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Abstract 

Background In large multiregional cohort studies, survival data is often collected at small geographical levels (such 
as counties) and aggregated at larger levels, leading to correlated patterns that are associated with location. Tradi-
tional studies typically analyze such data globally or locally by region, often neglecting the spatial information inher-
ent in the data, which can introduce bias in effect estimates and potentially reduce statistical power.

Method We propose a Geographically Weighted Accelerated Failure Time Model for spatial survival data to inves-
tigate spatial heterogeneity. We establish a weighting scheme and bandwidth selection based on quasi-likelihood 
information criteria. Theoretical properties of the proposed estimators are thoroughly examined. To demonstrate 
the efficacy of the model in various scenarios, we conduct a simulation study with different sample sizes and adher-
ence to the proportional hazards assumption or not. Additionally, we apply the proposed method to analyze ovarian 
cancer survival data from the Surveillance, Epidemiology, and End Results cancer registry in the state of New Jersey.

Results Our simulation results indicate that the proposed model exhibits superior performance in terms of four 
measurements compared to existing methods, including the geographically weighted Cox model, when the propor-
tional hazards assumption is violated. Furthermore, in scenarios where the sample size per location is 20-25, the simu-
lation data failed to fit the local model, while our proposed model still demonstrates satisfactory performance. In 
the empirical study, we identify clear spatial variations in the effects of all three covariates.

Conclusion Our proposed model offers a novel approach to exploring spatial heterogeneity of survival data com-
pared to global and local models, providing an alternative to geographically weighted Cox regression when the pro-
portional hazards assumption is not met. It addresses the issue of certain counties’ survival data being unable to fit 
the model due to limited samples, particularly in the context of rare diseases.
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Background
In public health studies, such as survey studies, surveil-
lance efforts, and longitudinal studies, survival data are 
often collected at small geographical levels (such as com-
munities or counties) and aggregated at larger levels [1]. 
Taking the Surveillance, Epidemiology, and End Results 
(SEER) Program [2]. as an example, it encompasses about 
20 states, each containing several counties. This spatially 
aggregated survival data inherently contains geographic 
information. Previous studies have demonstrated a close 
relationship between geographic information and mor-
tality from advanced ovarian cancer, indicating that influ-
encing factors are not constant across space [3]. Applying 
traditional ‘global’ models may result in misleading out-
comes [4] Neglecting to account for spatial variation in 
the modeling framework could introduce biased effect 
estimates [5]. Establishing a “local model” in each specific 
location may be challenging due to geographically sparse 
data, such as rare diseases, where traditional methods 
struggle with limited sample sizes, leading to difficulties 
in fitting survival models in certain areas and reducing 
statistical power [6].

To address these challenges, a commonly used 
approach is geographically weighted regression (GWR), 
which allows coefficients to vary geographically and 
employs a distance weighting scheme to assign weights 
to each observation [7]. GWR is a statistical method that 
tackles heterogeneity in error variance caused by spatial 
correlation of error terms [8]. The main principle behind 
GWR is to leverage information from nearby observa-
tions, in line with the “first law of geography” positing 
that closer things are more strongly related than dis-
tant ones [9]. By applying the GWR method, regression 
parameters are estimated locally at each location, even 
with limited sample sizes.[10].

Combining the GWR approach with classical sur-
vival analysis can effectively model spatial survival data. 
For instance, Taufiq (2019) [11] employed a Bayesian 
approach to estimate the Cox survival model with GWR, 
allowing for the estimation of survival and hazard func-
tions, as well as the determination of prior and posterior 
distributions. Similarly, Xue (2020) [12] introduced geo-
graphically weighted Cox regression for sparse spatial 
survival data, incorporating a stochastic neighborhood 
weighting scheme at the county level. While these mod-
els are built upon the Cox proportional hazards model, 
which is widely used for survival data analysis, they often 
assume the proportional hazards (PH) assumption, which 
may not hold in practice [13].

In survival analysis, the accelerated failure time (AFT) 
model is recognized as an alternative to Cox models when 
the PH assumption is not be statisfied [14]. However, 
existing literature on the application of the AFT model 

with spatially varying coefficients for geographic survival 
data is limited. To address this gap, we propose the geo-
graphically weighted AFT (GWAFT) regression to handle 
spatial survival data that do not adhere to the PH assump-
tion. By estimating regression coefficients at each location 
and weighting observations based on their distance, the 
GWAFT model offers a solution for modeling sparse spa-
tial survival data when the PH assumption is violated.

The contributions of this study are as follows:

(1) The proposed GWAFT model resolves errors stem-
ming from spatial heterogeneity, which can lead to 
biased effect estimates. It offers a novel approach to 
modeling geographic survival data without relying 
on the proportional hazards assumption.

(2) The method effectively tackles the challenge of con-
structing models with limited local sample sizes, 
particularly in scenarios with geographically sparse 
data, such as rare diseases.

(3) The methodology is applied to the survival analysis 
of ovarian cancer patients from the SEER cancer 
registry in New Jersey. The empirical study demon-
strates the successful handling of geographical het-
erogeneity and sparse data issues, providing spatial 
parameter estimations.

Method
The geographically weighted AFT model
For i = 1, 2, . . . , n , let (Yi, Ti, Ci, δi, Xi, li) denotes the i 
th records of right-censored survival data collected from 
different sites (locations), where Ti is log-transformed fail-
ure time (survival time), Ci denotes the censoring time 
under the same transformation.

Due to the right censoring, the observed survival time 
is denoted by Yi = min(Ti,Ci) and the censoring indica-
tor δi = I(Ti ≤ Ci) , where I(·) is an indicator function. 
Xi ∈ Rp is the corresponding vector of covariates, and 
li ∈ R2 is the spatial information of the corresponding loca-
tion, i.e., li = latitudei, longitudei .

The basic multivariate AFT model was presented in Eq. (1)

where β is a p × 1 vector of regression coefficients and εi 
is a random error vector with an unspecified multivariate 
distribution.

The generalized least-squares estimator can be expressed 
as [15]

where �−1
i (α) is a K × K working covariance matrix with 

an additional correlation parameter α, b is an initial 

(1)Ti = Xiβ + εi

(2)
n∑

i=1

(Xi − X)T�−1
i (α)(Ŷi(b)− Xiβ) = 0
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estimator of β, and X =
n∑

i=1

Xi/n . Due to right censoring, 

Ti can be replaced by the least-squares normal equations 
with its conditional expectation: Ŷi(b) = Eβ(Ti|Yi, δi,Xi).

The estimator can be solved by Eq. (3)

where Y (b) =
n∑

i=1

Ŷi(b)/n.

The approaches mentioned earlier assign equal weights to 
all observations. However, in the GWAFT model proposed 
in this study, the main concept is to assign different weights 
to each observation based on their distance from the center 
area. This allows us to incorporate the information from 
surrounding observations. Therefore, within the framework 
presented above, we incorporate the weighting factor wi(l) 
introduced in section of weighting function to incorporate 
geographic information into the model presented in Eq. (4). 
The estimation of the point estimator is then performed.

where b(l) means the coefficients are varying with loca-
tion l. It can be solved by Eq. (5)

Weighting function
In GWAFT regression, an initial issue that needs to be 
addressed is the determination of observation weights. 
According to the “First Law of Geography”, the general idea 
is that for the sample to be estimated, the closer other sam-
ples is to it, the greater the weight is assigned, otherwise the 
smaller the weight is assigned. As for the distance between 
observations, in health-related studies, the data is often col-
lected from limited areal units (e.g., counties or cities) with 
defined boundaries. Therefore, we just need to calculate the 
distance between each areal center, then use certain kernel 
functions to assign weights for each observation.

Therefore, the specific assignment of weights is as fol-
lows, suppose that the observation i collect at K and j col-
lect at P, there is a circle with radius r centered on K, and 
we assume that the observations included in the circle 
are close to K, while those are not far from K. Thus, a tra-
ditional weight function is shown as (6).

(3)Lmulti(b) =

{
n∑

i=1

(Xi − X)T�−1
i (α)(Xi − X)

}−1

×

{
n∑

i=1

(Xi − X)T�−1
i (α)(Ŷi(b)− Y i(b))

}

(4)

n∑

i=1

wi(l)
(
Xi − X

)T
�−1

i (α)

(
Ŷi(b(l))− Xiβ

)
= 0

(5)Lmulti(b) =

{
n∑

i=1

wi(l)(Xi − X)T�−1
i (α)(Xi − X)

}−1

×

{
n∑

i=1

wi(l)(Xi − X)T�−1
i (α)(Ŷi(b)− Y i(b))

}

If the observation i being the sample to be estimate, the 
weight wij given to observation j is

where dij is a certain measure of distance between obser-
vation i and j, now is the distance between center K and P. 
It can be many kinds of distance, such as Graph distance 
[16], Great circle distance [17] and Euclidean distance 
[18], etc.

According to Eq. (6), observations with distance 
from K below r will be included in the model, while 
observations whose distance to K just exceeds r will 
be excluded. Such a definition is theoretically sound, 
however, in practical data analysis, it would be unnatu-
ral that the spatial association between observations 
ends so abruptly.

To solve this issue, a Gaussian distance-decay-based 
weighting could be introduced into our approach by Eq. (7),

This function can be referred to as kernel functions, 
which can be used to decide the weights of point-refer-
ence data where locations vary continuously over a spa-
tial domain. The parameter h is the bandwidth parameter 
selected by the user and provides some weight controls 
of the geographical data. Therefore, we use the Eq. (8) 
weighting function to avoid the situation where the spa-
tial association ends so abruptly.

The choice of distance
Deciding on a threshold ds in (6) for the great circle dis-
tance or Euclidean distance, involves determining how 
close is “close enough” to be considered the same, which 
is usually a subjective matter. In practice, it will cost lots 

(6)wi

(
j
)
=

{
1 if 0 < dij = dKP ≤ ds
0 otherwise

,

(7)wij = exp
(
−d2ij/h

2
)
,

(8)

wi

(
j
)
=

{
1 if 0 < dij = dKP ≤ ds

exp
(
−d2ij/h

2
)

if 0 < dij = dKP
,
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of calculation power to find the best hyperparameter ds . 
A more robust and natural distance function, as well as 
an associated rule, is desired [12].

Compared to the above distances, graph distance 
provides a new way to solve this issue, without ds to 
be determined. Following Bhattacharyya and Bickel 
(2014) [16], suppose that we have a random graph Gn 
as the data collected. Let V (Gn) = {v1, . . . , vn} denotes 
the vertices of Gn and E(Gn) = {e1, . . . , em} denotes the 
edges of Gn . Each vertice denotes an area center v . The 
graph distance between each center can be defined as 
follows:

where |V (e)| represents the cardinality of edges in e.
According (8) and (9), the weight of each observation is 

defined as follows

where dvivj is the graph distance between center vi and vj. 
This weighting scheme makes all observations in same 
area get equal weights and does not require precise lati-
tude and longitude information. Alternatively, it just 
needs a topology graph, which is more convenient to 
apply to real study.

(9)

dvivj =

{
|V (e)| if e is the shortest path connecting v1 and vj

∞ v1 and vj are not connected
,

(10)wi

(
j
)
=

{
1 if dvivj ≤ 1

exp
(
−d2vivj/h

2
)

if 1 < dvivj
,

The choice of bandwidth h
For the choice of bandwidth h, Brunsdon et al. (1996) [19] 
proposed that the bandwidth is selected by minimizing the 
cross-validated out-of-sample sum of squared errors. While 
in our method, it may not be suitable because as for survival 
data, there is no response to the hazard. Thus, we choose to 
use information criterion to choose the bandwidth.

The AIC and the BIC are not suitable for the bandwidth 
selection in our study, the minimum bandwidth would 
always be preferred. This is because the component of AIC 
and BIC accounting for model complexity remains the same 
across all models being compared. Therefore, we turned to 
minimize the modified quasi-likelihood information crite-
rion (QIC) [20] to select the optimal bandwidth. The QIC 
is a modification to AIC, where the likelihood is replaced 
by the quasi-likelihood and a proper adjustment is made for 
the penalty term. In this study, we define the QIC as follows:

Assuming the data is aggregated from G unique loca-
tions, respectively k∗1 , k

∗
2 , ..., k

∗
G , and the estimated 

regression coefficients β̂(k∗1 ), β̂(k
∗
2 ), ..., β̂(k

∗
G) , when the 

bandwidth equals h, the QIC can be calculated as:

where �̂I (β̂(k
∗
g )) = −∂2Q((β̂(k∗g )); I ,D)/∂β∂β ′

∣∣
β=β̂(k∗g )

,Ds∗g donates the observations data at s∗g , V̂  is a working 
covariance matrix.

The main Algorithm 1 of the GWAFT regression pro-
posed in the current study is organized as follows:

(11)QIC = −2

G∑

g=1

Q
(
β̂

(
k∗g

)
; I ,Ds∗g

)
+ 2

G∑

g=1

�̂

(
β̂

((
k∗g

))
V̂
(
β̂

(
k∗g

)))
,

Algorithm 1. Geographically weighted AFT regression
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Simulation study
In this section, we generated simulated survival data 
similar to the surveillance data from the SEER program. 
We aimed to study the performances of the proposed 
method using this data. To ensure the representativeness 
of our results, we randomly generated five counties along 
with their graph distance matrix according to SEER.

We conducted five simulations, each with four covari-
ates considered. Two of these covariates were found to be 
significant, while the other two were non-significant, and 
the censoring rates are 0.4. The key differences between 
the four simulations are summarized in Table 1.

In order to ensure the representativeness of our simu-
lations, Simulation 1 and 2 were conducted to study the 
performances of the proposed method in situations with 
a large sample size and satisfaction of the Proportional 
Hazard assumption (PH assumption), respectively. The 
On the other hand, Simulation 3 and 4 were conducted 
in  situations with sparse sample sizes. Each simulation 
introduced additional structures to the data. To more 
closely mimic real-world conditions, we randomly select 
the sample size within a specified range rather than using 
a fixed sample size in each simulation replication. To vali-
date the applicability of our approach to extremely imbal-
anced datasets, we conducted Simulation 5.

Simulation design
Simulation 1 with large sample size and PH assumption 
not be satisfied
In this simulation, we generated a dataset which does 
not satisfy the PH hypothesis to study the performance 
of the proposed method. So the survival time follows a 
log-normal distribution LN(μ,σ), and the cumulative risk 
function expressed by

(12)H0(t) = −log

[
1−�

(
log t − µ

σ

)]
,

where �(·) is the distribution function of the central and 
reduced normal distribution. Survival times can there-
fore be simulated from:

where U~ Uniform (0,1).
Censoring times were generated independently from 

Exp(0.3). Then, the sample size of each location was set 
between 80 to 85 randomly selected from a uniform dis-
tribution, which was relatively adequate.

We totally took four covariates into account: 
x1~Bernoulli(0.3), x2~N(0,1), x3~Bernoulli(0.7), x4~N(0,1). 
The vector of coefficients (β1, β2, β3, β4) was set to (0.4, 
0, -0.6, 0), which means that β1 and β3 were significant. 
For each county (location) m, the spatially varying coef-
ficients were generated from (0.4, 0, -0.6, 0) + 0.1* (the 
graph distance between county m and county l- mean of 
distance between all other counties and county l), with 
the county l being the center of the five counties.

Our weighting function was (10). In order to avoid the per-
formance of the proposed model being fairly close to a global 
(unweighted) model, the weight of other locations was 0.8 at 
maximum refer to Xue [12]. Meanwhile, the largest graph 
distance was 9, so the maximum bandwidth was 20. There-
fore, the grid of bandwidths was set to h ∈{1, 2, …, 20}.

For each location, we fitted the GWAFT regression, 
Geographically Weighted Cox (GWCox) regression, 
local AFT regression, and local Cox regression. Besides, 
we also fitted the global (unweighted) AFT regression 
and the global (unweighted) Cox regression in the whole 
datasets. The simulation process described above was 
repeated 1000 times. The parameter estimates were eval-
uated using the following four measurements:

where β̂a,b,c is the estimate for the b th coefficient of 
county a in the c th replicate, β̂a,c is the average of β̂a,b,c 

(13)T =
1

exp(X1β)
exp

(
σ∅−1(U)+ µ

)
,

(14)mean absolute bias (MAB) =
1

5

5∑

a=1

1

1000

1000∑

c=1

∣∣∣β̂a,b,c − βa,c

∣∣∣,

(15)

mean standard deviation (MSD) =
1

5

5∑

a=1

√
1

999

1000∑

c=1

(
β̂a,b,c − β̂a,c

)2
,

(16)

mean of mean squared error (MMSE) =
1

5

5∑

a=1

1

1000

1000∑

c=1

(
β̂a,b,c − β̂a,c

)2
,

(17)mean coverage probability (MCP) =
1

5

5∑

a=1

1

1000

1000∑

c=1

1
(∣∣∣β̂a,b,c − β̂a,c

∣∣∣1.96 ∗ SE
(
β̂a,b,c

))
,

Table 1 The key differences between the four simulations

Sample size Satisfy the Proportional 
Hazard assumption(Yes/No)

Simulation1 80-85/per location No

Simulation2 Yes

Simulation3 20-25/per location No

Simulation4 Yes

Simulation5 20, 200, 500, 1000, 2000 No
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over the 1000 replicates, βa,c is the true underlying 
parameter. and 1(·) is the indicator function.

As for the insignificant variables β2, β4, we use false 
positive rate (FPR) to measure the performance of meth-
ods [21]. It can be defined as the counts of being esti-
mated significantly mistakenly while non-significant in 
1000 simulation replications divided by 1000. Lower FPR 
values are preferable.

Simulation 2 with large sample size and with PH assumption
In this simulation, survival times were generated from a 
Cox model with a baseline hazard function �0(t) = 0.03 . 
Censoring times were generated independently using 
Uniform(0, 20) . The coefficient settings, sample size, and 
other parameters were kept the same as in Simulation 1. 
The primary objective of this section is to compare the 
performance of the models with and without the propor-
tional hazards (PH) assumption in the large sample size 
situation

Simulation 3 with sparse sample size and without PH 
assumption
As observed in the aforementioned simulation, when each 
location has a sufficiently large sample size, all models 
can provide estimations, regardless of their efficiency or 
accuracy. However, in practical scenarios, the sample size 
is often limited, particularly for rare diseases. Therefore, 
the main objective of this section is to investigate the per-
formance of the models in situations with sparse survival 
data. Consequently, the sample size for each location was 

randomly selected from a range of 20 to 25. The remain-
ing settings remained the same as in Simulation 1.

Simulation 4 with sparse sample size and with PH 
assumption
In this section, the data generation process was similar to 
Simulation 2, and the sample size for each location was 
randomly selected from a range of 20 to 25. The main 
purpose of this section is to compare the model perfor-
mances with and without the proportional hazards (PH) 
assumption in situations with sparse survival data.

Simulation 5 with extreme sample size and without PH 
assumption
In this section, we generated survival data with extreme 
sample size, being 20, 200, 300, 400, 500 in each location. 
This simulation was specifically designed to study the 
applicability of our approach in situations where there is 
a significant disparity in the distribution of data across 
different locations. By subjecting our methodology to 
such extreme imbalances, we aimed to assess its robust-
ness and ability to provide accurate and reliable results in 
challenging scenarios without the proportional hazards 
(PH) assumption. Other settings were same as Simula-
tion1 and 3.

Simulation result
Results in Simulation 1
The four measurements of the significant coeffi-
cients β1 and β3 varying with bandwidth are depicted 
in Fig.  1. As illustrated in Fig.  2, in this scenario, the 

Fig. 1 The QIC value of GWAFT varying with bandwidth in Simulation 1
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MAB, MSD, and MMSE consistently remain at low 
levels. The GWAFT regression model consistently 
outperforms the GWCox regression model across 
all bandwidths. Furthermore, in terms of the FPR for 
the non-significant coefficients β2 and β4 the GWAFT 
model also exhibits superior performance across the 
most of bandwidths.

When the bandwidth equals 8, the QIC value reaches 
its lowest point at 329.48. The corresponding results of all 
models are presented in Table 2. We can find that all AFT 
family models consistently exhibit significantly smaller 
values for MAB, MSD, and MMSE of β1 and β3 com-
pared to the Cox family models, even differing by orders 
of magnitude. Among all models, the GWAFT regression 

Fig. 2 Performance measures for the GWAFT model and GWCox model in Simulation 1; (a) MAB of the estimator of β1 along with bandwidth 
(b) MAB of the estimator of β3 along with bandwidth, (c) MSD of the estimator of β1 along with bandwidth, (d) MSD of the estimator of β3 
along with bandwidth, (e) MMSE of the estimator of β1 along with bandwidth, (f) MMSE of the estimator of β3 along with bandwidth
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and global AFT regression demonstrate the best per-
formance, with the former outperforming the latter in 
terms of MSD and MMSE by more than half. The MCP of 
GWAFT are around 0.95.

Regarding the FPR, the GWAFT model consistently 
outperforms all other models, with values of 0.0152 
and 0.0146, respectively. The GWAFT model and the 
Global model all perform better than corresponding 
Cox model, while the global AFT model and global 
Cox model performances are relative similar with each 
other as indicated in Table 3.

Above all, as for the comparison between GWAFT 
and GWCox, when the PH assumption is not satis-
fied, we can find that the MAB, MSD, MMSE, MCP, 
and FPR of GWAFT are all outperform than GWCox, 
as shown in Tables 2 and 3.

Result in Simulation 2
As depicted in Fig.  3, we observe contrasting results 
compared to Simulation 1. The GWCox regression 
model outperforms in terms of MAB and MMSE, 
while slightly lagging behind in MSD. All subfigures 
demonstrate a pattern where model performances vary 
as the bandwidth increases, eventually stabilizing at a 
certain value.

When the bandwidth is set to 19, the lowest QIC 
value of 573.04 is attained. Likewise, Table 4 illustrates 
the four measurements for the six models. It is evident 
that the Cox family models consistently outperform 
their corresponding AFT models, except for the MSD 
of GWCox and GWAFT, which are approximately 0.14 
versus 0.12. However, in Table  5, we observe that the 
FPR of the GWCox model, the Local Cox model, and 
the Local AFT model is relatively higher compared to 
others, already nearing 0.5.

As for the comparison between GWAFT and GWCox, 
when the PH assumption holds, we can find that all meas-
urements of GWCox are all outperform than GWAFT 
except MSD and FPR, as shown in Tables 4 and 5.

Result in Simulation 3
Regrettably, in  situations with small sample sizes, the 
local model becomes ineffective and not even converge 
in some simulations. Consequently, we report the per-
formances of GWAFT regression, GWCox regression, 
global AFT regression, and global Cox regression. Simi-
larly, as observed in the above simulations, the four 
measurements of GWAFT regression and GWCox 
regression, namely MAB, MSD, and MMSE, exhibit 
variations across different bandwidths, as depicted in 
Fig. 4. It is evident that the performance of the GWAFT 

Table 2 Performance of global AFT, global Cox, best selected GWAFT, best selected GWCox, local AFT, local Cox in Simulation 1 
(without PH assumption)

Model Parameter MAB MSD MMSE MCP

Global AFT β1 0.1817 0.0944 0.0452 0.3480

β3 0.2684 0.1034 0.0890 0.3280

Global Cox β1 0.4215 0.0823 0.1920 0.0000

β3 0.5748 0.0825 0.3440 0.4550

GWAFT (h=8) β1 0.0713 0.0415 0.0074 0.9520

β3 0.0702 0.0397 0.0069 0.9740

GWCox (h=11) β1 1.5352 0.1899 2.4085 0.0000

β3 2.2868 0.1942 5.2820 0.0106

Local AFT β1 0.4639 9.0969 120.8229 0.7562

β3 0.3296 4.5639 27.1736 0.7490

Local Cox β1 1.8837 0.6644 4.2259 0.0000

β3 2.8024 1.1327 9.3790 0.1134

Table 3 The FPR of global AFT, global Cox, best selected GWAFT, 
best selected GWCox, local AFT, local Cox in Simulation 1 
(without PH assumption)

Model Parameter FPR

Global AFT β2 0.0650

β4 0.0690

Global Cox β2 0.1250

β4 0.1300

GWAFT (h=8) β2 0.0152

β4 0.0146

GWCox (h=11) β2 0.0508

β4 0.0526

Local AFT β2 0.2181

β4 0.2211

Local Cox β2 0.2257

β4 0.2311



Page 9 of 18Cai et al. BMC Medical Research Methodology          (2024) 24:239  

model is significantly superior to that of the GWCox 
regression model across all bandwidths.

When the bandwidth is set to 9, the QIC reaches its 
lowest value at 99.77. As shown in Table  6, it shows 
a comparison of the four models in terms of MAB, 
MSD, and MMSE. The GWAFT model consistently 
outperforms the other models. Moreover, similar to 
Simulation 1, the AFT family models demonstrate 

better performance compared to the Cox family mod-
els. Additionally, the MAB and MSD values of the 
Global AFT model are approximately twice those of the 
GWAFT model, while the MMSE value differs by an 
order of magnitude. Furthermore, as shown in Table 7, 
the GWAFT model exhibits a slightly superior robust-
ness in terms of FPR, with respective values of 0.0574 
and 0.0546. The MCP of GWAFT are more than 0.95.

Fig. 3 Performance measures for the GWAFT model and GWCox model in Simulation 2; (a) MAB of the estimator of β1 along with bandwidth 
(b) MAB of the estimator of β3 along with bandwidth, (c) MSD of the estimator of β1 along with bandwidth, (d) MSD of the estimator of β3 
along with bandwidth, (e) MMSE of the estimator of β1 along with bandwidth, (f) MMSE of the estimator of β3 along with bandwidth
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Above all, as for the comparison between GWAFT 
and GWCox, when the PH assumption is not satisfied, 
we can find that the MAB, MSD, MMSE, MCP, and FPR 
of GWAFT are all outperform than GWCox, as shown 
in Tables 6 and 7.

Result in Simulation 4
As seen from Fig.  5, we can find that the MAB and 
MMSE values of the GWCox model are consistently 
smaller than those of the GWAFT model across all 
bandwidths. However, the MSD values appear similar 
between the two models. Table 8 reveals that the meas-
urements of the Cox family models are significantly 
smaller than their corresponding AFT family models, 

except for the MSD, which aligns with the findings in 
Simulation 2. Furthermore, in terms of β2 and β4, the 
GWCox model performs relatively worse compared to 
the other three models.

Furthermore, when the bandwidth is set to 19, 
the GWCox model achieves the lowest QIC value of 
159.72. Regarding the significant coefficients β1 and 
β3, the GWCox model outperforms all other models. 
However, for β2 and β4, the GWCox model demon-
strates relatively worse performance compared to the 
other three models. Detailed results can be found in 
Tables 8 and 9.

As for the comparison between GWAFT and 
GWCox, when the PH assumption holds, we can 
find that all measurements of GWCox are all outper-
form than GWAFT except MSD and FPR, as shown in 
Tables 8 and 9.

Result in Simulation 5
In Simulation 5, when dealing with extreme imbalanced 
sample distributions, the local models struggle to pro-
vide stable solutions in locations with small sample sizes. 
As depicted in Fig.  6, the GWAFT model consistently 
outperforms the GWCox regression model across all 
bandwidths.

Notably, when the bandwidth is set to 10, the GWAFT 
model demonstrates the lowest QIC. Table  10 presents 
a comparison of the four models (MAB, MSD, MMSE), 
indicating that the GWAFT model exhibits the best per-
formance. Additionally, Table 11 shows that the GWAFT 
model boasts robustness in terms of FPR, with values 
of 0.0276 and 0.0286, respectively, surpassing all other 
models. It is worth mentioning that the performance 
of GWAFT in Simulation 5 falls slightly short of that in 

Table 4 Performance of global AFT, global Cox, best selected GWAFT, best selected GWCox, local AFT, local Cox in Simulation 2 (with 
PH assumption)

Model Parameter MAB MSD MMSE MCP

Global AFT β1 0.6823 0.1246 0.4887 0.0010

β3 1.0229 0.1186 1.0669 0.0000

Global Cox β1 0.4034 0.0647 0.1740 0.0010

β3 0.5976 0.0643 0.3687 0.0000

GWAFT (h=19) β1 0.6806 0.1246 0.4861 0.1576

β3 1.0248 0.1190 1.0717 0.0384

GWCox (h=10) β1 0.1579 0.1481 0.0388 0.8438

β3 0.1778 0.1463 0.0468 0.7954

Local AFT β1 0.7343 1.8572 13.5044 0.3028

β3 1.0229 0.6585 2.0089 0.0740

Local Cox β1 0.2891 0.3584 0.1337 0.8314

β3 0.2972 0.3568 0.1397 0.8202

Table 5 The FPR of global AFT, global Cox, best selected GWAFT, 
best selected GWCox, local AFT, local Cox in Simulation 2 (with 
PH assumption)

Model Parameter FPR

Global AFT β2 0.0470

β4 0.0420

Global Cox β2 0.0480

β4 0.0540

GWAFT (h=19) β2 0.0384

β4 0.0364

GWCox (h=10) β2 0.5754

β4 0.5706

Local AFT β2 0.4183

β4 0.4204

Local Cox β2 0.4523

β4 0.4542
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Simulation 1, by nearly an order of magnitude. The MCP 
of GWAFT are around 0.95.

Above all, as for the comparison between GWAFT and 
GWCox, when the PH assumption is not satisfied, we 
can find that the MAB, MSD, MMSE, MCP, and FPR of 
GWAFT are all outperform than GWCox, as shown in 
Tables 10 and 11.

Empirical study
True to its original mandate, the mission of the Sur-
veillance, Epidemiology, and End Results (SEER) pro-
gram is to provide comprehensive information on 
cancer statistics in order to assist in reducing the can-
cer burden. Currently, SEER collects and publishes data 
on cancer incidence, prevalence, and survival from 

Fig. 4 Performance measures for the GWAFT model and GWCox model in Simulation 3; (a) MAB of the estimator of β1 along with bandwidth 
(b) MAB of the estimator of β3 along with bandwidth, (c) MSD of the estimator of β1 along with bandwidth, (d) MSD of the estimator of β3 
along with bandwidth, (e) MMSE of the estimator of β1 along with bandwidth, (f) MMSE of the estimator of β3 along with bandwidth
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population-based cancer registries that cover approxi-
mately 48% of the United States population. In this sec-
tion, we utilized the ovarian cancer surveillance data 
from the SEER program, focusing on New Jersey, USA, 
in order to demonstrate the applicability of our pro-
posed methods. The analysis encompassed a total of 21 
counties, and exclude observations that have unknown 
ending statuses or unknown survival times, resulting in 
1439 complete patients diagnosed at 2005. Because of 
the Hurricane Katrina, the number of patients diagnosed 
between the second half of 2005 is relatively limited [22]. 
The primary objective of the empirical study is to uti-
lize the GWAFT model to explore spatial heterogeneity 
within sparse survival data across multiple regions, and 
to subsequently provide coefficient estimation for each 
county.

We selected race (Black, White, Other), marital sta-
tus (Married/Not Married), and surgery (Received/
Not Received) as covariates, based on their identifica-
tion as relevant factors affecting the survival of ovar-
ian cancer patients in previously published studies 
[23–25]. However, these three covariates do not satisfy 
the PH assumption, whose p-values of the PH assump-
tion are 0.030 for race, 0.015 for marital status, and 

0.001 for surgery. As for the geographical heterogene-
ity, the Moran’s I values of the three covariates were 
-0.176, -0.217, and -0.200, respectively, and all three z 
tests showed significance. In this case, these survival 
data not only contained geographical heterogeneity but 
did not satisfy the PH assumption. Together with the 
covariates, survival times, final statuses, and county 
locations of these observations are also included. Given 
the presence of both geographical heterogeneity and 
violation of the PH assumption in the survival data, we 
employed our proposed method to solve the problems 
cause by geographically heterogeneity and violation of 
PH assumption. Specifically, we applied our proposed 
GWAFT regression to estimate parameters for each of 
the 21 counties. The distance matrix of the 21 coun-
ties of New Jersey in our study is provided in Fig. 7 for 
illustration.

According to the algorithm of GWAFT, after sorting 
data and getting the graph distance, the following task is 
to select the best bandwidth which makes the QIC value 
the lowest. The maximum graph distance observed in our 
study was 8, with a corresponding maximum bandwidth 
of 18. According to the QIC values varying with the 
bandwidth as shown in Fig. 8, we found that the optimal 
bandwidth for our analysis is 2.

As shown in Fig.  9, the parameter estimates for 
Race are consistently negative across all counties, 
which suggests that there are racial disparities in the 
outcome of ovarian cancer in New Jersey. The white 
women tend to have longer survival times than the 
black women. Furthermore, married patients tend to 
have longer survival times compared to others in most 
counties. The parameter estimates for Surgery are 
positive in all counties, suggesting that patients who 
undergo surgery are less likely to experience an event 
than those who do not. On the whole, the pattern of 
the three covariates is consistent with previous stud-
ies [23–25]. The difference is that there is clear spatial 

Table 6 Performance of global AFT, global Cox, best selected GWAFT, best selected GWCox in Simulation 3 (without PH assumption)

Model Parameter MAB MSD MMSE MCP

Global AFT β1 0.2633 0.2573 0.1130 0.6752

β3 0.3620 0.2912 0.2025 0.6900

Global Cox β1 0.4156 0.1800 0.2106 0.0768

β3 0.5970 0.1829 0.3954 0.0140

GWAFT (h=9) β1 0.1134 0.1191 0.0203 0.9646

β3 0.1116 0.1176 0.0197 0.9484

GWCox (h=15) β1 1.3682 0.4108 2.0536 0.0380

β3 2.0896 0.4345 4.5650 0.0100

Table 7 The FPR of global AFT, global Cox, best selected GWAFT, 
best selected GWCox in Simulation 3 (without PH assumption)

Model Parameter FPR

Global AFT β2 0.0760

β4 0.0660

Global Cox β2 0.0980

β4 0.0950

GWAFT (h=9) β2 0.0574

β4 0.0546

GWCox (h=15) β2 0.4960

β4 0.4774
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variation in the effects of all three covariates. By lev-
eraging the proposed GWAFT model, we can discern 
pronounced geographical variations in the distribution 
of three covariates across various counties. Notably, 
the impact of the surgery covariate shows substan-
tial geographic variation across different counties—a 
significant finding that cannot be obtained using tra-
ditional global methods. The observed disparities in 

the Surgery covariate could be attributed to differing 
socio-economic profiles and varying levels of access to 
healthcare services across regions [26, 27].

Discussion
In this study, we introduce a GWAFT model to analyze 
spatial survival data with varying coefficients at the local 
or subregional level. The key concept of this model is to 

Fig. 5 Performance measures for the GWAFT model and GWCox model in Simulation 4; (a) MAB of the estimator of β1 along with bandwidth 
(b) MAB of the estimator of β3 along with bandwidth, (c) MSD of the estimator of β1 along with bandwidth, (d) MSD of the estimator of β3 
along with bandwidth, (e) MMSE of the estimator of β1 along with bandwidth, (f) MMSE of the estimator of β3 along with bandwidth
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effectively utilize surrounding information to estimate 
coefficients at each location.

Firstly, our proposed model addresses the issue of 
errors introduced by spatial heterogeneity, which can 
lead to biased effect estimates. Through Simulations 
1, 3, and 5, our model demonstrates superior perfor-
mance compared to other models, including global and 
local models. Particularly, the results of Simulations 1, 
3, and 5 show that the GWAFT model outperforms the 
GWCox model, providing an alternative approach for 
modeling geographical survival data that does not rely 
on the proportional hazards assumption. This under-
scores the importance of evaluating the proportional 
hazards assumption, as its violation can cast doubt 
on the validity of Cox model results. Neglecting this 
assumption may lead to erroneous scientific conclu-
sions. Differently with Bayesian framework accelerated 
failure time models proposed by Hu et  al. (2021) [28], 
we conducted modeling work from the perspective 
of the frequentist school to overcome some potential 
drawbacks of Bayesian models.

Secondly, our method presents an effective strategy 
for establishing a survival model with geographically 

sparse data. Adequate sample sizes are crucial in 
survival data analysis using Cox regression or AFT 
regression to ensure robust parameter estimation and 
sufficient test power [29]. In scenarios with multi-
ple regions where some areas have sparse samples or 
overall sample sizes are small, such as in rare disease 
cases, the GWAFT model can leverage surrounding 
observations to enhance statistical power. As evidenced 
in Simulations 3 and 5, even when local models fal-
ter, the GWAFT model can offer efficient estimation 
with sparse survival data. While there is a slight per-
formance decrease in Simulation 1 compared to the 
GWAFT model, it remains the top-performing model 
among all models.

The above results indicate that our proposed method 
is effective even when simulated data does not meet the 
proportional hazards assumptions, regardless of local 
data adequacy. While global models are beneficial, they 
may not always detect non-stationarity. Unlike Xue [12], 
we incorporated both significant and non-significant 
coefficients in our simulations to evaluate the FPR of our 
method.

Thirdly, in Simulations 2 and 4, the GWCox model 
outperforms other models in most comparisons, but 
some results, such as the FPR in these simulations, are 
unsatisfactory. This suggests that GWAFT models may 
not always be suitable for every study, and when sur-
vival data satisfy proportional hazards assumptions, the 
GWCox model is still the first choice to be utilized. It 
is kindly similar with the choice of ordinary Cox pro-
portional hazards model and ordinary AFT model. The 
ordinary AFT model is an alternative method when the 
PH assumption is not be satisfied. While, when the PH 
assumption holds, the Cox’s regression model is still the 
model of choice in the analysis of time to event data in 
survival analysis [30].

Fourthly, in the empirical study, while combin-
ing average effects offers a general understanding of 

Table 8 Performance of global AFT, global Cox, best selected GWAFT, best selected GWCox in Simulation 4 (with PH assumption)

Model Parameter MAB MSD MMSE MCP

Global AFT β1 0.6797 0.2792 0.5389 0.1790

β3 1.0240 0.2739 1.1295 0.0130

Global Cox β1 0.4110 0.1594 0.2010 0.1670

β3 0.5949 0.1661 0.3877 0.0270

GWAFT (h=19) β1 0.6945 0.2431 0.5485 0.1938

β3 1.0402 0.2365 1.1452 0.0148

GWCox (h=13) β1 0.2540 0.3017 0.1015 0.9138

β3 0.2580 0.2981 0.1055 0.9156

Table 9 The FPR of global AFT, global Cox, best selected GWAFT, 
best selected GWCox in Simulation 4 (with PH assumption)

Model Parameter FPR

Global AFT β2 0.1060

β4 0.1060

Global Cox β2 0.0630

β4 0.0690

GWAFT (h=19) β2 0.0460

β4 0.0460

GWCox (h=13) β2 0.5508

β4 0.5342
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relationships (referred to as the general average), it 
may overlook local distinctiveness [31]. By utilizing 
proposed GWAFT, we can identify a clear substan-
tial geographic variation across different counties of 
three covariates. Especially, for Surgery covariate, it 
can be cause by the different area socioeconomic char-
acteristics and access to care [26, 27]. This approach 

aligns with Precision Medicine by capturing local 
characteristics and finely modeling covariate effects 
to comprehend disease relationships and geographical 
distribution patterns [32].

Future research could explore allowing the band-
width or smoothing factor in GWR to be derived sepa-
rately for each covariate. Yu et al. (2020) [10] proposed 

Fig. 6 Performance measures for the GWAFT model and GWCox model in Simulation 5; (a) MAB of the estimator of β1 along with bandwidth 
(b) MAB of the estimator of β3 along with bandwidth, (c) MSD of the estimator of β1 along with bandwidth, (d) MSD of the estimator of β3 
along with bandwidth, (e) MMSE of the estimator of β1 along with bandwidth, (f) MMSE of the estimator of β3 along with bandwidth
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a multiscale GWR (MGWR) framework, which treats 
GWR as a Generalized Additive Model and extends it 
to MGWR, deriving standard errors for local param-
eters. Extending our method to incorporate these 
aspects in future studies would be valuable.

Conclusion
In conclusion, our proposed GWAFT model employs a 
kernel function to assign weights to each observation 
based on graph distance, and uses appropriate band-
width selection to address the problem caused by spa-
tial heterogeneity and sparsity of multi-region spatial 
survival data. This approach serves as an alternative 

Table 10 Performance of global AFT, global Cox, best selected GWAFT, best selected GWCox in Simulation 5 (without PH assumption)

Model Parameter MAB MSD MMSE MCP

Global AFT β1 2.5445 0.1831 6.5165 0.6630

β3 3.8302 0.1813 14.7094 0.6270

Global Cox β1 0.4583 0.0433 0.2191 0.0000

β3 0.5398 0.0440 0.3005 0.0000

GWAFT (h=10) β1 0.1792 0.0521 0.0389 0.9822

β3 0.2597 0.0564 0.0756 0.9348

GWCox (h=11) β1 1.5366 0.0930 2.3861 0.0702

β3 2.1943 0.0942 4.8366 0.0044

Table 11 The FPR of global AFT, global Cox, best selected 
GWAFT, best selected GWCox in Simulation 5 (without PH 
assumption)

Model Parameter FPR

Global AFT β2 0.193

β4 0.210

Global Cox β2 0.415

β4 0.428

GWAFT (h=10) β2 0.0276

β4 0.0286

GWCox (h=11) β2 0.6510

β4 0.6624

Fig. 7 Visualization of graph distances for 21 counties in New Jersey. Darker colors indicate greater graph distances
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when the proportional hazards assumption is violated 
in certain scenarios. By incorporating surrounding 
information and considering spatial relationships, our 
method provides an efficient modeling solution for spa-
tial survival data in big, small, extreme imbalance sam-
ple sizes situations.
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