0 + x⊤β(k) 
corresponds to the effect of the experimental treatment 
(vs. control) on the kth outcome, as measured by the log 
odds ratio ( log OR ). Without loss of generality, let us 
assume that the first outcome ( k = 1 ) is the primary out-
come, in which a lower value of this outcome is prefer-
able. Then, a logOR < 0 signifies that the experimental 
treatment is expected to yield a more favorable primary 
outcome compared to the control treatment. Equation 
(3) indicates that the treatment-control effect contrast, 
e.g. log OR , depends solely on the treatment A’s main 
effect ( β(k)

0
 ) and the A-by-X interactions ( β(k) ), and does 

not depend on the X main effects ( m(k) in model (2)). The 
proposed Bayesian model’s objective is to efficiently esti-
mate the effect of treatment A and the A-by-X interaction 
effects on the primary outcome Y (1) , by “borrowing infor-
mation” from other correlated outcomes Y (k ′), k ′ > 1.

Individualized treatment decision rule
Let us use D to denote the collection of the observed 
data from a clinical trial. Our goal is to predict optimal 
treatments for future patients, taking into account their 

(2)
η
(k)
i = g (k)(E[Y

(k)
i |X i ,Ai]) = τ (k) + X⊤

i m
(k) + Ai(β

(k)
0

+ X⊤
i β

(k)).

(3)
g (k)(E(Y

(k)
i |X i = x,Ai = 1))− g (k)(E(Y

(k)
i |X i = x,Ai = 0)) = β

(k)
0

+ x⊤β(k)
.

pre-treatment characteristics. We define the treatment 
benefit index (TBI) for a patient with pre-treatment char-
acteristics x as the posterior probability that the treat-
ment-control contrast in Eq. (3) is less than 0:

representing the posterior probability that the experi-
mental treatment (A = 1) is more beneficial than the 
control treatment (A = 0) . The estimated optimal ITR, 
denoted as âopt : x �→ {0, 1} , is defined based on the TBI 
in Eq. (4):

where I(.) is the indicator function, and 0 < δ < 1 is a 
threshold probability to make treatment decisions. We 
set the threshold δ to 0.5 in this paper. If the TBI exceeds 
0.5, then the patient is recommended to receive the 
experimental treatment (i.e., âopt(x) = 1 ), as there is a 
more than 0.5 probability that the experimental treat-
ment is more beneficial than the control treatment.

Model and prior specification
In this section, we describe a framework for modeling 
mixed types of multivariate outcomes. The framework 
was motivated by the COMPILE study, in which we 
encountered the need to jointly model a primary ordinal 
outcome and binary outcomes. Although we demonstrate 
the applicability and utility of the proposed framework 
using ordinal and binary outcomes as an example, the 
framework is designed to be adaptable to other mixed 
outcome types.

To model the primary ordinal outcome with L(= 11) 
ordered levels of the study, a cumulative proportional 
odds model was determined to be the most appropri-
ate method [42]. Let Y (1) represent the L levels ordinal 
outcome, with level-specific probabilities P(Y (1)

i = y) = p
(1)
iy

 
for y = 0, . . . , L . The cumulative probabilities are  
modeled as logit(P(Y (1)

i ≥ y)) = τ
(1)
y + θ

(1)
i  , where τ (1)y  

(y = 1, . . . , L− 1 ) represent the level-specific intercepts 
subject to the monotonicity constraint of the cumulative 
logit model, and θ(1)i  is a linear predictor defined below. 
Logistic models are used to analyze the binary outcomes. 
Let Y (2), . . . ,Y (d) denote the d − 1 binary outcomes. 
Bernoulli distributions with probabilities P(Y (k)

i = 1) = p
(k)
i

 
(k = 2, . . . , d) are used, modeled as logit(p(k)i ) = τ (k) + θ

(k)
i

 , in 
which τ (k) are the intercepts and θ(k)i

 (k = 2, . . . , d) are the 
linear predictors defined below.

(4)TBI(x) = Pr(β
(1)
0 + x⊤β(1) < 0|D),

(5)âopt(x) = I(TBI(x) > δ),



Page 4 of 13Wu et al. BMC Medical Research Methodology          (2024) 24:218 

Outcome-specific treatment main effect β(k)
0  and 

interaction effect β(k) : To facilitate flexible information 
sharing of the coefficients across outcomes, we employ 
hierarchical shrinkage. The prior distribution assumes 
that each outcome-specific treatment main effect β(k)

0  
is centered around a pooled “treatment main effect” β∗

0 . 
The variation of each outcome-specific treatment main 
effect around the mean β∗

0 is represented by its standard 
deviation σβ0 . The outcome-specific interaction effect β(k)

j
 

( j = 1, . . . , p ) is distributed as Normal(µ = β∗
j , σ = σβj )

 , where 
β∗
j  denotes the pooled “interaction effect” across all d 

outcomes, and σβj controls the strength of information 
borrowing across the d outcomes. A large prior mean for 
σβj allows for greater variability, whereas a small value 
constrains the coefficients to remain closer to the pooled 
effect. In “ Simulation” section, we assigned a prior mean 
of 1 to σβj.

For the outcome-specific intercepts τ (k) , we use a 
tstudent distribution with 3 degrees of freedom ( σ = 8 ). 
This choice offers heavier tails compared to the Normal 
distribution ( σ = 8 ), ensuring the Hamiltonian Monte 
Carlo (HMC) sampling [43] to have adequate flexibility 
for exploring the sample space. In the case of covariates’ 
main effects m(k) , we use a diffuse prior, with the expec-
tation that the observed data will primarily determine the 
posterior distribution. Similarly, for the pooled treatment 
main effect and interaction effects across outcomes ( β∗

j  ), 
we adopt a diffuse prior. The Bayesian models were imple-
mented using Stan [43], which enables Bayesian inference 
based on HMC, with the No-U-Turn sampler [43].

Simulation
In this section, we present a comparative analysis of two 
Bayesian models for estimating heterogeneous treatment 
effects and ITRs. Specifically, we compared the perfor-
mance of the proposed multivariate model to that of a 
univariate model, which only relies on a single primary 
outcome. We also conducted sensitivity analyses to assess 
the robustness of the proposed model across different 
study scenarios.

(6)

Y
(1)
i ∼ Ordinal multinomial(pi), pi = {p

(1)
iy }L−1

y=0

Y
(k)
i ∼ Bernoulli(p

(k)
i ), k = 2, . . . , d

logit(P(Y
(1)
i ≥ y)) = τ (1)y + θ

(1)
i , y = 1, . . . ,L− 1

logit(P(Y
(k)
i = 1)) = τ (k) + θ

(k)
i , k = 2, . . . , d

θ
(k)
i = X⊤

i m
(k) + Aiβ

(k)
0 + AiX

⊤
i β

(k) , k = 1, . . . , d

m(k) ∼ MVN(µ = 0,� = 2.52Ip×p)

(β
(1)
j , . . . , β

(d)
j )⊤ ∼ MVN(µ = β∗

j 1d ,� = σ 2
βj
Id×d ), j = 0, . . . , p

σβj ∼ exponential(µ = 1)

β∗
j ∼ Normal(µ = 0, σ = 2.5)

τ (1)y ∼ tstudent(df = 3,µ = 0, σ = 8), y = 1, . . . ,L− 1

τ (k) ∼ tstudent(df = 3,µ = 0, σ = 8), k = 2, . . . , d.

Simulation setup and performance evaluation
We used the R package simstudy [44] to generate simu-
lated data sets. For a given training sample size n, we 
independently generated treatment indicators, denoted 
Ai ∈ {0, 1} , from the Bernoulli distribution with a prob-
ability of P(Ai = 1) = 0.5 . The covariates X i ∈ R

p com-
prised 3 independent binary variables generated from the 
Bernoulli distribution with probability P(Xi = 1) = 0.5 , 
and p− 3 independent continuous variables, drawn from 
the multivariate normal distribution with mean zero and 
unit variance. We consider p = 5 covariates. We gener-
ated a set of four outcomes (Y (1)

i ,Y
(2)
i ,Y

(3)
i ,Y

(4)
i ) , mimicking 

the outcomes collected from the COMPILE study. The 
variable Y (1)

i  follows an 11-level ordinal multinomial dis-
tribution, while Y (2)

i  , Y (3)
i  , and Y (4)

i  , representing the 3 
supplementary binary outcomes, are generated using Ber-
noulli distributions. The true parameter values used, with 
the notations adhering to model (6), for the data genera-
tion are as follow. The covariates’ main effect coefficients 
for each of the 4 outcomes are m(1) = [0.35,−0.40, 0.15, 0.20,−0.21]⊤ , 
m(2) = [0.40,−0.38, 0.13, 0.19,−0.22]⊤   , 
m(3) = [0.38,−0.39, 0.14, 0.18,−0.20]⊤ , m(4) = [0.42,−0.41, 0.16, 0.21,−0.19]⊤.

•	 Treatment’s main effect coefficient for each (the kth) 
outcome:

–	 β
(1)
0 = −0.05

–	 β
(2)
0 = −0.06

–	 β
(3)
0 = −0.03

–	 β
(4)
0 = −0.04

•	 A-by-X interaction effect coefficients for each (the 
kth) outcome:

–	 β(1) =
[
0.20 −0.10 0.10 0.05 −0.06

]⊤

–	 β(2) =
[
0.19 −0.11 0.09 0.04 −0.07

]⊤

–	 β(3) =
[
0.18 −0.12 0.11 0.06 −0.05

]⊤

–	 β(4) =
[
0.21 −0.09 0.12 0.07 −0.04

]⊤

As a comparison model for model (6), we employed a 
Bayesian univariate model (7) that only uses the single 
primary ordinal outcome, specified as follows:

(7)

Y
(1)
i ∼ Ordinal multinomial(pi), pi = {p

(1)
iy }L−1

y=0

logit(P(Y
(1)
i ≥ y)) = τ (1)y + θ

(1)
i

θ
(1)
i = X⊤

i m
(1) + Aiβ

(1)
0 + AiX

⊤
i β

(1)

m(1) ∼ MVN(µ = 0,� = 2.52Ip×p)

β0 ∼ Normal(µ = 0, σ = 2.5)

β(1) ∼ MVN(µ = 0,� = 2.52Ip×p)

τ (1)y ∼ tstudent(df = 3,µ = 0, σ = 8).
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As evaluation metrics for the performance of the 
models, we considered two criteria: 1) the proportion 
of correct decisions (PCD); and 2) the area under the 
receiver operating characteristic (ROC) curve (AUC). 
The PCD corresponds to the proportion of cases with 
âopt(xi) = aopt(xi) . Here, the true optimal ITR is defined 
as aopt (xi) = I(OR(xi) < 1) , in which OR(xi) = exp(β

(1)
0 + x⊤i β

(1)) 
where β(1)

0  and β(1) correspond to the true values used 
in the data generation process, and the estimated ITR 
âopt(xi) is specified in Eq. (5) with the threshold δ = 0.5 . 
Since we assumed (without loss of generality) a lower 
value of the outcome is desirable, an OR(xi) < 1 indi-
cates that the experimental treatment is expected to yield 
a more desirable outcome than the control treatment for 
subject i.

PCD is computed using a decision threshold δ = 0.5 as 
per Eq. (5). Another evaluation metric is the area under 
the curve (AUC), which does not rely on the selection of 
a specific decision threshold and accounts for the trade-
off between true positive rate (sensitivity) and false posi-
tive rate (1 - specificity) for various decision thresholds. 
AUC values range from 0 to 1, with a higher value indi-
cating a better classification performance [45]. To cal-
culate the AUC, we first train the TBI as defined in Eq. 
(4), and then evaluate the TBI on the test data and gener-
ate the ROC curve, considering every unique TBI value 
as a potential threshold; for each threshold, we compute 
âopt(x ) according to Eq. (5), and compare it with aopt(x ) 
to calculate the true positive and false positive rates. 
Then the auc function from the pROC package [46] is 
used to compute the AUC.

We conducted simulation for various training sample 
sizes, n ∈ {250, 500, 1000, 2000} , and a fixed test dataset 
size of 2000. For each n, we conducted 1000 simulations, 
with each simulation using 2000 HMC iterations for 
warm-up and retaining 10000 iterations for inference (all 
simulations in this paper used the same number of HMC 
iterations). The Stan code for the Bayesian multivariate 
hierarchical model is provided in Additional file 1.

Sensitivity analyses
Each patient’s individual-level treatment efficacy for a 
specific outcome can vary, making it logical to incorpo-
rate random effects into the data generation process. In 
this section, we conducted sensitivity analyses to assess 
the robustness of the models. To simulate various study 
scenarios, we introduce a modified data generation 
model that incorporates additional parameters, γi0 and Ŵi

:

(8)
θ
(k)
i = X⊤

i m
(k) + Ai(β

(k)
0 + γi0)+ AiX

⊤
i (β

(k) + Ŵi)

The γi0 indicates the random effect associated with 
treatment, and Ŵi indicates the random effect associ-
ated with A-by-X interaction. The element-wise stand-
ard deviation for both random effects is determined by 
σ . The true values of the other parameters follow the data 
generation process described in “Simulation setup and 
performance evaluation” section. We considered a range 
of values for σ ∈ {0.1, 0.2, 0.3} , as well as different train-
ing sample sizes n ∈ {250, 500, 1000, 2000} , with a fixed 
test dataset size of 2000. For each set of σ and n, we con-
ducted 1000 simulations. The PCD and AUC were used 
for model performance evaluation.

Application to data from a COVID‑19 randomized clinical 
trial
In this section, we apply the proposed Bayesian multivar-
iate model to data from n = 2341 patients in the COM-
PILE COVID-19 clinical trial, focusing on the COVID-19 
convalescent plasma (CCP) treatment for hospitalized 
COVID-19 patients not on mechanical ventilation at 
the time of randomization [38–40]. This study collected 
several mixed types of outcomes, including a primary 
outcome and supplementary/secondary outcomes. Park 
et al. [24] developed an ITR solely based on the primary 
ordinal outcome using a frequentist method. The current 
paper also focuses on the primary outcome. However, the 
proposed approach reduces the uncertainty associated 
with the estimation of heterogeneous treatment effects 
and ITRs by jointly modeling the mixed types of out-
comes using Bayesian techniques and “borrowing infor-
mation” across correlated outcomes.

The primary outcome is the World Health Organiza-
tion (WHO) 11-point clinical scale, measured at 14 ± 
1 day after randomization (hereafter, day 14), assess-
ing COVID-19 severity with values ranging from 0 (no 
infection) to 10 (death) [47]. To “borrow information” 
we employ binary outcomes collected in the COMPILE 
study, such as hospitalization, ventilation or worse, and 
death at 28 ± 2 days after randomization (hereafter, day 
28). We used the same set of pre-treatment characteris-
tics as in the ITR from Park et al. [24], which was selected 
via extensive cross-validation. The pre-treatment charac-
teristics are listed below.

•	 Pre-treatment characteristics in the treatment-by-X 
interaction effects term: WHO score at baseline 
(an ordinal variable represents hospitalized but no 
oxygen therapy required, hospitalized with oxygen 
required via mask or nasal prongs, and hospitalized 
with high-flow oxygen required); WHO score at 
baseline & Age ≥ 67 interaction; Indicator for blood 
type A or AB; Indicator for the presence of cardio-
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vascular disease; Indicator for comorbid diabetes 
mellitus & pulmonary disease.

•	 Pre-treatment characteristics in the main effects 
term: Age (mean (standard deviation) of 60.3 (15.2) 
years); Sex (35.7% were women); WHO score at base-
line; WHO score at baseline & Age interaction; Indi-
cator for blood type A or AB; Indicator for comorbid 
diabetes mellitus & cardiovascular disease interac-
tion; Indicator for comorbid diabetes mellitus & pul-
monary disease interaction; Duration of symptoms 
before randomization (a binary variable defined as 
0-6 days and ≥ 7 days); Quarter during which patient 
was enrolled (a categorical variable that represents 
Jan-March 2020, Apr-June 2020, July-Sept 2020, Oct-
Dec 2020, and Jan-March 2021); Indicator of treat-
ment (a binary variable with 1 for CCP treatment, 
and 0 for control treatment).

We evaluated the performance of the two models: the 
multivariate model (6) and the univariate model (7). As 
it is expected that the main effect of treatment ( β(k)

0  ) 
should not vary significantly across different outcomes 
and interaction effects ( β(k)

j  ) exhibit relatively small vari-
ation across outcomes, we employed an informative prior 
σβj ∼ exponential(µ = 0.3) on the hierarchically defined 
standard deviation parameter σβj.

We assessed the goodness-of-fit for both the Bayesian 
multivariate and univariate models, Models (6) and (7), 
using posterior predictive checking, a method that evalu-
ates the model’s ability to generate replicated data that 
closely resembles the observed data [40, 48–50].

Results
In this section, we present simulation results of two 
Bayesian models for estimating heterogeneous treat-
ment effects and ITRs. We also present sensitivity analy-
ses results for evaluating the robustness of the proposed 
model across different study scenarios. We then applied 
the proposed model to an international COVID-19 clini-
cal trial and examined the goodness-of-fit.

Simulation results
The plot in Fig.  1 presents a comparison of the perfor-
mance of the multivariate model (6) and the univariate 
model (7) based on their PCD and AUC values in the test 
sets. The simulation setup was described in “Simulation 
setup and performance evaluation”  section. The perfor-
mance is evaluated across varying training set sizes, rep-
resented by the number of subjects in the training set on 
the x-axis. The y-axis displays the PCD or AUC values, 
with higher values indicating better model performance. 
The figure illustrates that the multivariate model (in 
orange) generally exhibits higher PCD and AUC values 

Fig. 1  Boxplots of the proportion of correct decisions (PCD) and area under the curve (AUC) in the test sets, comparing the multivariate 
(orange) and univariate (blue) models across different training set sizes (as indicated in the x-axis). Each box shows the interquartile range (IQR), 
with the horizontal line inside the box representing the median PCD and AUC value. The whiskers extend to the minimum and maximum PCD 
and AUC values within 1.5 times the IQR. Outliers are represented by small cross symbols
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compared to the univariate model (in blue) across all 
training set sizes, suggesting that the proposed multivari-
ate model outperforms its univariate counterpart with 
respect to making correct treatment decisions for sub-
jects in the test set.

In addition to achieving higher PCD and AUC com-
pared to the univariate model (7), the proposed multivari-
ate model (6) also reduces the uncertainty associated with 
the estimation of treatment effects. To evaluate this, we 
conducted 1000 simulations in each study scenario and 
computed the following metrics: (a) the average length of 
the 95% credible intervals (CrIs) for β(1)

0  across simulations; 
(b) the coverage rate, which is the percentage of simula-
tions where the true value of the treatment effect ( β(1)

0  ) falls 
within the estimated 95% CrIs; and (c) the mean squared 
error (MSE) between the estimated posterior median of the 
treatment effect and the true value. The simulation results, 
summarized in Additional file 2, indicate that the proposed 
multivariate approach provides narrower credible inter-
vals and lower MSE, while maintaining high coverage rate 
greater than 95%.

Some experts believe that the true optimal ITR should 
be based on potential outcomes. In light of this perspec-
tive, we also provide a comparison of the performance of 
the Bayesian multivariate and univariate models utiliz-
ing the new potential outcomes-based ITR in Additional 
file 3. Despite the less remarkable improvement in PCD 

and AUC, the proposed model (6) still outperforms the 
univariate model (7).

Sensitivity analyses results
The PCD and AUC for sensitivity analyses, detailed in 
“Sensitivity analyses”  section, are presented in Fig. 2. In 
the plot, the y-axis represents PCD or AUC, while the 
x-axis displays the number of subjects in the training 
set. The multivariate model (6) consistently outperforms 
the univariate model (7). However, when σ = 0.2 and 0.3, 
the superiority of the multivariate model becomes less 
pronounced. This is because the true values of the main 
effect of treatment and fixed effects of the interaction 
terms are all ≤ 0.21, and σ = 0.2 and 0.3 already constitute 
relatively large values of random individual effects. Even 
with such a relatively large σ value, the proposed model 
(6) still outperforms the univariate model (7), demon-
strating the robustness of our approach. Using the same 
setting of sensitivity analyses, we also provide a com-
parison of the performance of multivariate model (6) and 
univariate model (7) utilizing the potential outcomes-
based ITR in Additional file 4.

It is crucial to identify prior distribution assumptions. 
We conducted extensive simulations under different 
study composition scenarios to select prior distribu-
tions. We settled on a final set of prior distributions that 
consistently provided the highest PCD, AUC, and the 

Fig. 2  Boxplots of proportion of correct decisions (PCD) and area under the curve (AUC) in the test sets, comparing the multivariate (orange) 
and univariate (blue) models across different training set sizes (as indicated in the x-axis) and different standard deviations (SDs) of random effects. 
Three different levels of SD for random effects are considered in the data generation process: SD=0.1, SD=0.2, and SD=0.3
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fewest divergent transitions [51, 52] across a range of 
study scenarios. Given the extensive range of prior dis-
tributions we tested, we used one different set of prior 
distributions as an example to illustrate the robustness 
of our model’s results. This analysis can be found in 
Additional file 5.

Application results for a COVID‑19 randomized clinical trial
Our analysis used complete cases, yielding a final sample 
of 2287 patients (the number of patients at different clini-
cal stages of COVID-19 measured on the WHO 11-point 
scale at day 14 by treatment group is provided in Addi-
tional file 6).

In Fig.  3, we presented the posterior distributions 
(medians and 95% CrIs) of coefficients ( β(1)

0  and β(1) ) for 
treatment and pre-treatment patient characteristics asso-
ciated with the TBI for the primary ordinal outcome from 
both models, (6) and (7). Table 1 presents the posterior 
distributions of coefficients for treatment and pre-treat-
ment characteristics for all ordinal and binary outcomes.

Figure  3 indicates that the multivariate model offers 
better precision when estimating coefficients for A-by-
Xinteraction effect and treatment’s main effect in com-
parison to the univariate model, as reflected in narrower 
95% CrIs, and most of the coefficients’ 95% CrIs do not 
include zero, unlike those of the univariate model. In 
contrast, for the univariate model, the 95% CrIs for 
almost all coefficients include zero. If the 95% CrI for the 
main treatment effect coefficient includes zero, we can-
not draw a definitive conclusion about whether patients 
with the reference level of pre-treatment characteristics 
benefit more from CCP than from the control treatment. 
Similarly, if the 95% CrI for an A-by-X interaction effect 
coefficient includes zero, we cannot conclude whether 

patients with this specific pre-treatment characteristic 
benefit more from CCP than those without such pre-
treatment characteristic.

As shown in Table  1, the estimated index coefficient 
for CCP treatment using the proposed multivariate 
model is −0.39 . For patients with the reference level of 
pre-treatment characteristics, the CCP treatment effect 
can be measured by an OR with a posterior median of 
exp(−0.39) = 0.68 < 1 . This OR less than 1 indicates that 
the CCP treatment decreases the odds of experiencing 
a worse outcome compared to the control treatment for 
these patients, when the patient characteristics are set at 
their reference levels. For patients who have cardiovas-
cular disease, in addition to the reference levels of the 
other pre-treatment characteristics, the CCP treatment 
effect is more effective. Specifically, in the presence of 
cardiovascular disease, CCP reduces the odds of a worse 
outcome by a multiplicative factor of exp(−0.32) = 0.73 , 
corresponding to an additional 27% reduction in the 
odds of a worse outcome when treated with CCP com-
pared to patients without cardiovascular disease. The 
findings from the multivariate model are consistent with 
the results reported by Park et al. [24]: patients with pre-
existing conditions, such as cardiovascular disease (the 
posterior median of the multiplicative change in treat-
ment effect OR = exp(−0.32) = 0.73 < 1 ), diabetes & 
pulmonary ( exp(−0.51) = 0.60 < 1 ), blood type A or 
AB ( exp(−0.37) = 0.69 < 1 ), and those at an early stage 
of COVID-19, represented by the indicator of hospital-
ized but no oxygen therapy required, are expected to 
benefit from CCP treatment significantly more than 
those without the specified pre-existing conditions and/
or at later stage of COVID-19 ( exp(0.54) = 1.72 > 1 
and exp(0.67) = 1.95 > 1 ). In addition, the proposed 

Fig. 3  Comparison of univariate and multivariate models with respect to posterior distributions of coefficients that consistute the treatment 
benefit index (TBI), summarized by the posterior medians and 95% credible intervals (CrIs)
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Fig. 4  Posterior distributions of the treatment effect Odds Ratios (ORs) as a function of the treatment benefit index (TBI) derived 
from the multivariate model (left plot) and univariate model (right plot). In each plot, the solid curve represents the posterior mean of OR for 
the primary ordinal outcome, and the colored band represents the 95% credible interval (CrI) of this OR curve. The dashed curves in (a) correspond 
to the posterior means of the ORs for three supplementary binary outcomes. These supplementary outcomes are as follow: (1) the binary outcome 
of hospitalization at day 28, (2) the binary outcome of ventilation or worse at day 28, and (3) the binary outcome of mortality at day 28. The locally 
weighted smoothing (loess) method is applied to illustrate the overall trends. Rug plots at the bottom of each plot represent the data density 
along the x-axis. An OR for the active treatment (CCP) efficacy below 1 (dashed grey horizontal line) indicates a more favorable outcome with CCP 
treatment compared to the control treatment

Table 1  The estimated treatment benefit index (TBI) coefficients (Posterior Median [95% credible intervals]) for treatment and 
pre-treatment characteristics, under univariate and multivariate models (for all 4 outcomes). A positive coefficient suggests that the 
variable associated with this coefficient increases the odds of a higher category (i.e., worse) outcome. Conversely, a negative coefficient 
indicates that variable linked with this coefficient decrease the odds of a higher category (i.e., worse) outcome. The coefficient 
for COVID-19 convalescent plasma (CCP) treatment is negative, it indicates that patients with the reference level of pre-treatment 
conditions benefit more from CCP than from the control treatment. When the coefficient for a specific pre-treatment condition is 
negative, it means that (adjusting for the impact of the other conditions) patients with this specific pre-treatment condition benefit 
more from CCP in comparison to the CCP benefit for those without this pre-treatment condition

* The reference level: hospitalized but no oxygen therapy required

 The primary ordinal outcome is the World Health Organization (WHO) 11-point clinical on day 14

 The supplementary binary outcomes are as follows: (1) hospitalization at day 28, (2) the need for ventilation or worse at day 28, (3) mortality at day 28

Treatment and pre-
treatment characteristics

Index coefficients (Posterior Median [95%CrI])

Univariate model Multivariate model

Primary ordinal outcome Primary ordinal outcome Binary outcome 1 Binary outcome 2 Binary outcome 3

Diabetes & Pulmonary -0.37 [-1.11, 0.37] -0.51 [-1.05, 0.06] -0.51 [-1.10, 0.18] -0.61 [-1.37, 0.00] -0.65 [-1.56, -0.06]

Cardiovascular Disease -0.26 [-0.51, -0.01] -0.32 [-0.51, -0.11] -0.35 [-0.59, -0.11] -0.37 [-0.67, -0.15] -0.37 [-0.68, -0.14]

Blood Type A or AB -0.28 [-0.58, 0.03] -0.37 [-0.62, -0.09] -0.47 [-0.82, -0.19] -0.49 [-0.89, -0.20] -0.43 [-0.78, -0.12]

Oxygen by high flowa & 
Age≥67

0.31 [-0.28, 0.91] 0.41 [-0.01, 0.81] 0.46 [0.03, 0.93] 0.46 [0.03, 0.92] 0.43 [-0.05, 0.87]

Oxygen by mask or nasal 
prongsa & Age≥67

0.12 [-0.22, 0.45] 0.05 [-0.22, 0.31] 0.06 [-0.24, 0.40] -0.02 [-0.42, 0.28] -0.01 [-0.42, 0.29]

Oxygen by high flowa 0.24 [-0.31, 0.80] 0.54 [0.12, 0.94] 0.56 [0.12, 1.00] 0.59 [0.15, 1.04] 0.56 [0.11, 1.01]

Oxygen by mask or nasal 
prongsa

0.32 [-0.09, 0.72] 0.67 [0.34, 0.99] 0.75 [0.40, 1.16] 0.75 [0.37, 1.16] 0.71 [0.32, 1.11]

COVID-19 Convalescent 
Plasma (CCP) Treatment

-0.18 [-0.55, 0.19] -0.39 [-0.68, -0.11] -0.41 [-0.73, -0.10] -0.41 [-0.74, -0.10] -0.44 [-0.8, -0.13]
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Bayesian model provides lower levels of uncertainty in 
the estimation of the ORs.

For each patient, the effect of CCP treatment versus 
control on each outcome, as measured by OR, is calcu-
lated based on the patient’s pre-treatment characteristics 
and the posterior distributions of coefficients derived 
from either the multivariate or the univariate model. The 
TBI is subsequently computed in accordance with Eq. (4). 
Figure 4 presents a side-by-side comparison of the fitted 
models, illustrating the relationship between the TBI and 
the posterior mean of the OR for different outcome types 
in COMPILE. The left plot is based on the proposed 
multivariate model (6), in which the x-axis represents 
the TBI. The right plot is based on the univariate model 
(7). An odds ratio for CCP efficacy below 1 (dashed grey 
horizontal lines) indicates a more favorable outcome with 
CCP treatment compared to the control treatment, and 
the degree of treatment benefit from CCP is monotoni-
cally parameterized by the TBI.

A notable observation from Fig. 4 is the narrower 95% 
credible interval of the OR for the primary ordinal out-
come when employing the multivariate model (6), com-
pared to the univariate model (7). This suggests that the 
multivariate model incorporates and reflects richer avail-
able information from the multiple outcomes collected 
in the trial. Consequently, this improved accuracy may 
contribute to more informed clinical decision-making 
based on a more reliable representation of the relation-
ship between CCP efficacy and TBI.

We assessed the goodness-of-fit for both the Bayes-
ian multivariate and univariate models, Models (6) and 
(7), using posterior predictive checking, a method that 
evaluates the model’s ability to generate replicated data 
that closely resembles the observed data [40, 48–50]. The 
Bayesian p-value was employed to measure the model’s 
fit, with values near 0.5 suggesting a satisfactory fit. A 
detailed explanation of the procedure and the results of 
posterior predictive checking for both the Bayesian mul-
tivariate and univariate models is provided in Additional 
file 7. The results show that both models fit the data well.

Discussion and conclusions
The current study presents a hierarchical framework for 
jointly modeling correlated mixed types of outcomes, 
which leads to improved precision in estimating het-
erogeneous treatment effects and optimal ITRs. The 
proposed Bayesian multivariate model leverages hier-
archical modeling to effectively “borrow information” 
across outcomes, improving the estimation accuracy. 
Through extensive simulations, we compared the pro-
posed model to a Bayesian univariate model, demonstrat-
ing that the proposed approach reduces the likelihood of 
making erroneous optimal ITRs. In the application to an 

international COVID-19 treatment trial, the proposed 
model exhibited better precision in estimating coeffi-
cients of treatment and treatment by pre-treatment char-
acteristics interaction, as well as in estimating the OR for 
the primary ordinal outcome. This highlights the poten-
tial for improvement in clinical practice that the pro-
posed model can offer through its applications in clinical 
research.

Our study should be interpreted considering two 
potential limitations. First, the framework is constrained 
to situations where the treatment effects and interaction 
effects are positively correlated and maintain a similar 
scale across outcomes. When these effects are negatively 
correlated with substantially different scales, our method 
would need to be adapted to account for such complex 
associations by introducing outcome-specific scales. 
Another potential approach is to use the ideas of group 
factor analysis [53, 54] to model both positive and nega-
tive relationships among outcomes by modeling the 
residuals as linear transformations of latent factors. To 
further explore the robustness of the proposed multivari-
ate model, we conducted an additional simulation study 
to evaluate the impact of potential misspecifications of 
null effects as positively correlated effects, in which some 
effects were set to zero (e.g., the A-by-X interaction effect 
coefficients and the treatment’s main effect coefficient are 
zero for one outcome) while others remained positively 
correlated. The simulation results indicate that although 
the inclusion of null effects resulted in somewhat 
reduced PCD and AUC compared to the case with only 
positively correlated outcome, the proposed multivariate 
approach still reduces the occurrence of erroneous treat-
ment decisions in comparison to the univariate model, 
demonstrating that the proposed multivariate model 
remains relatively effective even when some effects are 
null. Detailed descriptions of this simulation study are 
provided in Additional File 8.

Second, the pre-treatment characteristics used for 
model fitting come from [24], representing the opti-
mal variable set determined through cross-validation. 
We assessed the model’s goodness-of-fit using posterior 
predictive checking. The results show that the proposed 
multivariate model fits the data well, suggesting that the 
direct adoption of pre-treatment characteristics from 
[24] does not pose a serious limitation. When there is a 
definite expectation that specific pre-treatment charac-
teristics will impact the outcome, those pre-treatment 
characteristics should be included in the model. When it 
is unclear whether certain pre-treatment characteristics 
should be included, data-dependent variable selection 
methods [55–59] can be incorporated.

We set the threshold δ to 0.5 to develop ITRs in Eq. (5) 
in this paper. However, there are clinical situations where 
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different thresholds might be used based on the risk-ben-
efit profile of the treatment. For treatments that carry sig-
nificant risks or potential adverse effects, clinicians might 
prefer a higher threshold to ensure that only patients 
with a substantially higher probability of benefiting from 
a particular treatment are selected, decisively outweigh-
ing the risks.

In medical practice, therapy often consists of a series 
of treatments assigned in multiple stages, with clinicians 
choosing each treatment adaptively based on the patient’s 
treatment history and clinical outcomes at previous 
stages [60–63, 5, 64]. One potential avenue to expand the 
proposed approach is in the context of sequential treat-
ment decisions [62, 5, 12, 65–75]. Developing effective 
methods for addressing the goal of optimizing individ-
ual treatment sequences is an important future research 
direction [60, 63, 65–67, 76]. We can envision that the 
secondary outcomes could be different at different stages 
of treatment. In addition, the primary outcome at one 
stage could have been a secondary outcome at a previous 
treatment stage. This line of investigations would lead to 
a complex setting, which would require further methodo-
logical developments. The methodological developments 
in sequential treatment decision making and precision 
medicine should match the complexity of human dis-
eases and health care, and we expect that at first progress 
in this respect would be made by addressing a specific 
clinical situation, where clinical expertise would provide 
the outcomes’ ranking (importance) at different treat-
ment stages.

To the best of our knowledge, no previous studies have 
jointly modeled mixed types of outcomes to develop 
ITRs. Our framework efficiently leverages information 
from multiple health outcomes, making it valuable for 
developing ITRs that utilize rich available outcome data.
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