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Abstract 

Background  In clinical trials, the determination of an adequate sample size is a challenging task, mainly due 
to the uncertainty about the value of the effect size and nuisance parameters. One method to deal with this uncer-
tainty is a sample size recalculation. Thereby, an interim analysis is performed based on which the sample size 
for the remaining trial is adapted. With few exceptions, previous literature has only examined the potential of recalcu-
lation in two-stage trials.

Methods  In our research, we address sample size recalculation in three-stage trials, i.e. trials with two pre-planned 
interim analyses. We show how recalculation rules from two-stage trials can be modified to be applicable to three-
stage trials. We also illustrate how a performance measure, recently suggested for two-stage trial recalculation (the 
conditional performance score) can be applied to evaluate recalculation rules in three-stage trials, and we describe 
performance evaluation in those trials from the global point of view. To assess the potential of recalculation in three-
stage trials, we compare, in a simulation study, two-stage group sequential designs with three-stage group sequential 
designs as well as multiple three-stage designs with recalculation.

Results  While we observe a notable favorable effect in terms of power and expected sample size by using three-
stage designs compared to two-stage designs, the benefits of recalculation rules appear less clear and are dependent 
on the performance measures applied.

Conclusions  Sample size recalculation is also applicable in three-stage designs. However, the extent to which recal-
culation brings benefits depends on which trial characteristics are most important to the applicants.

Keywords  Clinical trials, Adaptive trial design, Sample size adaptation, Performance evaluation

Introduction
Choosing an adequate sample size is a crucial task when 
planning a clinical trial. One needs to recruit enough 
patients to obtain statistically significant evidence for 
a treatment effect. At the same time, there are multiple 
reasons why one should not recruit more patients than 
required: The cost and duration of the trial both grow 
with the number of patients. Additionally, the number 
of patients being exposed to trial-related risks should 
be kept at a minimum. Hence, it is necessary to choose 
a number of patients, which is neither too large nor too 
small. The number of patients required to obtain statisti-
cally significant evidence for a treatment effect depends 
on the size of the treatment effect and the endpoint’s 
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variance. Unfortunately, these parameters are unknown 
when planning a trial. We call this problem in the follow-
ing the problem of effect size uncertainty. The sample size 
needs to be chosen based on assumed endpoint distribu-
tion parameters. If the assumptions are correct, the cho-
sen sample size will be adequate. If the assumptions are 
wrong, two possible mistakes in sample size planning can 
be made: First, the sample size could be chosen to low. 
In this case, the trial has a smaller power then aspired, 
which is called underpowered in the following. This mis-
take occurs when the assumed treatment effect is larger 
than the actual treatment effect or when the assumed 
variance is lower than the actual endpoint variance. Sec-
ond, the sample size could be chosen too high. In this 
case, the power is high, but it would have been possible 
to achieve sufficient power even with fewer patients. We 
call such a trial oversized. Oversizing happens when the 
assumed treatment effect is lower than the actual treat-
ment effect or when the assumed variance is larger than 
the actual variance. The fundamental problem in sam-
ple size planning is that due to the problem of effect size 
uncertainty there is always the risk of underpowering and 
oversizing.

To deal with the problem of effect size uncertainty, 
two methods are developed, which are to some extent 
robust against underpowering and oversizing. The first 
method is sequential testing. Trials with sequential test-
ing unblind the data at different stages of the trial and 
offer the option to reject the null hypothesis H0 at these 
stages. Once H0 is rejected, the trial stops. The simplest 
design with sequential testing is the group sequential 
design, where the sample sizes of all stages are specified 
before the beginning of the trial. Such a design provides a 
remedy to effect size uncertainty, because for large effect 
sizes H0 likely gets rejected at an early stage, where only 
a small number of patients has already been recruited. 
For small effect sizes, the design still offers the option to 
reject H0 at a later stage, thereby offering the opportu-
nity to recruit enough patients to achieve a high power. 
A common approach to deal with effect size uncertainty 
is to specify the sample sizes of a group sequential design 
such that a targeted power would be achieved for the 
smallest clinically relevant effect size [1]. The second 
method providing robustness to effect size uncertainty 
is sample size recalculation (cf. e.g. [2] for an overview). 
It extends the method of group sequential designs in so 
far that the stage-wise sample sizes do not need to be 
specified before the trial but can be determined based on 
interim results from the previous stages or other studies 
that were published in the meantime. In this way, effect 
estimates from previous stages or other recent trials can 
be obtained, and based on these effect estimates sample 

sizes for the remainder of the trial can be determined. 
Note that unblinded (adaptive) group sequential trial 
designs naturally come with the shortcoming of unblind-
ing. However, they still find their frequent application as 
they can be very appealing when having a large insecurity 
about the underlying parameter values or a high inter-
est in shortening the trial duration. Here, it is important 
that as few people as possible are unblinded and that the 
procedure for the sample size update is only available for 
the statistician responsible for the interim analysis. This 
allows for fewer conclusions about the effect observed at 
interim.

One topic of high interest is the evaluation of sample 
size recalculation rules. There are two perspectives men-
tioned in the literature in the literature. The conditional 
perspective deems a recalculation rule good, if it ensures 
stable and high values of the conditional power (rejec-
tion probability conditional on the interim result) as well 
as no clear oversizing, despite the problem of effect size 
uncertainty [3, 4]. An evaluation criterion following the 
conditional perspective is the conditional performance 
score proposed by Herrmann et  al. [3]. In contrast, the 
global perspective rather measures the benefit of sam-
ple size recalculation in terms of global power (rejection 
probability before the beginning of the trial) and sample 
size. According to the global perspective, a recalculation 
rule should ensure a certain robustness against under-
powering (in terms of the global power) and oversizing 
with regard to the effect size uncertainty [5].

Hence, there are two different perspectives on evaluat-
ing sample size recalculation rules. Moreover, there are 
also different approaches to defining recalculation rules, 
all of which are plausible in their own way. The observed 
conditional power approach is motivated by the condi-
tional perspective on recalculation rules. This recalcula-
tion approach uses interim results of a trial to estimate 
the treatment effect and to choose then a sample size 
for the remainder of the trial which guarantees a certain 
targeted conditional power (e.g. 80% or 90%). Another 
approach motivated from the conditional perspective is 
the promising zone approach, which works according 
to a similar principle as the observed conditional power 
approach but has some additional case distinctions for 
the choice of the sample size [6]. There are various stud-
ies in recent years proposing recalculation rules which 
yield optimal performance regarding the respectively 
applied global performance measures [7–10]. Currently, 
there is no agreement which is the most favorable recal-
culation rule to apply.

In this work, we do not aim to provide a solution 
to the choice of the most favorable sample size recal-
culation rule. Instead, we aim to fill another gap in 
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the literature about sample size recalculation: With 
very few exceptions [1, 11] the literature on recalcula-
tion only focuses on the case of two-stage trials. How-
ever, clinical trial designs do not need to be restricted 
to two stages. Three-stage trials can offer benefits in 
terms of expected sample size compared to two- or 
one-stage trials [1] and can add even further flexibility 
than two-stage designs. The extent of the benefit, how-
ever, depends on the explicit trial designs, i.e., the time 
interval between the final patient (of a stage) reaching 
the final visit and the decision to stop, where patients 
are still enrolled in the trial. As the problem of effect 
size uncertainty is also relevant for three-stage trials, 
it is worthwhile to examine the potential benefits of 
recalculation for these designs. In this paper, we apply 
concepts from recent research on recalculation in two-
stage trials to the case of recalculation in three-stage 
trials. In detail, this paper offers the following new con-
tributions to the literature: We show how conditional 
and global performance measures can be applied to the 
case of recalculation in three-stage trials. Regarding 
the conditional performance measures, we extend the 
conditional performance score [3] to the case of three-
stage trials with sample size recalculation. Regarding 
the global performance measures, we apply a perfor-
mance measure which calculates a trade-off between 
(global) power and sample size and which is inspired by 
the approach by Jennison & Turnbull [7]. Having devel-
oped appropriate performance measures, we then dem-
onstrate how recalculation rules can be extended to the 
case of three-stage trials. We demonstrate the appli-
cation of the performance measures and the respec-
tive recalculation rules in a simulation study. Given 
the empirical results, we assess the potential benefits 
of applying a three-stage design instead of a two-stage 
design and of applying recalculation instead of a sim-
ple group sequential approach. In the discussion of our 
study, we elaborate on the different options of recalcu-
lation in three stage trials.

Notation and setting
Three‑stage trials
In this paper, we consider the case of comparing an 
intervention group (I) with a control group (C), with 
endpoint distributions given by

This means, we assume normally distributed end-
points with a common variance. We do not assume that 
the variance is known.

XI ∼ N (µI , σ
2),XC ∼ N (µC , σ

2).

To test the alternative hypothesis H1 : µI > µC 
against the null hypothesis H0 : µI ≤ µC , we apply a 
two-sample t-test statistic, defined by

where X̄J , with J = I ,C , denotes a sample average, σ̂ 
denotes an empirical estimate of the standard deviation 
in each group and n denotes the per-group sample size. 
In this paper, we consider the case of a three-stage trial. 
A detailed description of the theory behind multi-stage 
trials can be found in the book by Wassmer & Brannath 
[12]. In this book, it is shown that the following sequen-
tial testing method maintains the type I error rate.

We apply the t-test statistic at each stage. Let, n1, n2, n3 
denote the respective sample sizes per group and stage. 
For simplicity, we consider the case of equal sample sizes 
in the intervention and control group. The resulting test 
statistics Z1,Z2,Z3 are independent and we assume large 
enough sample sizes, such that they asymptotically follow 
the distributions

Note that the test statistic distribution only depends on 
the endpoint distribution via the standardized treatment 
effect

At each stage i, a combination Z∗
i  of these test statistics 

is applied for decision making. The respective test statis-
tics are given by the inverse normal combination test [13]

The weights wi are defined in advance of the the trial, 
with the condition w2

1 + w2
2 + w2

3 = 1 . In this paper, we 
define w1 = w2 = w3 = 1√

3
 throughout. We choose Poc-

ock’s critical values [14] for early rejection of H0 , which 
we denote by c1, c2, c3 and futility stopping with 
f1 = f2 = 0 , i.e. when the effect points in the wrong 
direction at one of the first two stages the trial stops with 
acceptance of H0.

Z = X̄I − X̄C

2
n σ̂

,

Zi ∼ N

(
√

ni

2
δ, 1

)

with i ∈ {1, 2, 3}.

δ := µI − µC

σ
.

Z∗
1 = Z1,

Z∗
2 = w1 · Z1 + w2 · Z2

√

w2
1 + w2

2

,

Z∗
3 = w1 · Z1 + w2 · Z2 + w3 · Z3.
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Analysis of interim results
In three-stage trials, interim results are potentially exam-
ined at two time points: after having observed the out-
come of the first n1 patients per group, and after having 
observed the following n2 patients per group.

Having observed the interim results, one can esti-
mate “how far” the trial is from proving the treatment 
effect at the next interim analysis. More formally, 
this can be expressed by the probability to reject H0 , 
given the observed interim results. This probability is 
called the conditional rejection probability and will be 
denoted by

where i ∈ {1, 2} denotes the first or second interim analy-
sis. Given the distribution of the stage-wise test statistic, 
we can derive the following equations for the stage-wise 
conditional rejection probability. The equation for the 
conditional rejection probability at stage two is given by

where � is the cumulative distribution function of the 
standard normal distribution. The equation for the con-
ditional rejection probability at stage three is given by

For recalculation at the first interim analysis, the 
probability to reject H0 in the remainder of the trial is 
important. This probability is called conditional power 
(CP) and consists of the conditional rejection prob-
ability at the second and third interim analysis in the 
following way:

Thereby, fZ∗
2
|Z∗

1
=z∗

1
,N2=n2,�=δ is the conditional den-

sity of Z∗
2 , given first stage test statistic value z∗1 , sec-

ond stage per-group sample size n2 , and effect size δ . 
In this notation, � is a random variable for the effect 
size, which takes the concrete realization δ.

The concept of the conditional power can be used 
to decide upon the number of patients to recruit after 
the interim analysis. This number of patients can 
be chosen such that the conditional power reaches a 
certain value. Note, however, that the effect size δ in 
the definition of the conditional power is unknown 
in practice. This is why recalculation rules based on 

CRP
(i+1)
δ (z∗i , ni+1) := Pδ[Z∗

i+1 > ci+1|Z∗
i ],

(1)CRP
(2)
δ (z∗1 , n2) = 1−�





�

w
2
1
+ w

2
2
· c2 − w1 · z∗1
w2

− δ ·
�

n2

2



,

(2)CRP
(3)
δ (z∗2 , n3) = 1−�





c3 −
�

w
2
1
+ w

2
2
· z∗

2

w3

− δ ·
�

n3

2



.

(3)
CPδ(z

∗
1 , n2, n3) =CRP

(2)
δ (z∗1 , n2)

+
∫

c2

f2

CRP
(3)
δ (z∗2 , n3)fZ∗

2
|Z∗

1
=z

∗
1
,N2=n2 ,�=δ(z

∗
2 )dz

∗
2 .

the conditional power need to take uncertainty in the 
effect size δ into account.

Group sequential designs and designs with sample size 
recalculation
In this study, we examine two kinds of designs: group 
sequential designs and designs with sample size recalcu-
lation. For group sequential designs, the per-group sam-
ple sizes of all three stages n1, n2, n3 are fixed before the 
beginning of the trial. For designs with recalculation, the 
per-group sample sizes n2, n3 of the stages two and three 
can be determined during the trial, based on the interim 
results.

In a three-stage trial, recalculation could take place at 
the first or at the second interim analysis. In this paper, 
we only consider the case of recalculation at the first 
interim analysis in detail and leave the case of recalcu-
lation at the second interim analysis for the Discussion 
part as it is very similar to the well known two-stage 
adaptive trial with sample size recalculation. When recal-
culation at the first interim analysis takes place, a num-
ber of n1 patients per group has already been recruited 
and the value z∗1 of the first stage test statistic has been 
obtained. If the first stage test statistic lies within the 
continuation region z∗1 ∈ [f1, c1] , the trial will go into 
the second-stage. At this point, recalculation allows us 
to determine the second-stage and third-stage sample 
sizes per group n2, n3 . In line with Uesaka et al. [11], we 
highlight the similarity to the sample size calculation for 
a common two-stage trial: The sample sizes for the fol-
lowing two stages need to be determined, such that H0 
can get rejected with sufficient probability. Just like for a 
common two-stage trial, the interim results included in 
z∗1 are available and should provide information about the 
true standardized treatment effect. This should help to 
decide about an adequate sample size for the remainder 
of the trial.

Sample size recalculation at the first interim analysis in 
a three-stage trial differs from sample size recalculation 
in a two-stage trial in terms of the remaining sample size 
of the trial and in terms of conditional power: For recal-
culation in a two-stage trial, the remaining sample size of 
the trial is determined by n2 . In contrast, for recalculation 
in a three-stage trial, there is still a second interim analy-
sis in which the trial could either stop for efficacy/futility 
or continue in the third stage. So, even though the sec-
ond stage sample size n2 and the third stage sample size 
n3 (which is only applied if the trial continues in the third 
stage) has been determined at the first interim analysis, 
the remaining sample size remains stochastic at this point 
and is expressed by the term n2 + n3 · Iz∗

2
∈[f2,c2] . Similarly, 

the conditional power in a two-stage trial is simply given 
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by CP�(z∗1 , n2) = CRP
(2)
� (z∗

1
, n2) , while the Formula (3) for the 

three-stage trial includes the conditional rejection prob-
ability at the third stage and the distribution of the sec-
ond stage test statistic. It are precisely these differences 
in terms of remaining trial sample size and conditional 
power which need to be taken into account when trans-
ferring concepts from recalculation rules in two-stage tri-
als to recalculation in three-stage trials.

In principle, it would be possible to choose unequal 
per-group sample sizes n2  = n3 for stages two and three 
in the same way as it is possible to choose unequal stage-
wise sample sizes in a two-stage trial. To keep a clear 
scope of the research, we restrict our analysis to the case 
of equal per-group stage-wise sample size n2 = n3 and 
treat the case of unequal stage-wise sample sizes in the 
Discussion part.

Note that the choice of the first-stage sample size n1 
affects both the benefits of the sequential testing proce-
dure and the potential benefits of recalculation: For recal-
culation, on the one hand, a small first-stage sample size 
yielding little information about the underlying effect size 
can only be of limited value for the choice of the remain-
ing sample size. On the other hand, a high first-stage sam-
ple size means that a large share of the required patients 
has already been recruited and the impact of recalcula-
tion to adjust the number of further recruitments is lim-
ited. The sequential testing procedure is also affected by 
the choice of n1 , as a low choice of n1 reduces the prob-
ability to stop for efficacy at the first interim analysis 
and a high choice of n1 makes an efficacy stop at the first 
interim analysis likely but reduces the benefits of sample 
size reduction if n1 is already large. There is no consen-
sus about the ideal choice of sample sizes for an interim 
analysis. In the two-stage recalculation literature, there 
exist approaches for optimizing the choice of n1 accord-
ing to the criteria, the applying statistician deems most 
important [8]. For three-stage trials, such approaches are 
so far missing. In our paper, we apply a group sequen-
tial design with equal sample sizes per stage, where the 
sample sizes are chosen in order to reach a pre-specified 
power 1− β at an assumed effect size. The considered 
designs with recalculation use the same first-stage sample 
size but allow for a flexible sample size in the remainder 
of the trial.

Evaluation of recalculation rules
A recalculation rule is intended as a remedy for the prob-
lem of uncertainty about the standardized treatment 
effect. Ideally, the design with recalculation should per-
form well over a range of standardized treatment effects 
δ of interest. Which values of δ are of interest should 
thereby be decided based on considerations about the 
minimally clinically relevant effect and/or logistical 

restrictions in terms of sample sizes, a maximum plau-
sible effect, and assumptions about the endpoint stand-
ard deviation. It is a common approach in the literature 
to evaluate designs with recalculation over an interval 
of values for the (standardized) treatment effect [1, 7, 
15, 16]. In the following, we provide performance meas-
ures S(δ) , measuring how well the sample size is chosen 
if the underlying standardized treatment effect is δ . We 
will then examine this performance over a range of effect 
sizes δ . Ideally, a design with recalculation should provide 
good performance over the whole range of effect sizes 
considered.

With regard to the concepts of oversizing and under-
powering, we consider a performance as good if the 
design achieves a high power at δ while at the same time 
not requiring too many patients. What a “high” power 
is can be measured in comparison with a certain target 
power 1− β (80% or 90% are usually targeted in practice). 
If the power falls below 1− β , this should be indicated by 
a worse performance score. What “too many” patients 
are can be measured in comparison to the number of 
patients necessary to achieve a power of 1− β at a stand-
ardized treatment effect δ . If the design chooses a sample 
size which is larger than necessary to achieve a power of 
1− β , this should also be punished by the performance 
measure.

While the basic idea of how a performance measure S 
should work is clear (quantifying underpowering/over-
sizing over a range of δ ), the literature does not agree on 
some aspects of the evaluation. In particular, there are 
two perspectives on evaluation of recalculation rules: the 
global perspective [5] and the conditional perspective [3]. 
The global perspective evaluates a design at each δ with 
regard to the (global) power and sample size. This can be 
interpreted as an assessment based on the information 
level before the beginning of the trial: I.e. there is an ini-
tial assumption of a clinically relevant effect size and the 
range in which the true effect size is likely to lie. There is 
agreement, on how much sample size would be accept-
able to use. And there are not yet any interim results. 
Given this level of information, the global measures indi-
cate whether a design can achieve the required power 
over the range of plausible and relevant effect sizes while 
complying with sample size restrictions. The conditional 
perspective works slightly differently: it assumes that in 
the situation where the recalculation is performed, the 
interest lies in the conditional power rather than the 
global power (because the level of information changed, 
e.g. with interim results being available). Accordingly, it 
evaluates the designs with regard to conditional power 
and sample size. As both evaluation perspectives have 
their advantages, we apply both evaluation principles in 
the following.
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Global performance perspective
The most commonly applied global performance crite-
ria for recalculation rules are the (global) power Powδ and 
expected sample size Eδ[N ] . In line with various studies in 
the literature on recalculation [1, 15, 16], we report these 
global performance criteria in our simulation study over 
a range of effect sizes δ . Examining power and expected 
sample size is very helpful when evaluating the global per-
formance. However, it is hard to derive how good or bad 
a design is when examining these criteria individually: An 
oversized design performs bad in terms of expected sample 
size, but most likely good in terms of power. However, is its 
performance better or worse than a design with lower sam-
ple size which is slightly underpowered?

Instead of examining power and sample size individu-
ally, it can be helpful to examine them in a combined per-
formance score. Such a performance score can express the 
tradeoff

between power and expected sample size. Optimiza-
tion of global scores involving a linear tradeoff between 
power and sample size has already been studied by Jen-
nison & Turnbull [7] and Kunzmann & Kieser [9]. In this 
research, we apply the tradeoff value

where Nfix(δ) is the fixed design sample size required to 
obtain a power of 1− β at effect size δ . In this way, the 

SG(δ) = Powδ − γδ · Eδ[N ]

γδ :=
∂Powδ(N )

∂N
|N=Nfix(δ),

ideal score values at each δ are achieved when the power 
is close to 1− β and the expected sample size is close to 
Nfix(δ) . We say “close to”, because multi-stage designs 
achieve the same power as fixed designs while having 
lower expected sample sizes. This leads to an ideal trade-
off SG(δ) where the power is slightly above 1− β and the 
expected sample size is slightly below Nfix(δ) . For fixed 
designs, the optimal tradeoff would be exactly at 1− β 
and Nfix(δ) . To illustrate the idea of the score, Fig.  1 
shows the performance of a fixed design regarding SG.

The score SG provides a good summary measure of 
power and expected sample size. For effect sizes where 
the designs are underpowering or oversizing, the values 
of SG will drop. Another reason why we decided to apply 
this global performance score is that it is relatively sim-
ple to derive recalculation rules maximizing this score (as 
previously similarly done in e.g. [17, 18]). Evaluating such 
score-optimized recalculation rules can help us to judge 
the potential of recalculation rules to prevent under-
powering and oversizing. If the optimal recalculation 
rule does not increase SG notably compared to a group 
sequential design, the potential of recalculation, consid-
ered from a global perspective, is limited.

Global performance measures, like the global power, 
the expected sample size, and the SG score are highly use-
ful criteria given the information level before the begin-
ning of the trial (i.e. no interim results observed yet, 
some initial assumptions about the effect size). Given this 
level of information, the global performance measures 
then indicate whether a design ensures enough power 
over the range of plausible effect sizes and how much 

Fig. 1  Global performance score SG for a fixed design, having power 1− β = 0.8 at effect size δ = 0.3 . Smaller effect sizes than 0.2 are deemed 
clinically irrelevant or unfeasible in terms of the required sample size and therefore performance is not evaluated there
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sample size it requires. Once the trial has started, some 
of these initial assumptions might change: even smaller 
effect sizes might become relevant (because a compet-
ing drug showed unexpected side effects) or the institu-
tion conducting a trial is willing and able to recruit more/
less patients than initially deemed feasible. In addition, 
interim results become available at the first interim anal-
ysis. So, conditional performance measures gain impor-
tance at this point.

Conditional performance perspective
The conditional performance score SC allows a com-
parison of different sample size recalculation rules when 
z1 ∈ [f1, c1] [3]. The basic idea is to evaluate both the 
(observed) conditional power and total recalculated per-
group sample size regarding their location (l) and varia-
tion (v). This leads to four components (here presented 
with an equal weighting), which together build a score of 
the form

Here lCP and vCP are the location and variation com-
ponents of the (observed) conditional power, while lN 
and vN denote the location and variation component of 
the sample size. The four components and thereby the 
whole score can take values between 0 and 1, where 1 
refers to the ideal performance and 0 to the worst pos-
sible performance.

In the following, we describe the definition of the loca-
tion and variation components in more detail. The loca-
tion components measure the difference between the 
expected value of (observed) conditional power respec-
tively sample size from a corresponding target value. 
This difference is then scaled by dividing by the maxi-
mal possible difference. The location component of the 
(observed) conditional power is given by

Thereby, CPtarget,δ denotes the target value for the 
observed conditional power. It is defined depending 
on the effect size: If δ is large enough to reach a power 
of 1− β with a sample size smaller or equal to the maxi-
mum allowed sample size nmax , the target value is 1− β . 
If the effect size is too small, the target value is α . The 
location component of the sample size is defined as

In this equation, Ntarget,δ denotes the target value for 
the sample size. If the effect size is large enough such that 

(4)S
C (δ) =

1

4
· lCP (δ)+

1

4
· vCP (δ)+

1

4
· lN (δ)+

1

4
· vN (δ).

lCP(δ) = 1−
|E[CP

δ̂
(Z1,Nrec)] − CPtarget,δ|

1− α
.

lN (δ) = 1− |E[N ] − Ntarget,δ|
nmax − n1

.

nfix(δ) is smaller than nmax , the target value is nfix(δ) . If 
the effect size is too small, the target value is n1.

The variation components of the score measure the 
variance of the observed conditional power and sample 
size, standardized by the maximum possible variance. 
They are defined by

and

Thereby, the maximum possible variances are 1/4 and 
((nmax − n1)/2)

2 , respectively.
Initially, the conditional performance score was defined 

for sample size recalculation in two-stage trials [3]. How-
ever, the definition of the conditional performance score 
can also be applied to recalculation at the second stage 
of three-stage trials. There are only minor changes nec-
essary: A recalculation rule at the first interim analy-
sis chooses the sample sizes n2 and n3 . Hence, the total 
sample size to evaluate becomes N = n1 + n2 + n3 . The 
effect of the choice of n2 and n3 on the observed condi-
tional power can be calculated, using Eq. (3), as

Apart from these slight modifications, the conditional 
performance score can be applied to three-stage trials in 
the same way as to two-stage trials.

Recalculation
In this paper, we consider the principle of sample size 
recalculation, based on an unblinded interim analysis. 
There is vast literature about such recalculation proce-
dures in two-stage trials [6, 7, 10, 15]. Such trials start 
with recruiting a number n1 patients per group, which 
is fixed before the beginning of the trial. At an interim 
analysis based on these patients, the value z∗1 of the first 
stage test statistic is then calculated. The second stage 
per-group sample size n2 is then calculated based on z∗1 . 
To represent this functional relationship, we apply the 
notation

For three-stage trials, there is the possibility to recalcu-
late at the first and second interim analysis. We consider 
recalculation at the first interim analysis. Hence, not only 

vCP(δ) = 1−
√

Var(CP
δ̂
(Z1,Nrec))

1/4
,

vN (δ) = 1−
√

Var(N )

((nmax − n1)/2)
2
.

CP
δ̂
(z∗1 , n2, n3) =CRP

(2)

δ̂
(z∗1 , n2)

+
∫

c2

f2

CRP
(3)

δ̂
(z∗2 , n3)fZ∗

2
|Z∗

1
=z

∗
1
,N2=n2 ,δ̂

(z∗2 )dz
∗
2 .

n2 = n2(z
∗
1).
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the second stage per-group sample size n2 , but also the 
third stage per-group sample size n3 can be determined 
at this point. So, recalculation rules from two-stage tri-
als need to be modified in that they yield suitable sample 
sizes n2 = n2(z

∗
1) and n3 = n3(z

∗
1) , based on the interim 

result z∗1.
For practical reasons, it is plausible to assume that the 

recalculated sample size could not be chosen arbitrar-
ily large. For this reason, we specified a certain maximum 
sample size nmax for the complete trial. All of the described 
recalculation rules may yield a number between 0 and 
nmax − n1 patients for the following two stages of the trial.

Sample size‑optimized recalculation
Jennison & Turnbull [7] provide a recalculation rule for 
two-stage trials, which solves the following constrained 
optimization problem: minimize Eδ[N ] under the con-
straint Powδ ≥ 1− β , for a given effect size δ . They show 
that the solution to this optimization problem maximizes 
the performance criterion

for a certain constant γ . The solution is given by

For each γ , a recalculation rule can be derived from the 
above equation. The smaller γ is chosen, the higher the 
power Powδ will be. To solve the constrained optimiza-
tion problem minimizing Eδ[N ] under the constraint 
Powδ ≥ 1− β , one only needs to systematically try differ-
ent values of γ , until one has the γ which yields a recal-
culation rule for which Powδ = 1− β . This recalculation 
rule will necessarily solve the constrained optimization 
problem.

Jennison & Turnbull [7] also explained how to extend 
this principle to finding a recalculation rule, which mini-
mizes the expected sample size, taking into account 
uncertainty in the effect size represented by a prior f� . 
The resulting optimization criterion is

and the respective recalculation rule fulfills

Powδ − γ · Eδ[N ]

n2(z
∗
1) = argmaxn

(

CPδ(z
∗
1 , n)− γ · n

)

.

(5)
∫

(Powδ − γ · Eδ[N ])f�(δ)dδ

where f�|Z∗
1
=z∗

1
(δ) is the posterior density for the effect 

size. In the same way as for a fixed effect size, systematic 
trial of different values for γ yields a solution to a con-
strained optimization problem: Minimize the expected 
sample size 

∫

Eδ[N ]f�(δ)dδ under the constraint 
∫

Powδ f�(δ)dδ ≥ 1− β for the expected power.
In this work, we extend the approach by Jennison 

& Turnbull [7] to the case of recalculation at the first 
interim analysis of a three-stage trial. In the Appendix, 
we derive the sample size-optimized recalculation rule

for a fixed effect size δ . TO(i+1)

z∗i ,δ
(ni+1) can be interpreted 

as a trade-off between the rejection probability and the 
chosen sample size.

For uncertainty in the effect size, represented by the 
prior f� , we derive the recalculation rule

SG score‑optimized recalculation
The Jennison & Turnbull [7] approach and our derived 
modification for the case of three-stage trials yields a 
recalculation rule, which maximizes the trade-off

for a fixed γ . A slight modification of the approach leads 
to an optimization of the global score SG , defined by

We simply need to apply the effect-dependent value 
γδ := ∂Powδ(N )

∂N |N=Nfix(δ) in the respective equations. 
Hence, the trade-off functions in the recalculation rule 
definition of the last section become

This modified trade-off specification has the effect that 
the resulting recalculation rules optimize the global score 
defined in “Global performance perspective” section. The 
main difference to the Jennison & Turnbull approach is 
that our performance criterion creates more incentive to 
maintain a high power at low effect sizes and save sample 
size at high effect sizes.

n2(z
∗
1 ) = argmaxn

(∫

CPδ(z
∗
1 , n)f�|Z∗

1
=z∗

1
(δ)dδ − γ · n

)

,

(

n2(z
∗
1 ), n3(z

∗
1 )
)

=argmaxn2 ,n3TO
(2)

z∗
1
,δ
(n2)

+
∫ c2

f2

(

TO
(3)

z∗
2
,δ
(n3)

)

fZ∗
2
|Z∗

1
=z∗

1
,N2=n2 ,�=δ (z

∗
2 )dz

∗
2 with

TO
(i+1)

z∗i ,δ
(ni+1) :=CRP

(i+1)
δ (z∗i , ni+1)− γ · ni+1 for i=1,2,

(

n2(z
∗
1), n3(z

∗
1)
)

=argmaxn2,n3

∫

(

TO
(2)

z∗
1
,δ
(n2)+

∫ c2

f2

(

TO
(3)

z∗
2
,δ
(n3)

)

fZ∗
2
|Z∗

1
=z∗

1
,N2=n2,�=δ(z

∗
2)dz

∗
2

)

· fZ∗
1
|�=δ(z

∗
1) · f�(δ).

Powδ − γ · Eδ[N ]

Powδ − γδ · Eδ[N ].

TO
(i+1)

z
∗
i
,δ

(ni+1) = CRP
(i+1)
δ (z∗i , ni+1)− γδ · ni+1 for i = 1, 2.
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In our simulation study, we apply the restriction n2 = n3 
when performing recalculation by score-optimization. Note 
that it is also possible to apply the recalculation rule without 
the restriction of equal sample sizes for the stages 2 and 3. In 
this case, one would need, for a given z1 , to calculate 
∫

(

TO
(2)

z
∗
1
,δ
(n2)+

∫

c2

f2

(

TO
(3)

z
∗
2
,δ
(n3)

)

fZ∗
2
|Z∗

1
=z

∗
1
,N2=n2,�=δ(z

∗
2
)dz∗

2

)

·fZ∗
1
|�=δ(z

∗
1
) · f�(δ) for each possible combination of n2 and n3 

and then choose the combination of sample sizes, which 
yields the maximum.

Observed conditional power approach
An alternative way to choose the recalculated sample 
size is the observed conditional power approach. This 
approach uses an effect estimate δ̂ at the first interim 
analysis and chooses the recalculated per-group sample 
size n2 such that the observed conditional power reaches 
a certain target value

In previous literature, this approach is mostly applied 
for recalculation in a two-stage trial. An exception is the 
study by Uesaka et  al. [11], where the observed condi-
tional power approach is applied at the first interim anal-
ysis of a three-stage trial. We follow their approach in this 
paper. The sample size for each interim result z∗1 can by 
obtained by using Eq. (3). We only need to plug-in the 
effect estimate δ̂ =

√

2
n1
z∗1 for the true effect size � and 

then calculate for each possible per-group sample size n 
the conditional power CP

δ̂
(z∗1 , n, n) . We then choose the 

smallest per-group sample size n, which fulfills 
CP

δ̂
(z∗1 , n, n) ≥ 1− β or n = nmax−n1

2
 . We then set 

n2 = n3 = n . Note that there exists also the option to use 
unequal sample sizes for the stages 2 and 3.

Simulation study
In our simulation study, we compared five different 
designs: A two-stage group sequential design (i.e. with 
constant sample sizes per stage), a three-stage group 
sequential design as both described in “Group sequential 
designs and designs with sample size recalculation” sec-
tion, a three-stage design with the observed conditional 
power approach for recalculation, a three-stage design 
with the expected sample size minimization approach 
for recalculation by Jennison & Turnbull [7] (see “Sample 
size-optimized recalculation” section), and a three-stage 
design with the SG-optimization approach for recalcula-
tion (see “SG score-optimized recalculation” section).

We evaluated the performance over the range [0,  0.6] 
of effect sizes δ . For effect sizes of this magnitude, suffi-
cient sample size is required, such that the application of 
multi-stage designs in practice is conceivable. The effect 

CP
δ̂
(z∗1 , n2, n3) = 1− β .

size range of [0,  0.6] was also applied in previous stud-
ies about sample size recalculation [3, 19]. We powered 
the group sequential designs for δ = 0.3 as the assumed 
underlying effect size before the start of the trial. There-
fore, the quality of a recalculation rule is judged by its 
ability to avoid underpowering for δ < 0.3 and oversizing 
for δ > 0.3 . We choose the maximum sample size nmax so 
that a fixed design could achieve a power of 1− β = 0.8 
with nmax patients per group under an effect size of 
δ = 0.2 . In this way, the recalculation rules are theo-
retically able to prevent underpowering for effect sizes 
δ ≥ 0.2 . Smaller effect sizes are deemed not feasible in 
terms of sample sizes and logistics.

The simulations were conducted using R version 4.2.2 
[20], and the results for the group sequential designs 
were obtained using the package rpact [21].

Simulation settings
For the group sequential designs, we applied Pocock effi-
cacy boundaries [14] and futility stops for interim test 
statistic results below zero. For both the two-stage and 
the three-stage designs, we set the first-stage per-group 
sample size to n1 = 70 . For the two-stage group sequen-
tial design, we set the second-stage per-group sample 
size to 140. For the three-stage group sequential design, 
we set the second and third-stage per-group sample sizes 
both to 70. In this way, both the two-stage and the three-
stage group sequential design have their first interim 
analysis based on the results of 70 patients per group and 
recruit in total 210 patients per group, if the trial enters 
the respective final stage. With these sample size choices, 
the group sequential designs both achieve a power of 
1− β = 0.8 at an effect size of δ = 0.3 . The fact that the 
sample size for the first interim analysis is equal for all 
designs considered is important, because we applied the 
conditional performance score methodology, which com-
pares designs conditional on the results at interim analy-
sis. For a meaningful comparison, it was necessary that 
this interim analysis was at the same time for the differ-
ent designs.

The recalculation rules were specified in the follow-
ing way: We set the maximum per-group sample size for 
the whole trial to nmax = 393 . Therefore, after the first 
stage with n1 = 70 patients per group, the recalculation 
rules where restricted to recruit between 0 and 323 more 
patients for the remainder of the trial. For the observed 
conditional power recalculation approach, we set the 
targeted conditional power to 0.8. For the sample size 
optimization approach, we set the cost of sample size to 
γ = 0.0028 . In this way, the design obtains a power of 
1− β = 0.8 at the effect size δ = 0.3 . For the optimization 
of SG , the cost of sample size was set to γδ := ∂Powδ (N )

∂N
|N=Nfix (δ)

 
for δ ∈ {0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6} . In this way, the 



Page 10 of 15Bokelmann et al. BMC Medical Research Methodology          (2024) 24:214 

score is optimized over the effect sizes δ ∈ [0.2, 0.6] under 
consideration.

The target parameters CPtarget,δ and Ntarget,δ in the defi-
nition of the conditional performance score are functions 
depending on the effect size δ . They are defined according 
to “Conditional performance perspective” section.

Results with respect to global performance
To examine the global performance of our designs, we 
calculated the power and the expected sample size for 
all the designs at each effect size δ . For the effect sizes 
deemed relevant ( δ ∈ [0.2, 0.6] ), we also calculated the 
global score SG . The results are illustrated in Fig.  2 and 
provided in Table 1. Regarding the global score, we can 
see that for effect sizes of δ ≥ 0.3 , the two-stage design 
performs worse than all the three-stage designs. There is 
a simple explanation for this: The additional interim anal-
ysis with the possibility of an efficacy stop reduces the 
expected sample size compared to the two-stage designs 
(see plot on the right), while the power curves of these 
designs are almost identical (see plot in the middle).

When examining the global performance score results 
of the three-stage designs, we note that the group sequen-
tial design and the design with sample size-optimized 
recalculation perform very similar. The slight advantage 

of the sample size-optimized recalculation rule comes 
from a reduction of the expected sample size from 115.8 
to 114.2 over the range of δ between 0.2 and 0.6, com-
pared to the group sequential design. The power curves 
of these two designs are almost identical. In contrast, the 
observed conditional power approach and the SG-opti-
mized recalculation approach perform notably different 
from the group sequential design. With power values of 
58% (OCP) and 54% ( SG-optimized), they suffer notably 
less from underpowering at effect size δ = 0.2 than the 
group seuquential design which has a power of 46%. This 
is why they show a better performance regarding SG for 
small effect sizes. However, for effect sizes larger than 
δ = 0.3 , they suffer more from oversizing than the group 
sequential trial.

Results with respect to conditional performance
To evaluate the conditional performance, we calculated 
the conditional performance score SC as well as its com-
ponents lCP , lN , vCP , vN for the location and variation of 
observed conditional power and sample size. The results 
are illustrated in Fig. 3 and provided in Table 2. In con-
trast to the global performance, the two-stage group 
sequential design performs best according to the condi-
tional performance score for effect sizes lower than 0.4. 

Fig. 2  Global performance measures of the different designs. “gs2”, “gs3” denote the group-sequential designs with 2 or 3 stages. “ocp”, “ optSG ”, “optN” 
denote the three-stage designs with recalculation at the first interim analysis using the observed conditional power approach, the optimization 
of SG or the Jennison & Turnbull approach to optimize the expected sample size. The red areas mark regions of underpowering (power of less than 
1− β ) and oversizing (expected sample size higher than Nfix(δ))
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Table 1  Global performance measures of the simulation. “gs2”, “gs3” denote the group-sequential designs with 2 or 3 stages. “ocp”, 
“ optSG ”, “optN” denote the three-stage designs with recalculation at the first interim analysis using the observed conditional power 
approach, the optimization of SG or the Jennison & Turnbull approach to optimize the expected sample size

Effect sizes δ

 Design Perf. measure 0.0 0.1 0.2 0.3 0.4 0.5 0.6

gs2 Powδ 0.027 0.145 0.458 0.814 0.969 0.996 1.000

Eδ[N] 137.4 165.3 175.0 162.9 135.7 106.1 84.8

SG ... ... 0.283 0.447 0.427 0.333 0.237

gs3 Powδ 0.026 0.149 0.457 0.803 0.964 0.997 1.000

Eδ[N] 128.2 157.4 161.9 140.8 112.0 89.8 77.6

SG ... ... 0.295 0.487 0.517 0.436 0.302

ocp Powδ 0.025 0.184 0.582 0.873 0.964 0.992 0.999

Eδ[N] 191.5 243.5 226.7 168.4 119.4 90.6 76.9

SG ... ... 0.356 0.494 0.487 0.426 0.308

optSG Powδ 0.025 0.169 0.540 0.862 0.972 0.996 1.000

Eδ[N] 176.3 219.0 206.8 159.3 115.4 89.3 76.7

SG ... ... 0.333 0.504 0.511 0.438 0.310

optN Powδ 0.025 0.146 0.456 0.798 0.957 0.994 1.000

Eδ[N] 122.2 154.6 160.4 139.0 109.9 88.2 76.7

SG ... ... 0.295 0.486 0.518 0.443 0.310

Fig. 3  Conditional performance measures of the different designs. “gs2”, “gs3” denote the group-sequential designs with 2 or 3 stages. “ocp”, 
“ optSG ”, “optN” denote the three-stage designs with recalculation at the first interim analysis using the observed conditional power approach, 
the optimization of SG or the Jennison & Turnbull approach to optimize the expected sample size
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The reason for this can easily be found when examining 
the score components: The two-stage group sequential 
design has no variation in the second-stage sample size 
(given that the trial continues to the second stage) and 
hence the component vN is constantly 1. In contrast, all 
of the three-stage designs have variation in their sample 
sizes after the first interim analysis, leading to values of 
vN below 1. For effect sizes above 0.4, however, the two 
stage design is inferior to the three-stage designs. The 
reason for this is the location of the sample size: Due to 
its higher expected sample size, the two-stage design suf-
fers more from oversizing then the three-stage designs.

When comparing the three-stage designs with regard 
to the conditional performance score, the group sequen-
tial design performs best, especially for low effect sizes. 
The reason for this lies in the sample size components: 
The variation in the sample size is again lower for the 
group sequential design than for the designs with recal-
culation. In addition, the SG-optimized and sample 

size-optimized recalculation rules perform much worse 
in terms of sample size location for effect sizes δ < 0.2 . 
This is because they recruit a large number of patients 
even though the effect size is too small to achieve suffi-
cient power. A slight benefit of the recalculation rules can 
be seen in the variation component vCP of the observed 
conditional power. However, this benefit does not com-
pensate the disadvantage in terms of location and varia-
tion of the sample size.

Discussion
In this paper, we have analyzed sample size recalcula-
tion in three-stage clinical trials with a focus on different 
evaluation perspectives. To this end, we applied sample 
size recalculation methods from the literature for two-
stage clinical trials to the case of recalculation at the first 
interim analysis in three-stage clinical trials. While an 
extension of the observed conditional power approach to 
three-stage trials has already been performed by Uesaka 

Table 2  Conditional performance measures of the simulation. “gs2”, “gs3” denote the group-sequential designs with 2 or 3 stages. 
“ocp”, “ optSG ”, “optN” denote the three-stage designs with recalculation at the first interim analysis using the observed conditional power 
approach, the optimization of SG or the Jennison & Turnbull approach to optimize the expected sample size. lCP , vCP , lN , vN denote the 
location and variation components of conditional power and sample size for the conditional performance score SC

Effect sizes δ

 Design Perf. measure 0.0 0.1 0.2 0.3 0.4 0.5 0.6

gs2 lCP 0.789 0.691 0.622 0.739 0.839 0.923 0.992

vCP 0.438 0.365 0.328 0.332 0.385 0.458 0.558

lN 0.567 0.567 0.435 0.890 0.654 0.544 0.485

vN 1 1 1 1 1 1 1

SC 0.699 0.656 0.596 0.740 0.719 0.731 0.759

gs3 lCP 0.796 0.689 0.638 0.755 0.868 0.953 0.983

vCP 0.451 0.351 0.311 0.319 0.372 0.448 0.557

lN 0.625 0.606 0.381 0.991 0.811 0.738 0.696

vN 0.808 0.833 0.813 0.784 0.807 0.865 0.934

SC 0.670 0.620 0.536 0.712 0.715 0.751 0.792

ocp lCP 0.694 0.582 0.731 0.819 0.894 0.944 0.981

vCP 0.366 0.345 0.370 0.439 0.544 0.653 0.779

lN 0.218 0.211 0.649 0.864 0.761 0.730 0.717

vN 0.469 0.416 0.337 0.412 0.581 0.682 0.726

SC 0.437 0.388 0.522 0.634 0.695 0.752 0.801

optSG lCP 0.740 0.634 0.682 0.783 0.871 0.944 0.999

vCP 0.439 0.390 0.378 0.410 0.486 0.573 0.681

lN 0.316 0.323 0.566 0.907 0.788 0.746 0.723

vN 0.517 0.481 0.442 0.504 0.653 0.773 0.842

SC 0.503 0.457 0.517 0.651 0.699 0.759 0.811

optN lCP 0.776 0.670 0.652 0.761 0.858 0.941 0.996

vCP 0.439 0.369 0.338 0.357 0.426 0.512 0.624

lN 0.664 0.615 0.375 0.999 0.824 0.759 0.724

vN 0.570 0.618 0.656 0.688 0.750 0.830 0.893

SC 0.612 0.568 0.505 0.701 0.714 0.761 0.809
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et al. [11], we are, to the best of our knowledge, the first 
having extended the sample size optimization approach 
of Jennison & Turnbull [7] to three-stage clinical trials. 
Apart from an extension of recalculation rules to three-
stage trials, we have also extended an evaluation method 
for recalculation rules, namely the conditional perfor-
mance score, to the case of three-stage trials.

In terms of global performance, measured by power 
and expected sample size, the three-stage designs per-
formed notably better than the considered two-stage 
design. In contrast, the two-stage group sequential 
design outperformed the three-stage designs with regard 
to the conditional performance score. This shows that the 
performance of a recalculation rule strongly depends on 
the perspective one takes with regard to evaluation. Does 
the three-stage design’s reduction in expected sample 
size, from the global perspective outweigh the disadvan-
tage of higher variation of the sample size, which leads to 
the inferior performance, in terms of the conditional per-
formance score? This question is up to the applicant.We 
note that the conditional performance score definition 
can be customized depending on which performance 
aspects the applicant finds most relevant. In the score 
definition (4) we applied an equal weighting scheme for 
the four performance components. However, if an appli-
cant deems expected sample size reduction due to the 
second interim analysis of a three-stage trial more rele-
vant than the uncertainty in sample size, which it implies, 
s/he could assign a higher weight to the lN and a lower 
weight to the vN component in the score definition. Such 
a change in the weighting would lead to a relative perfor-
mance improvement of three-stage trials compared to 
two-stage trials, with regard to the conditional perfor-
mance score.

We also compared global and conditional performance 
of group sequential three-stage designs and three-stage 
designs with recalculation. Recalculation leads to a dete-
rioration in terms of conditional performance. This is in 
line with similar comparisons in the context of two-stage 
designs [3]. Note that none of the recalculation rules 
applied in this study were optimized according to the 
conditional performance score, so there might still be a 
margin for improvement. However, even for conditional 
performance score-optimized recalculation rules, the 
two-stage literature so far only showed limited poten-
tial for improvement over group sequential trials [18]. 
In terms of global performance, the recalculation rules 
achieved a slight advantage over the group sequential 
design. This is due to their potential to achieve the same 
power by a lower expected sample size and by their abil-
ity to work against underpowering at a low effect size. 
The relatively small performance gain compared to group 
sequential designs is not specific for three-stage trials but 

was also noted in the two-stage recalculation literature. 
E.g. Jennison and Turnbull [7] showed that recalculation 
can only marginally reduce the expected sample size, 
given power constraints, compared to group sequential 
designs and Pilz et  al. [8] optimized recalculation rules 
to prevent underpowering at low effect sizes but found 
that these can lead to very high sample size choices. So, 
given these results from the two-stage literature, it is 
not surprising that the simulation did not reveal more 
significant performance gains of three-stage trials with 
recalculation.

For any difference between the observed global and 
conditional performance for the designs, it should be 
noted that it is not only a matter of the performance 
perspective (conditional versus global) but also a matter 
of the definition of the two scores: the conditional per-
formance score includes the variance of the sample size 
and power while the global score does not. Regarding the 
robustness against underpowering, it needs to be said 
that a group sequential design powered for lower effect 
sizes would also suffer less from underpowering.

In this paper, we restricted our analysis to recalculation 
at the first interim analysis of a three-stage trial. In this 
way, the resulting design can be considered as a combi-
nation of an adaptive design (with flexible sample size 
choice at the first interim analysis) and a group sequen-
tial design (with the second interim analysis offering the 
option to stop for efficacy or futility, but not to adapt 
sample size for the remainder of the trial). So, stages two 
and three can be interpreted as a common two-stage 
group sequential design, where the sample size choice 
has been made in advance (at the first interim analysis). 
Consequently, stages two and three share typical limita-
tions of group sequential trials. In particular, it is possi-
ble that second-stage interim results can suggest that the 
chosen sample size for the third stage offers low power, 
and the trial nevertheless continues with the third stage, 
without an increase in sample size. As there is an ongoing 
debate about the potential benefits of adaptive designs in 
terms of flexibility versus the benefits of group sequen-
tial designs in terms of simplicity and planning security 
[7, 10, 22], we deem the suggested three-stage designs of 
practical relevance, despite their limitations.

An alternative to the suggested design would be to 
allow recalculation at the second interim analysis instead 
of at the first interim analysis. Recalculation at the sec-
ond interim analysis is, in principle, very similar to recal-
culation in two-stage trials because there is only one 
remaining stage after the recalculation is performed. 
Accordingly, recalculation rules from the two-stage trial 
literature would be applicable without much modifi-
cation. Hence, an analysis of recalculation at the first 
interim analysis is arguably of higher research interest. In 
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addition, we are of the opinion that the potential of sam-
ple size recalculation is higher at the first interim analysis 
than at the second interim analysis. This is because the 
probability of a trial to go into the third stage is lower 
than the probability to get into the second stage. Hence, 
a recalculation rule at the third stage is less likely to be 
applied in the trial. Moreover, at the first interim analy-
sis there is more remaining α to spend than at the second 
interim analysis (where one additional option for efficacy 
stop has already passed). Thus, there is a higher potential 
to affect the power of the design by modifying the sample 
size at the first interim analysis.

A possible extension of our suggested designs with 
recalculation at the first interim analysis would be to 
allow additional recalculation at the second interim anal-
ysis. This would sacrifice the advantage of stage two’s and 
stage three’s group-sequential structure in favor of more 
flexibility. A proper definition of recalculation rules at 
the second interim analysis, when the design also allows 
recalculation at the first interim analysis, is, however, 
not trivial. This is due to the fact that, in this case, the 
sampling procedure for the effect estimate at the sec-
ond interim analysis depends on the results of the first 
interim analysis [23]. This dependence can make effect 
estimates biased (which would be problematic for recal-
culation approaches like OCP, which rely on effect esti-
mates) and generally makes the distribution of such effect 
estimates or the corresponding second-stage test statistic 
complex and difficult to express mathematically (which 
is problematic for optimization approaches like sample 
size-optimized or SG score-optimized recalculation). 
Given this problem of a proper definition of recalcula-
tion rules at the second interim analysis, if recalculation 
at the first interim analysis is allowed, we decided not to 
include recalculation at the second interim analysis in 
this study. We encourage further research in this direc-
tion, which provides a proper solution for the definition 
of the recalculation rules at the second interim analy-
sis. Having defined recalculation rules for the second 
interim analysis, the recalculation rules considered here 
for the first interim analysis could, with modifications, 
be applied. In this case, the formulas for the conditional 
power and expected sample size, on which the observed 
conditional power, the sample size-optimization, and 
the SG-optimization approach rely, would need to be 
modified such that the third-stage per-group sample 
size n3(z∗2) is specified as a function of the second-stage 
interim result. Apart from this change, the recalculation 
rules for the first interim analysis can be derived in the 
same way as we did here.

Another possible extension of the considered method-
ology would be different types of endpoints. Our paper 

focuses on continuous endpoints but three-stage trials 
would also be possible for binary and time-to-event end-
points. Also, the considered recalculation rules could be 
extended as they rely on the concept of the conditional 
power, which is also feasible for these other endpoint 
types. Some aspects of the trial design would become 
more complicated in the case of time-to-event end-
points: In our paper, we made the standard assumption 
that the continuous outcome of a patient is observable at 
the time of recruitment so that the amount of informa-
tion at the first interim analysis depends directly on the 
number of recruited patients n1 . For time-to-event end-
points, however, the event rate is also important, so that 
the amount of information not only depends on n1 but 
also on the event rate. This makes it more complicated to 
find a right time point for an interim analysis, such that 
enough information for recalculation is available and at 
the same time not too many patients have already been 
recruited. This could also be an interesting aspect for 
future research.

With this work we shed light on three-stage trials with 
sample size recalculation and their evaluation. However, 
in the practical applications, extensive simulation studies 
are needed for a detailed comparison of realistic options 
and other sample size recalculation approaches (e.g. [6]).
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