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Abstract 

Background  Considering multiple endpoints in clinical trials provide a more comprehensive understanding of treat‑
ment effects and may lead to increased power or reduced sample size, which may be beneficial in rare diseases. 
Besides the small sample sizes, allocation bias is an issue that affects the validity of these trials. We investigate 
the impact of allocation bias on testing decisions in clinical trials with multiple endpoints and offer a tool for selecting 
an appropriate randomization procedure (RP).

Methods  We derive a model for quantifying the effect of allocation bias depending on the RP in the case of two-arm 
parallel group trials with continuous multiple endpoints. We focus on two approaches to analyze multiple endpoints, 
either the Šidák procedure to show efficacy in at least one endpoint and the all-or-none procedure to show efficacy 
in all endpoints.

Results  To evaluate the impact of allocation bias on the test decision we propose a biasing policy for multiple end‑
points. The impact of allocation on the test decision is measured by the family-wise error rate of the Šidák procedure 
and the type I error rate of the all-or-none procedure. Using the biasing policy we derive formulas to calculate these 
error rates. In simulations we show that, for the Šidák procedure as well as for the all-or-none procedure, allocation 
bias leads to inflation of the mean family-wise error and mean type I error, respectively. The strength of this inflation 
is affected by the choice of the RP.

Conclusion  Allocation bias should be considered during the design phase of a trial to increase validity. The devel‑
oped methodology is useful for selecting an appropriate RP for a clinical trial with multiple endpoints to minimize 
allocation bias effects.

Keywords  Allocation bias, Multiple endpoints, Šidák, All-or-none approach, Co-primary endpoints, Multiple testing, 
Type I error rate, Family-wise error rate, Randomization, Intersection-union test

Background
According to the ICH E9, clinical trials should typically 
focus on a single primary endpoint, which “should be the 
variable capable of providing the most clinically relevant 
and convincing evidence directly related to the primary 
objective of the trial” [1]. However, in certain scenarios, 
considering multiple endpoints that reflect the hetero-
geneous clinical presentation can yield a more compre-
hensive understanding of treatment effects, potentially 
leading to increased power or reduced sample size [2]. 
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Particularly in rare diseases it could be beneficial to 
include multiple endpoints due to the limited sample size 
[2]. Therefore, the European Medicine Agency [3] as well 
as the U.S. Food and Drug Association issued guidelines 
[4] on the use of multiple endpoints.

Regulatory guidelines propose different statistical 
methodologies for evaluating clinical trials with multi-
ple endpoints, depending on their objectives and design 
[4]. Multiple primary endpoints are evaluated separately, 
so that a treatment effect on one component is sufficient 
to infer efficacy [5]. This approach results in an increas-
ing number of hypotheses and thus an increased risk of 
erroneous conclusions, that is known as multiplicity issue 
[6]. A widely known approach to overcome this issue is to 
adapt the significance level [7]. One traditional but very 
conservative method is the Bonferroni procedure [6]. 
Therefore, we focused on the Šidák correction because 
it exhausts the 5% significance level exactly [8, 9]. Data-
driven adjustments of the significance level, as in the 
Holm and Hochberg procedure [6], are less appropriate, 
because the impact of allocation bias should particularly 
be investigated in the planning phase of a clinical trial. 
Hence, we subsequently focus on the Šidák procedure as 
evaluation method for multiple primary endpoints.

In contrast to multiple primary endpoints, co-pri-
mary endpoints are used when efficacy of a treatment 
effect must be established for all components. In this 
case, the components are still analyzed simultaneously, 
but no adjustment of significance levels is required due 
to the strict decision rule [5]. One approach for analyz-
ing a co-primary endpoint is the all-or-none procedure, 
commonly referred to as the intersection-union test [10]. 
More complex tests, such as the closed test procedure 
[6], can also be used to test co-primary endpoints. Since 
we intend to introduce a new method for evaluating the 
impact of allocation bias for co-primary endpoints, we 
initially concentrate on the less complex all-or-none pro-
cedure. Our focus in the following sections are multiple 
primary endpoints that are evaluated by the Šidák pro-
cedure and co-primary endpoints that are tested by the 
all-or-none procedure.

Bias is a widely recognized problem that affects the 
validity of clinical trials [1]. According to the ’Catalogue 
of Bias’ [11], allocation bias occurs if the structural equal-
ity of the treatment and control group is violated. If the 
researcher is aware of previous allocations and influences 
the allocation process by predicting future assignments, 
Berger called this third-order ’selection bias’ [12]. In the 
following, we will refer to this as third-order allocation 
bias. We aim to quantify the impact of allocation bias 
on the test decision, rather than ’subjective’ assessment. 
Therefore, we need to develop a methodology for bias 
assessment. The first approach for assessing allocation 

bias was developed by Blackwell and Hodges [13]. They 
devised a guessing strategy that allocates the next patient 
to the group with assumed fewer previous assignments. 
If this is the group whose superiority should be dem-
onstrated, a patient with a better prognosis is selected. 
Based on this approach Proschan [14] and Langer [15] 
analyzed the impact of allocation bias on test decisions 
of the Z-test and t-test for single endpoints. The impact 
of allocation bias has been examined for various study 
designs, such as multi-arm trials [16] or survival analyses 
[17]. All of these bias assessment methods are provided 
in the R software package randomizeR [18]. However, 
there is a lack of studies and methods that examine the 
impact of allocation bias in clinical trials with multiple 
endpoints.

In the following, we build a model to quantify the 
impact of allocation bias on the test decisions based on 
the analysis of multiple primary endpoints or co-primary 
endpoints. Exemplary, we will study the Šidák and all-or-
none procedure, respectively. Therefore, we proceed as 
follows: We start by defining the general statistical model 
and recap the statistical analysis methods for evaluating 
multiple primary endpoints and co-primary endpoints. 
Further, we review the randomization procedures (RPs) 
relevant to this paper. Then, we propose a modified allo-
cation biasing policy for two-arm parallel group trials 
with continuous multiple primary and co-primary end-
points that includes endpoint-specific allocation bias 
effects. Based on this model, we derive formulas for the 
actual biased family-wise error rate (FWER) of the Šidák 
procedure and the actual biased type I error rate (T1E) 
of the all-or-none procedure. To do this we assume that 
the endpoint-specific hypotheses are tested by t-tests and 
extend Langer’s approach for single primary endpoint 
to the multiple case. We analyze the impact of alloca-
tion bias for different clinical settings and RPs by con-
ducting a simulation study. We illustrate the developed 
methodology by means of an example. Finally, the results 
are summarized, potential limitations are identified and 
model improvements are highlighted.

Methods
Our objective is to quantify the impact of allocation bias 
on the test decision for clinical trials with multiple end-
points regarding the allocation process, i.e., the RP that 
has to be considered. To enable the discussion some basic 
notations and concepts are introduced.

Statistical model
Consider a two-arm parallel group randomized single-
center clinical trial with m ≥ 2 primary endpoints, with 
no interim or adaptive analysis that assesses data at a sin-
gle time point. The intended allocation ratio is 1 : 1. Let 
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nE and nC indicate the number of patients which are ran-
domly allocated to the treatment group (E) or the control 
group (C), so that the total sample size is N = nE + nC . 
Let Xj = (Xj,1, . . . ,Xj,m)

T be the multivariate normally 
distributed response vector of patient j formed by m ≥ 2 
endpoint variables where Xj,k reflects the continuous 
response regarding the k-th endpoint. Note that the ran-
dom vectors Xj , j ∈ {1, . . . ,N } are independent and dis-
tributed according to

Thereby, tj = 1 if patient j is allocated to the treatment 
group (E) and tj = 0 if patient j is allocated to the con-
trol group (C), µi = (µi,1, . . . ,µi,m)

T , i ∈ {E,C} indicates the 
expected response vector of the treatment or control 
group and � ∈ R

m×m the unknown, but common covari-
ance matrix of both groups with �k ,k = Var(Xj,k) := σ 2

k  . 
Note that the allocation vector t = (t1, . . . , tN )

T is a realiza-
tion of the random vector T = (T1, . . . ,TN )

T ∈ {0, 1}N 
whose distribution is provided by the chosen RP.

To account for the impact of allocation bias 
on the patient responses we define the vectors 
τj = (τj,1, . . . , τj,m)

T , j ∈ {1, . . . ,N } , which represent the 
allocation bias effects regarding the m endpoints. Analo-
gously to the univariate model of Hilgers et  al. [19], we 
set up a multivariate linear model which incorporates the 
impact of allocation bias on the patient responses regard-
ing the m endpoints by

where {ǫj}j∈{1,...,N } are independent and identically dis-
tributed error vectors with ǫj ∼ N (0,�) , j ∈ {1, . . . ,N } . 
Note that 0 ∈ R

m is the vector with just zeros.

Statistical analysis of multiple primary endpoints
Multiple primary endpoints are evaluated by analyzing 
the components separately with the following decision 
rule: Efficacy is established if at least one component 
shows a significant treatment effect. Using the statistical 
model (1), we obtain the m component-wise hypotheses

k ∈ {1, . . . ,m} , that can be combined to the global 
hypothesis

If all tests are conducted at the significance level α , the 
probability of at least one erroneous rejection of the indi-
vidual null hypotheses exceeds the nominal significance 
level α . This probability is usually termed FWER and is 
commonly controlled by α . Thus, to control the FWER 

Xj ∼

{
Nm(µE ,�), if tj = 1
Nm(µC ,�), if tj = 0

.

(1)Xj = µEtj + µC(1− tj)+ τj + ǫj ,

(2)H0,k : µC ,k = µE,k vs. H1,k : µC ,k �= µE,k ,

(3)H0 : µC = µE vs. H1 : µC �= µE .

the significance levels of the individual hypotheses need 
to be adjusted [6].

In 1967, Šidák introduced a less conservative procedure 
that uses the adjusted significance level 1− (1− α)

1
m 

[8]. This adjustment guarantees the exact control of 
the FWER by the nominal significance level for inde-
pendent endpoints in the unbiased case. However, the 
adjustments tend to be conservative for highly positively 
correlated endpoints [9].

Statistical analysis of co‑primary endpoints
Co-primary endpoints are evaluated simultaneously with 
a test strategy that follows an “all-or-none” decision rule 
[6]. The global test problem is given by

Therefore, this test is also often called intersection-
union test. According to Berger [10] the m individual 
hypotheses H0,k vs. H1,k , k ∈ {1, . . . ,m} are one-sided test 
problems. To mitigate the conservatism of the all-or-
none test and to ensure the exact control of the signifi-
cance level, we assume that the treatment effects of the 
endpoints are in the same direction: µC ,k−µE,k

σk
≥ 0 , for all 

k ∈ {1, . . . ,m} . Then, the individuals hypotheses are 
defined by

To test the global test problem (4), the m individual 
hypotheses are tested at the nominal significance level α . 
In contrast to multiple primary endpoints, no adjustment 
of the significance level is required [10].

Randomization procedures
Randomization is used in clinical trials to minimize allo-
cation bias and can be implemented by different proce-
dures [19]. The most commonly used RPs in clinical trials 
are introduced below [20], for a more detailed descrip-
tion it is referred to Rosenberger and Lachin [21]:

•	 Complete Randomization (CR): Patients are assigned 
to the treatment and control group with a probability 
of a fair coin toss. Thus, the probability that a patient 
is allocated to the treatment group is always 12 . Note 
that the imbalance of group assignments is not con-
trolled.

•	 Efron Biased Coin (EBC(p)): Patients are assigned 
with a probability equal to a biased coin toss that 
favors the less frequent allocations with probability 
p ≥ 0.5.

•	 Big Stick Design (BSD(b)): The assignments are con-
ducted with a probability equal to a fair coin toss 

(4)H0 :

m

k=1

H0,k vs. H1 :

m

k=1

H1,k .

(5)H0,k : µC ,k = µE,k vs. H1,k : µC ,k > µE,k .
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until the maximum tolerated imbalance b between 
the treatment and control group is reached. Then 
the next patient is deterministically allocated to the 
group with fewer assignments.

•	 Chen’s Urn Design (CHEN(p,b)): Patients are assigned 
according to the EBC(p) until a maximum imbalance 
b between the treatment and control group is reached, 
then the next patient is deterministically allocated to 
the group with fewer assignments.

•	 Maximal procedure (MP(b)): Patients are allocated 
according to a randomization list which is uniformly 
selected from the subset of randomization lists gen-
erated by CR, which keeps the maximum tolerated 
imbalance b.

•	 Random Allocation Rule (RAR): The method ran-
domly assigns half of patients to the treatment or 
control group.

•	 Permuted Block Randomization (PBR(k)): Patients 
are allocated in blocks of length k. Within these 
blocks, the allocation is according to RAR.

Results
"Theoretical derivation"  section provides the theoretical 
development for evaluating the influence of allocation 
bias in clinical trials with multiple endpoints. In "Simula-
tion study" section, the impact of allocation bias is dem-
onstrated through a simulation study, while in "Practical 
example"  section, a clinical example is presented to fur-
ther illustrate its effects.

Theoretical derivation
In the following we derive theoretical results necessary 
for analyzing and evaluating the impact of allocation bias 
on the test decision. This encompasses the development 
of a biasing policy for clinical trials with multiple end-
points, as well as the derivation of formulas to compute 
the biased FWERs and T1Es of the misspecified analysis 
model. These measures quantify the bias effect on the 
test decision of the Šidák and all-or-none procedures, 
respectively, when the allocation bias is disregarded.

Biasing policy
To quantify the impact of allocation bias on the 
response of multiple endpoints in randomized, two-
arm, parallel group clinical trials, we introduce a modi-
fied biasing policy based on Proschan [14]. We assume 
that the patient assignments are concealed but not 
masked. Thus, the researcher is assumed to be aware 
of previous allocations and can therefore forecast the 
next allocations. This is by definition, what we call 
third-order allocation bias. We assume that the investi-
gator would prefer to enroll better responding patients 

in the treatment group and that a better responding 
patient is related to higher positive observed values 
of all k ∈ {1, . . . ,m} continuous endpoints. If ηk > 0 
describes the allocation bias effect for each endpoint 
k ∈ {1, . . . ,m} then we can distinguish between good 
( ηk ), neutral (0) and bad responders ( −ηk ). We assume 
that the researcher assigns the patients according to 
the convergence strategy introduced by Blackwell and 
Hodges in [13], where it is expected that the RP always 
tends to yield balanced allocations. Thus, if the previ-
ous allocations could be tracked to the control group, 
the next patient is more likely to be assigned to the 
treatment group and therefore a better-responding 
patient is enrolled. The next patient is more likely to be 
assigned to the control group if there are more assign-
ments to the treatment group. In this case, a bad-
responding patient is recruited. A neutral-responding 
patient is recruited if the assignments to both groups 
are balanced. Note that NE(j) and NC(j) , j ∈ {1, . . . ,N } 
are the number of allocations to the treatment and con-
trol group after j assignments, respectively. Then, the 
endpoint-specific allocation bias effect regarding the k-
th endpoint in (1) are given by

Calculation of the Šidák adjusted FWER under bias
To derive a formula for calculating the biased FWER of 
the Šidák procedure, we consider the m test problems in 
(2) and assume that each of them is tested with a two-
tailed t-test at a significance level of α∗ = 1− (1− α)

1
m . 

Note that the mean response of the treatment and con-
trol group regarding the k-th endpoint is defined as 
XE,k = 1

nE

∑N
j=1 Xj,k tj and XC ,k = 1

nC

∑N
j=1 Xj,k(1− tj) , 

respectively. The test statistic, denoted by Sk , for the test 
problem H0,k vs. H1,k is given by

Langer [15] demonstrates that for clinical trials with a 
single endpoint, the t-statistic applied to the model (1) 
follows a doubly non-central t-distribution under the 
null hypothesis. Thus, Sk , k ∈ {1, . . . ,m} is under the null 
hypothesis H0,k doubly non-central t-distributed with 
non-centrality parameters

(6)τj,k =






−ηk , if NE(j − 1) > NC(j − 1)
0, if NE(j − 1) = NC(j − 1)
ηk , if NE(j − 1) < NC(j − 1)

.

(7)
Sk =

√
nEnC
nE+nC

(XE,k− XC ,k )
√√√√ 1

N

(
N∑
j=1

tj(Xj,k− XE,k )
2 +

N∑
j=1

(1− tj)(Xj,k− XC ,k )
2

)
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where τE,k = 1
nE

N∑
j=1

τj,k tj and τC ,k = 1
nC

N∑
j=1

τj,k(1− tj) for 

k ∈ {1, . . . ,m} . Thus, under the null hypothesis H0,k it 
holds

where t ′′nE+nC−2,δk ,�k
 denotes the doubly non-central 

t-distribution with nE + nC − 2 degrees of freedom and 
non-centrality parameter δk and �k . The properties of the 
doubly non-central t-distribution are described in detail 
by Johnson, Kotz and Balakrishnan in [22].

Assuming that the m endpoints are uncorrelated and 
independent and using (8), the actual biased FWER for 
the allocation vector t is calculated by

Here, F(·; nE + nC − 2, δk , �k) denotes the distribu-
tion function of the doubly non-central t-distribution 
with nE + nC − 2 degrees of freedom and non-central-
ity parameters δk and �k . Note that tnE+nC−2(γ ) is the γ
-quantile of the central t-distribution with nE + nC − 2 
degrees of freedom. To calculate the actual FWER 
without assuming independent endpoints, we need to 
transform the patient responses using a principle com-
ponent analysis (PCA). The PCA transforms the patient 
responses using orthogonal transformations so that 
the components of the transformed patient responses, 
called principal components (PCs), are uncorrelated 
[23] and for normally distributed patient responses are 
also independent ([24], Chapter 3). Thereby, most of the 
variation in the patient responses should be retained. 
The orthogonal transformation of the patient responses 
is achieved through the orthonormal matrix A ∈ R

m×m , 
which consists of the orthonormal eigenvectors (EV) 
of � [23]. The first column of A contains the EV to the 
largest eigenvalue of � , the second column contains 
the EV to the second largest eigenvalue of � , etc. Note 
that the transformed patient responses Yj := ATXj , 
j ∈ {1, . . . ,N } are also multivariate normally distributed 
according to

δk =
1

σk

�
nEnC

nE + nC

�
µE,k − µC ,k + τE,k − τC ,k

�
,

�k =
1

σ 2
k




N�

j=1

tj(τj,k − τE,k )
2 +

N�

j=1

(1− tj)(τj,k − τC ,k )
2



,

(8)Sk ∼ t ′′nE+nC−2,δk ,�k
,

(9)

P(reject at least one H0,k |T = t)

= 1− P

(⋂m

k=1

(
|Sk | ≤ tnE+nC−2

(
1−

α∗

2

))
|T = t

)

ind.
=

endp.
1−

∏m

k=1

[
1−

(
F

(
tnE+nC−2

(
α∗

2

)
; nE + nC − 2, δk , �k

)

+ F

(
tnE+nC−2

(
α∗

2

)
; nE + nC − 2,−δk , �k

))]
.

where � ∈ R
m×m is the diagonal matrix of the 

eigenvalues, sorted in descending order. The trans-
formed statistical model is according to (1) given  
by Yj = AT

µEtj + AT
µC(1− tj)+ AT

τj + AT
ǫj  .  S ince  

the components of the PCA-transformed patient 
responses are independent, and the test problem (3) and 
Ĥ0 : A

T
µC = AT

µE vs. Ĥ1 : A
T
µC �= AT

µE are equiva-
lent, the actual FWER for a given randomization list 
in clinical trials with positively correlated endpoints 
can be calculated similarly to uncorrelated endpoints, 
but using the transformed patient responses and the 
transformed statistical model.

Calculation of the type I error of the all‑or‑none procedure 
under bias
For the derivation of the formula to calculate the biased 
T1E of the all-or-none procedure, we assume that the 
global hypotheses (4) are tested at a nominal significance 
level α by testing the individual hypotheses (5) also at α 
with a one-tailed t-tests. The test statistics of these tests 
are given by Sk , k ∈ {1, . . . ,m} in (7) and satisfy the prop-
erty (8) under the one-sided null hypotheses. We assume 
R =

⋂m
k=1 Rk is the event that H0 is rejected in favor of 

H1 and Rk represents the rejection of the null hypothesis 
H0,k . Then, the actual T1E for the allocation vector t can 
be calculated according to Berger [10] by

where tnE+nC−2(1− α) denotes the (1− α)-quantile of 
the central t-distribution with nE + nC − 2 degrees of 
freedom. Applying the property (8) leads us to following 
formula

Note this computation is also applicable in the case of 
correlated endpoints.

Simulation study
The impact of allocation bias on the test decisions is 
quantified by a simulation study. We simulate randomi-
zation lists using different RPs and calculate the actual 
biased FWER of the Šidák procedure and the actual 
biased T1E of the all-or-none approach using (9) and 
(10). To summarize the computed actual biased FWERs 

Yj ∼

{
Nm(A

T
µE ,�), if tj = 1

Nm(A
T
µC ,�), if tj = 0

P

(⋂m

k=1
Rk |T = t

)
= max

1≤k≤m

P
(
Sk > tNE+NC−2(1− α)|T = t

)
,

(10)

P
(
H0 is rejected|T = t

)

= max
1≤k≤m

P
(
Sk > tnE+nC−2(1− α)|T = t

)

= max
1≤k≤m

F
(
tnE+nC−2(α); nE + nC − 2,−δk , �k

)
.
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and T1Es across the randomization lists of the different 
RPs we use the mean as well as the probability of obtain-
ing an FWER or T1E, respectively, below 5%, according 
to Hilgers et al. [19]. These probabilities are denoted by 
PRP(FWER ≤ 0.05) and PRP(T1E ≤ 0.05) . If the FWER 
or T1E exceeds the 5% significance level, we refer to this 
as a not controlled error rate.

To compute the mean actual T1Es and actual FWERs 
as well as the probabilities PRP(FWER ≤ 0.05) and 
PRP(T1E ≤ 0.05) of the Šidák and all-or-none procedure 
we generate Monte Carlo samples of r = 100 000 rand-
omization lists for each RP considered. The examined 
RPs are CR, EBC(0.67), MP(3), BSD(3), RAR, PBR(4) and 
CHEN(2,0,67). We run the simulation with m = 2 and 
m = 5 multivariate standard normally distributed end-
points and focus on total sample sizes N ∈ {12, 32, 64} . 
We investigate homogeneous allocation bias effects, 
i.e., ηk = η for all k ∈ {1, . . . ,m} , as proportion (1%, 5% 
and 10%) from the effect sizes. Table 1 shows these bias 
effects regarding the sample sizes N, the proportions ν 
and the effect sizes EN . The different considered simula-
tion settings for the Šidák and all-or-none procedure are 
summarized in Table 2.

Computation of our simulation study are performed 
using the Software R-3.6.0 on the RWTH High Perfor-
mance Computer Cluster using one core. The Monte 

Carlo samples of randomization lists of different RPs 
were generated using the R package randomizeR (v.1.4.2), 
published by Uschner et  al. [18]. The computational 
time to simulate the actual FWERs of the Šidák proce-
dure regarding r = 100 000 randomization lists for one 
clinical setting was approximately 48 seconds. The cal-
culation of the actual T1E of the all-or-none procedure 
was completed in approximately 42 seconds. Hence, the 
calculations do not necessarily require the use of a high 
performance cluster, particularly if the quantification of 
allocation bias is performed only for a few clinical set-
tings and bias effects.

Šidák procedure
We begin by evaluating the impact of allocation bias on 
the test decision of the Šidák procedure. Tables with the 
extended numerical results can be found in Section S1 of 
Additional file  1. Subsequently, we focus mainly on the 
analysis of homogeneous allocation bias effects and inde-
pendent endpoints. Figure 1 illustrates the importance of 
studying the impact of allocation bias in multi-endpoint 
trials, as the error rates of multi-endpoint trials are more 
inflated under bias than those of single-endpoint trials.

In our first step, we examine the impact of allocation 
bias for varying numbers of endpoints. Table 3 shows the 
numerical results for the mean FWERs and the probabil-
ity PRP(FWER ≤ 0.05) for clinical trials with m = 2 and 
m = 5 endpoints, a total sample size of N = 32 , and an 
allocation bias effect of 10% of the effect size regarding 
different RPs. These numerical results indicate that the 
number of endpoints has a minor effect on the impact of 
allocation bias on the summary measures, i.e., the mean 
FWER and PRP(FWER ≤ 0.05) . Boxplots showing the 
distribution of the actual FWERs for the analyzed simu-
lation settings are presented in Section S1 of Additional 
file 1, supporting these findings.

Next, we focus on the impact of allocation bias for 
different sample sizes. The summary measures regard-
ing various RPs for clinical trials with total sample sizes 
N = 12 , N = 32 and N = 64 , m = 2 endpoints and an 
allocation bias effect of 10% of the effect sizes are illus-
trated in Table 4. It can be noticed that with increasing 

Table 1  Examined allocation bias effects in the magnitude of 
(ν · 100)% of the effect size EN , which depends on the sample 
size N 

N EN ν η

12 1.1795 0.01 0.01795

0.05 0.08975

0.1 0.1795

32 1.024 0.01 0.01024

0.05 0.0512

0.1 0.1024

64 0.711 0.01 0.00711

0.05 0.03555

0.1 0.0711

Table 2  Simulation settings to assess the impact of allocation bias on the test decisions of the Šidák and all-or-none procedures

Properties Settings

Number of Endpoints m ∈ {2, 5}

Sample Size N ∈ {12, 32, 64}

Distribution of Endpoints multivariate standard normal

Allocation Bias endpoint-specific allocation bias effects in the magnitude 
of 1%, 5% and 10% of the effect sizes.

RPs CR, EBC(0.67), MP(3), BSD(3), RAR, PBR(4) and CHEN(2,0.67)
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sample size, the mean FWERs for CR, BSD(3), MP(3) 
and EBC(0.67) are stable, while the mean FWERs 
for CHEN(2,0.67) and PBR(4) increase and for RAR 
decrease. The probability of maintaining the 5% level 
decreases with increasing sample size for all RPs. The 

Fig. 1  Comparison of allocation bias effects in clinical trials with single endpoints and multiple endpoints that are evaluatetd by the Šidák 
procedure. Simulations based on r= 100 000 randomization lists, N = 32 patients and homogeneous allocation bias effects of η = 0.1 · E32

Table 3  Impact of allocation bias on the actual FWER for 
different numbers of endpoints (m) and RPs by using the Šidák 
procedure. Simulations based on r= 100 000 randomization lists, a 
sample size of N = 32 and homogeneous allocation bias effect of 
η = 0.1 · E32 = 0.1024

m RPs FWER [mean] PRP(FWER ≤ 0.05)

2 CR 0.0502 0.55

BSD(3) 0.0506 0.34

MP(3) 0.0527 0.03

PBR(4) 0.0572 0.00

RAR​ 0.0513 0.18

EBC(0.67) 0.0525 0.11

CHEN(2,0.67) 0.0541 0.00

5 CR 0.0502 0.55

BSD(3) 0.0508 0.34

MP(3) 0.0534 0.03

PBR(4) 0.0589 0.00

RAR​ 0.0516 0.18

EBC(0.67) 0.0532 0.11

CHEN(2,0.67) 0.0551 0.00

Table 4  Impact of allocation bias on the actual FWER for different 
sample sizes (N) and RPs by using the Šidák procedure. Simulations 
based on r=100 000 randomization lists, m = 2 endpoints and 
homogeneous allocation bias effects of η = 0.1 · EN

N RPs FWER [mean] PRP(FWER ≤ 0.05)

12 CR 0.0503 0.61

BSD(3) 0.0506 0.52

MP(3) 0.0531 0.18

PBR(4) 0.0562 0.03

RAR​ 0.0527 0.24

EBC(0.67) 0.0524 0.31

CHEN(2,0.67) 0.0532 0.19

32 CR 0.0502 0.55

BSD(3) 0.0506 0.34

MP(3) 0.0527 0.03

PBR(4) 0.0572 0

RAR​ 0.0513 0.18

EBC(0.67) 0.0525 0.11

CHEN(2,0.67) 0.0541 0

64 CR 0.0501 0.54

BSD(3) 0.0508 0.15

MP(3) 0.0527 0

PBR(4) 0.0575 0

RAR​ 0.0507 0.18

EBC(0.67) 0.0526 0.03

CHEN(2,0.67) 0.0545 0



Page 8 of 14Schoenen et al. BMC Medical Research Methodology          (2024) 24:223 

best control of the nominal significance level is pro-
vided by CR and BSD(3). Boxplots showing the distri-
bution of actual FWERs for different sample sizes are 
presented in Section S1 of Additional file  1, illustrat-
ing that the variability of actual FWERs decreases with 
increasing sample size.

To investigate the effect of different allocation bias 
effects Fig.  2 shows the distribution of the actual 
FWER and Table 5 outlines the mean FWERs and the 
probabilities PRP(FWER ≤ 0.05) of clinical trials with 
m = 2 endpoints, N = 32 patients, for bias effects of 
1%, 5%, and 10% of the effect size regarding different 
RPs. We observe that increasing allocation bias effects 
result in increased variability of the actual FWERs and 
inflated mean FWERs. The shift is most pronounced for 
CHEN(2,0.67) and PBR(4), while it is less pronounced 
for CR and BSD(3). Table  5 indicates that, instead of 
increasing allocation bias effects, the probabilities 
PRP(FWER ≤ 0.05) remain at the same level. Only for 
CR the probability of maintaining the significance level 
is above 50%. This is followed by BSD(3), whose proba-
bility is 34%. For CHEN(2,0.67) and PBR(4), the control 
of the significance level is in the presence of the exam-
ined bias effects not ensured.

Using the approach in "Calculation of the Šidák 
adjusted FWER under bias"  section we analyze the 
impact of allocation bias for endpoints that are correlated 
according to the correlation matrix

Fig. 2  Distribution of the actual FWER of the Šidák procedure for different homogeneous allocation bias effects. Simulations based on r= 100 000 
randomization lists, m = 2 endpoints, N = 32 patients and homogeneous allocation bias effects of η = ν · E32 with ν ∈ {0.01, 0.05, 0.1}

Table 5  Impact of different homogeneous allocation bias effects 
on the actual FWER of the Šidák procedure regarding different 
RPs. Simulations based on r= 100 000 randomization lists, m = 2 
endpoints, N = 32 patients and homogeneous allocation bias 
effects of η = ν · E32 with ν ∈ {0.01, 0.05, 0.1}

Allocation bias 
effect [η]

RPs FWER 
[mean]

PRP(FWER ≤ 0.05)

0.01 · E32 CR 0.0500 0.55

BSD(3) 0.0500 0.34

MP(3) 0.0500 0.03

PBR(4) 0.0501 0.00

RAR​ 0.0500 0.18

EBC(0.67) 0.0500 0.11

CHEN(2,0.67) 0.0500 0.00

0.05 · E32 CR 0.0500 0.55

BSD(3) 0.0502 0.34

MP(3) 0.0507 0.03

PBR(4) 0.0518 0.00

RAR​ 0.0503 0.18

EBC(0.67) 0.0506 0.11

CHEN(2,0.67) 0.0510 0.00

0.1 · E32 CR 0.0502 0.55

BSD(3) 0.0506 0.34

MP(3) 0.0527 0.03

PBR(4) 0.0572 0.00

RAR​ 0.0513 0.18

EBC(0.67) 0.0525 0.11

CHEN(2,0.67) 0.0541 0.00
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with ρ ∈ [−1, 1] . Figure  3 shows the distribution of the 
actual FWER for different RPs in a clinical trial with 
m = 2 endpoints that are positively correlated accord-
ing to  Rρ with ρ ∈ {0, 0.5, 0.9} , N = 32 patients and 
homogeneous allocation bias effects of 10% of the effect 
size. Increasing positive correlation between endpoints 
leads to decreasing variability of the actual FWERs and 
decreasing mean FWERs. Thus, uncorrelated endpoints 
are the worst-case scenario for homogeneous allocation 
bias effects and positively correlated endpoints. Note that 
this does not necessarily extends to heterogeneous allo-
cation bias effects. The impact of allocation bias on the 
actual FWER for correlated endpoints is, as for uncor-
related endpoints, strongly dependent on the alloca-
tion bias effects chosen for the individual endpoints. A 
detailed overview of the simulation results for positively 
correlated endpoints can be found in Section S1 of Addi-
tional file 1. Previously, we focused on homogeneous bias 
effects. When considering heterogeneous bias effects, we 

Rρ =




1 ρ · · · · · · ρ

ρ 1 ρ · · · ρ

ρ
. . .

...
...

. . . ρ

ρ · · · · · · ρ 1




∈ R
m×m

observe that larger sums of endpoint-specific bias effects 
lead to stronger inflated error rates. Section S1 of Addi-
tional file 1 provides additional simulation results for het-
erogeneous bias effects.

All‑or‑none procedure
In the following, we focus on the impact of allocation 
bias in clinical trials with co-primary endpoints that are 
analyzed by the all-or-none procedure, and show the 
results of the mean actual T1Es and the probabilities 
PRP(T1E ≤ 0.05) for several simulation scenarios. Due 
to same directed treatment effects, the significance level 
is exactly controlled in the unbiased case. Tables with 
extended results and boxplots of the numeric results 
presented in Tables 6 and 7 are given in Section S2 of 
Additional file 1.

We start by analyzing the effect of different numbers of 
components of the co-primary endpoint on the impact of 
allocation bias. Table 6 reports the results for clinical tri-
als with m = 2 and m = 5 components, N = 32 patients, 
and homogeneous allocation bias effects of 10% of the 
effect sizes for several RPs. We observe that the numeri-
cal results in clinical trials with co-primary endpoints 
with m = 2 and m = 5 components are identical. This is 
mainly due to the fact that the maximum of the doubly 

Fig. 3  Distribution of the actual FWER of the Šidák procedure for homogeneous allocation bias effects in clinical trials with correlated endpoints. 
Simulations based on r= 100 000 randomization lists, m = 2 correlated endpoints according to Rρ , sample size N = 32 and homogeneous allocation 
bias effects of η = 0.1 · E32
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non-central t-distribution over all components in the for-
mula (10) remains the same when using equally distrib-
uted components. Thus, if the components are equally 
distributed, the number of multiple endpoints does not 
affect the actual T1E.

We continue with the analysis of the effect of different 
sample sizes. Table 7 provides the numerical results of the 
summary measures regarding different RPs for clinical tri-
als with total sample sizes N = 12 , N = 32 and N = 64 , 
co-primary endpoints with m = 2 components and 
homogeneous allocation bias effects of 10% of the effect 
sizes. The mean T1Es decrease regarding all randomiza-
tion procedures except CHEN(2,0.67) for increasing sam-
ple sizes. Note that the probabilities PRP(T1E ≤ 0.05) 
regarding the different RPs remain mostly unaffected by 
varying sample sizes. Consequently, the sample size has 
no considerable effect on the probability of controlling the 
actual T1E in the presence of allocation bias. Notice that 
regardless of sample size and RP, the likelihood that T1E 
failing the nominal significance level is more than 90%. 
Overall, the control of the T1Es by the nominal signifi-
cance level in the presence of allocation bias is weak.

This is also supported by considering Fig.  4 and the 
values in Table 8. Figure 4 shows the distribution of T1E 
regarding different RPs for homogeneous allocation bias 
effects of 1%, 5% and 10% of the effect size in a clinical 
trial with co-primary endpoints with m = 2 components 
and N = 32 patients. Table 8 shows for the identical set-
tings the numerical values of the mean T1Es and proba-
bilities PRP(T1E ≤ 0.05) . We observe that with increasing 

allocation bias effects, the variability and the mean values 
of the T1Es increase independently of the RP. The prob-
abilities PRP(T1E ≤ 0.05) in Table  8 indicate that even 
small allocation bias effects cause that the actual T1E to 
be insufficiently controlled by the nominal significance 
level. For CR, controlling the T1E by the nominal signifi-
cance level is best with a probability of 8%.

Previously, we focused on homogeneous bias effects. 
Analyzing heterogeneous bias effects show that the 
inflation of the error rates depends on the sum of the 
endpoint-specific bias effects. Thus, increasing sums 
of endpoint-specific bias effects are associated with 
stronger inflation of the error rates. Simulation results 
for heterogeneous bias effects are presented in Section 
S2 in Additional file 1.

Practical example
In the following, we will illustrate how the approach can 
be used to formulate scientific arguments for the selection 
of a RP according to the ERDO template [19]. Therefore, 
we will use information from the multi-center randomized 
EPISTOP trial to plan a new clinical trial [25]. The EPIS-
TOP trial compares a conventional vigabatrin therapy, 

Table 6  Impact of allocation bias on the actual T1E for different 
numbers of endpoints (m) and RPs by using the all-or-none 
procedure. Simulations based on r= 100 000 randomization lists, a 
sample size of N = 32 patients and homogeneous allocation bias 
effects η = 0.1 · EN = 0.1024 for all endpoints

m RPs T1E [mean] PRP(T1E ≤ 0.05)

2 CR 0.0555 0.09

BSD(3) 0.0598 0.02

MP(3) 0.0676 0.00

PBR(4) 0.0790 0.00

RAR​ 0.0620 0.00

EBC(0.67) 0.0664 0.01

CHEN(2,0.67) 0.0717 0.00

5 CR 0.0555 0.09

BSD(3) 0.0598 0.02

MP(3) 0.0676 0.00

PBR(4) 0.0790 0.00

RAR​ 0.0620 0.00

EBC(0.67) 0.0664 0.01

CHEN(2,0.67) 0.0717 0.00

Table 7  Impact of allocation bias on the actual T1E for different 
sample sizes and RPs by using the all-or-none procedure. 
Simulations based on r= 100 000 randomization lists, m = 2 
endpoints and homogeneous allocation bias effects of 
η = 0.1 · EN

N RPs T1E [mean] PRP(T1E ≤ 0.05)

12 CR 0.0589 0.09

BSD(3) 0.0611 0.06

MP(3) 0.0705 0.00

PBR(4) 0.0792 0.00

RAR​ 0.0688 0.00

EBC(0.67) 0.0677 0.03

CHEN(2,0.67) 0.0712 0.01

32 CR 0.0555 0.09

BSD(3) 0.0598 0.02

MP(3) 0.0676 0.00

PBR(4) 0.0790 0.00

RAR​ 0.0587 0.00

EBC(0.67) 0.0664 0.01

CHEN(2,0.67) 0.0717 0.00

64 CR 0.0539 0.09

BSD(3) 0.0599 0.00

MP(3) 0.0668 0.00

PBR(4) 0.0790 0.00

RAR​ 0.0587 0.00

EBC(0.67) 0.0662 0.00

CHEN(2,0.67) 0.0720 0.00
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initiated after the first electrographic or clinical seizure, 
with a preventive approach that commences prior to the 
first seizure in infants diagnosed with Tuberous sclero-
sis complex (TSC) [26] without a seizure history. TSC is 
a rare genetic disorder that not only causes forms of epi-
lepsy but also affects the neuronal and intellectual devel-
opment of infants. We will design a future hypothetical 
clinical trial to investigate the impact of preventive versus 
conventional treatment with vigabatrin on the neuronal 
development of infants aged ≤ 4 months diagnosed with 
TSC, but without a history of seizures. Subsequently, we 
will discuss the study layout, statistical model, and poten-
tial bias in the new trial. The trial will be a randomized 
two-arm, single-center study with multiple continuous 
endpoints. It will follow a 1:1 allocation ratio and exclude 
interim and adaptive analysis. To assess the effects of con-
ventional versus preventive treatment, we will employ the 
Bayley Scales of Infant Toddler Development (BSID) [27] 
to evaluate the neural and intellectual development of the 
infants. These scales describe the early development of 
infants and can be divided into a cognitive ( BSIDcognitive ), a 
language ( BSIDlanguage ), a motor ( BSIDmotor ), an adaptive 
behavior ( BSIDab ) and a social-emotional ( BSIDse ) scale. 
Each of these scales form a component of the multiple 
primary endpoint and are individually compared between 
preventive and conventional treatment at 24 months. The 
null hypotheses of no differences between the preventive 

Fig. 4  Distribution of the actual T1E of the all-or-none procedure for different homogeneous allocation bias effects. Simulations based on r= 
100 000 randomization lists, m = 2 endpoints, N = 32 patients and homogeneous allocation bias effects of η = ν · E32 with ν ∈ {0.01, 0.05, 0.1}

Table 8  Impact of different homogeneous allocation bias 
effects on the actual T1E of the all-or-none procedure regarding 
different RPs. Simulations based on r= 100 000 randomization lists, 
m = 2 endpoints, N = 32 patients and homogeneous allocation 
bias effects η = ν · E32 with ν ∈ {0.01, 0.05, 0.1}

Allocation bias 
effect [ η]

RPs T1E [mean] PRP(T1E ≤ 0.05)

0.01 · E32 CR 0.0505 0.08

BSD(3) 0.0509 0.01

MP(3) 0.0516 0.00

PBR(4) 0.0525 0.00

RAR​ 0.0511 0.00

EBC(0.67) 0.0515 0.01

CHEN(2,0.67) 0.0519 0.00

0.05 · E32 CR 0.0527 0.08

BSD(3) 0.0548 0.01

MP(3) 0.0584 0.00

PBR(4) 0.0633 0.00

RAR​ 0.0558 0.00

EBC(0.67) 0.0578 0.01

CHEN(2,0.67) 0.0602 0.00

0.1 · E32 CR 0.0555 0.09

BSD(3) 0.0598 0.02

MP(3) 0.0676 0.00

PBR(4) 0.0790 0.00

RAR​ 0.0620 0.00

EBC(0.67) 0.0664 0.01

CHEN(2,0.67) 0.0717 0.00
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and conventional treatment regarding these components 
are tested individually by t-tests for homogeneous vari-
ances on Šidák adjusted significance levels. Note that the 
caregiver and investigators are blinded to the EEG data 
and allocation of the infants to the treatment groups. The 
infants’ allocation are also hidden from the neuropsy-
chologists who perform neurological tests and the asses-
sors of the EEGs. Based on the results of the EPISTOP trial 
regarding the 27 randomized infants the mean scales and 
standard deviations of the conventional treatment and 
preventive treatment group and the resulting effect sizes 
concerning the BSID scores are given in Table 9. The cor-
relation matrix of both groups is according to the EPIS-
TOP data estimated by

If we assume a power of 80% and a significance level 
of α = 0.05 , the required sample size is estimated in 
addition to a dropout of 10% by N = 24 [28]. For the 
allocation bias we assume endpoint-specific allocation 
bias effects in the magnitude of 1% and 10% of the effect 
sizes. The ERDO template aims to find the optimal RP 
for a clinical trial. Therefore, we consider CR, RAR, BSD, 
EBC, MP, CHEN, and PBR and evaluate them by the 
metrics defined in the simulation section, i.e., the mean 
FWERs and the probabilities PRP(FWER ≤ 0.05) deter-
mined by Monte Carlo samples of 100 000 randomiza-
tion lists. Table 10 shows the numerical results of these 
metrics. For the mean FWERs, we observe comparable 
results for all RPs. However, if we consider the prob-
abilities PRP(FWER ≤ 0.05) , we see that only for CR the 

R =




1 0.79 0.86 0.22 0.48
0.79 1 0.77 0.30 0.57
0.86 0.77 1 0.15 0.46
0.22 0.30 0.15 1 0.46
0.48 0.57 0.46 0.46 1




probabilities that the FWER is controlled by the nominal 
significance level despite allocation bias are above 50%. 
Whereas, for PBR(4), the FWERs are slightly controlled. 
The most promising RPs that are identified on the basis 
of the probabilities PRP(FWER ≤ 0.05) for mitigating bias 
are CR and BSD(3).

It should be noted, that the assumed effects, e.g. the 
amount of allocation bias, used in the planning phase of 
a clinical trial might deviate from the actually observed 
one after trials conduct. We conclude that allocation bias 
affects the error rates and can be best mitigated by relax-
ing the balance between the preventive and conservative 
group sizes. Overall, this example suggests that allocation 
bias should be considered in the design phase of clinical 
trials to increase validity.

Discussion
Randomization is one of the most important design fea-
tures of a clinical trial to prevent allocation bias [19]. 
Selection of a randomization procedure (RP) on scien-
tific arguments, i.e. quantification of the potential to 
mitigate bias, increases the validity of a clinical trial. In 
clinical practice, the choice of a RP is usually in favour 
of permuted block randomization (PBR) due to its simple 
implementation and familiarity [20, 29]. However, this 
selection is usually not based on scientific recommenda-
tions and arguments. This paper aims to raise awareness 
of the selection of a RP on the validity of a clinical trial by 
mitigating bias.

We have extended the methods of the ERDO tem-
plate [19] to provide a more scientific justification for the 
selection of a RP in clinical trials with multiple endpoint. 
Therefore, we introduced an allocation biasing policy for 

Table 9  Standard deviations, mean values and effect sizes of the 
BSID scores of the conventional treatment group (CT) and the 
preventive treatment group (PT) based on the results of the 27 
randomized patients in the EPISTOP trial

Scales Group Standard 
deviation

Mean Effect size

BSIDcognitive CT 15.78 74.09 0.114

PT 15.63 72.31

BSIDlanguage CT 16.36 71.45 0.509

PT 12.05 64.23

BSIDmotor CT 16.35 74.27 0.315

PT 13.79 69.54

BSIDab CT 23.63 75.09 0.361

PT 19.25 67.38

BSIDse CT 29.52 101.82 1.034

PT 14.67 78.33

Table 10  Impact of different allocation bias effects 
η = (η1, . . . , η5)

T on the actual FWERs for different RPs by using the 
Šidák procedure. Simulations based on r= 100 000 randomization 
lists, N = 24 patients and σ = (15.70, 14.19, 15.02, 21.37, 22.71)T

Allocation bias effect RPs FWER 
[mean]

PRP(FWER ≤ 0.05)

0.01 ·




0.114

0.509

0.315

1.034

0.361




CR
BSD(3)
MP(3)
PBR(4)
RAR​
EBC(0.67)
CHEN(2,0.67)

0.0500
0.0500
0.0500
0.0500
0.0500
0.0500
0.0500

0.55
0.37
0.06
0
0.15
0.16
0.02

0.1 ·




0.114

0.509

0.315

1.034

0.361




CR
BSD(3)
MP(3)
PBR(4)
RAR​
EBC(0.67)
CHEN(2,0.67)

0.0500
0.0500
0.0500
0.0500
0.0500
0.0500
0.0500

0.56
0.37
0.06
0
0.19
0.16
0.02
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clinical trials with multiple primary and co-primary end-
points, and derived formulas to calculate the error rates 
depending on different RP when the endpoints are eval-
uated using the Šidák or the all-or-none procedure. We 
applied these derivations in a simulation study to quan-
tify the impact of allocation bias on the test decision of 
the Šidák and the all-or-none procedure. We found that 
allocation bias leads to inflation of the actual FWER and 
T1E. The amount of inflation depends on the magnitude 
of homogeneous allocation bias effects and the chosen 
RP. Interestingly, the number of components of the mul-
tiple primary and co-primary endpoints, as well as small 
sample sizes, has no considerable effect on the impact of 
homogeneous allocation bias.

The most promising RPs that have been identified for 
mitigating bias by using the Šidák procedure are CR and 
BSD because the FWERs regarding these procedures are 
less sensitive to allocation bias and better controlled by 
the nominal significance level.

In clinical trials with co-primary endpoints that are ana-
lyzed using the all-or-none procedure, the control of the 
actual T1E by the nominal significance level for all endpoints 
is deficient. The best way to prevent allocation bias is CR.

The Šidák and all-or-none procedure are completely 
different, as the research questions mirror different 
clinical situations. We found that the Šidák procedure 
is less sensitive to allocation bias than the all-or-none 
procedure considering the biased FWER and T1E, 
respectively. Note that the simulations were restricted 
to clinical trials with multiple primary and co-primary 
endpoints that are evaluated by the Šidák and all-or-
none procedure. To fully investigate the effect of allo-
cation bias, it is necessary to study more complicated 
testing procedures such as the closed test procedure or 
other significance level adjustments such as the Bon-
ferroni adjustment [6] or the adjustment according to 
Sankoh [30]. This can be achieved by adapting the intro-
duced model to the specific test procedure. We focused 
on the Šidák procedure rather than the Bonferroni pro-
cedure since the Šidák procedure is less conservative. 
Note that Sankohs’ approach is not commonly used, 
but our method can be extended to this approach. Also 
the consideration of other types of multiple endpoints 
as composite or multi-component endpoints should 
be subject of further research [5]. The impact of allo-
cation bias was quantified only for a limited number 
of RPs and parameters. To gain more comprehensive 
insights, additional parameters of the RPs may be taken 
into account. The current selection is motivated by the 
different properties of the RPs. Of course, the approach 
presented so far for choosing a suitable RP is based only 
on the impact of allocation bias on the test decision, 

but overall the selection process should also consider 
other aspects of the trial design, such as power, other 
types of bias, etc. It should be noted that mainly small 
and homogeneous endpoint-specific allocation bias 
effects were considered in the simulations. A detailed 
analysis of heterogeneous endpoint-specific allocation 
bias effects are subject to further research. In practice, 
it is challenging to determine the endpoint-specific 
allocation bias effects ηk , k ∈ {1, . . . ,m} , since they are 
often unknown in the planning phase of a clinical trial. 
To overcome this, the bias effects could be approxi-
mated based on clinical experience, or linked to the 
effect sizes determined from previously published data, 
e.g. from trials in similar diseases. Overall, we can con-
clude that the presented methodology can be used for 
selecting the RP of a clinical trial with multiple primary 
endpoints or co-primary endpoints based on the crite-
ria of mitigating allocation bias. In the future, we aim to 
extend this methodology to more general models that 
use approaches to detect a global treatment effect in a 
clinical trial with multiple endpoints by aggregating the 
multivariate endpoint data into a single score or rank 
at the subject level, a single composite endpoint, or a 
univariate test statistic. In addition, multiple endpoints 
with both continuous or binary components should 
be examined next. Besides considering allocation bias 
in clinical trials with multiple endpoints, bias effects 
should also investigated for other trial designs, such as 
adaptive trials or trials with unbalanced allocation.

Conclusion
Ignoring allocation bias affects the test decisions of a 
clinical trial and the selection of an appropriate RP is 
one of the most important tool to minimize the effect 
of allocation bias. We found that RPs with relaxation of 
the final balance, i.e., the final balance of allocations to 
the control and treatment arm, are useful for mitigating 
allocation bias in clinical trials with multiple primary 
and co-primary endpoints that are evaluated using the 
Šidák and all-or-none procedures, respectively. Thus, 
RPs as CR and BSD are more preferable to protect 
against allocation bias.
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