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Abstract
Background  Children with non-ambulatory cerebral palsy (CP) frequently develop progressive neuromuscular 
scoliosis and require surgical intervention. Due to their comorbidities, they are at high risk for developing peri- and 
post-operative complications. The objectives of this study were to compare stepwise and LASSO variable selection 
techniques for consistency in identifying predictors when modelling these post-operative complications and to 
identify potential predictors of respiratory complications and infections following spine surgery among children with 
CP.

Methods  In this retrospective cohort study, a large administrative claims database was queried to identify children 
who met the following criteria: 1) ≤ 25 years old, 2) diagnosis of CP, 3) underwent surgery during the study period, 
4) had ≥ 12-months pre-operative, and 5) ≥ 3-months post-operative continuous health plan enrollment. Outcome 
measures included the development of a post-operative respiratory complication (e.g., pneumonia, aspiration 
pneumonia, atelectasis, pleural effusion, pneumothorax, pulmonary edema) or an infection (e.g., surgical site 
infection, urinary tract infection, meningitis, peritonitis, sepsis, or septicemia) within 3 months of surgery. Codes were 
used to identify CP, surgical procedures, medical comorbidities and the development of post-operative respiratory 
complications and infections. Two approaches to variable selection, stepwise and LASSO, were compared to 
determine which potential predictors of respiratory complications and infection development would be identified 
using each approach.

Results  The sample included 220 children. During the 3-month follow-up, 21.8% (n = 48) developed a respiratory 
complication and 12.7% (n = 28) developed an infection. The prevalence of 11 variables including age, sex and 9 
comorbidities were initially considered to be potential predictors based on the intended outcome of interest. Model 
discrimination utilizing LASSO for variable selection was slightly improved over the stepwise regression approach. 
LASSO resulted in retention of additional comorbidities that may have meaningful associations to consider for future 
studies, including gastrointestinal issues, bladder dysfunction, epilepsy, anemia and coagulation deficiency.
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Introduction
Cerebral palsy (CP) is a neuro-developmental condition 
that begins in early childhood and persists throughout 
life. It is the leading cause of physical disability in child-
hood and international prevalence estimates range from 
1 to nearly 4 per 1,000 live births [1]; children with 
severe, non-ambulatory CP represent approximately 30% 
of those with CP [2]. The neurologic lesion associated 
with CP is non-progressive however the co-occurring 
conditions can worsen over time. Although physical dis-
ability is the hallmark of CP, many children experience a 
vast array of medical comorbidities including neurologic 
(e.g., epilepsy, visual and hearing abnormalities, cognitive 
deficits, sleep disorders, pain), gastroenterologic (e.g., 
esophageal dysmotility, gastroesophageal reflux, delayed 
gastric emptying, constipation), feeding and growth (e.g., 
oropharyngeal dysphasia, growth issues, dental prob-
lems) and musculoskeletal (e.g., neuromuscular scoliosis, 
spastic hip instability, joint contractures) [3–5]. Surger-
ies to correct orthopedic deformities are often indicated 
but these numerous comorbidities increase surgical risk 
including the development of post-operative complica-
tions [6–9].

Neuromuscular scoliosis affects 50-75% of children 
with non-ambulatory CP [10–12] and a spine fusion is 
recommended to prevent worsening of the curvature 
and diminishing health related quality of life [13–15]. 
However, studies have demonstrated that children with 
non-ambulatory CP will experience higher rates of post-
operative respiratory complications and infections result-
ing in poorer clinical outcomes, longer lengths of stay 
and higher costs than children with idiopathic scoliosis 
[16–19]. The utility of spine surgery in this population 
continues to be debated [20, 21].

Rationale and significance
To date the primary focus of clinical outcomes research 
in this population has been on identifying risk factors 
for complication development such as the type of surgi-
cal intervention, preoperative radiographic measure-
ments, and patient demographics. One critical limitation 
of the current literature is that most studies have not 
accounted for the effects that multiple comorbidities 
have on these outcomes [20, 22]. Without addressing 
comorbidities, it is uncertain when and for whom surgi-
cal intervention would be beneficial as it remains unclear 

which comorbidities affect the development of specific 
complications.

Risk prediction models can be useful clinical tools 
to identify at-risk patients, modify care, and engage in 
shared decision-making. To develop these models, exten-
sive research must be undertaken to identify potential 
predictors of the outcome of interest, to determine how 
to construct each predictor, and to establish how to quan-
tify each predictor’s individual or synergistic contribution 
to the overall risk. Ideally, variable selection is accom-
plished in sequential phases using different data sources 
to modify methods as the research process unfolds, 
with the ultimate goal of enhancing generalizability and 
the utility of the final model. Bypassing developmental 
phases can lead to predictive models with insufficient 
specificity or generalizability, thus reducing the model’s 
validity and usefulness for the intended end-user.

Approaches to variable selection
Variable selection methods are controversial and the 
superiority of one method over another often depends 
on the data and context [23]. Traditionally, in exploratory 
modeling, predictors are either selected based upon clini-
cal experience [24, 25] or selected using a stepwise vari-
able selection strategy from a limited pool of variables 
[26, 27]. Models that include variables selected based on 
clinical experience typically focus more on understand-
ing, rather than predicting outcomes and therefore have 
low prediction accuracy [25, 28]. Stepwise regression 
uses data-driven and at times arbitrary definitions of 
thresholds (p-values or F-tests) that are used to decide 
which variables to include or exclude, which creates an 
inherent problem that has been identified in previous 
studies [29–31]. Stepwise strategies can also fail to iden-
tify true predictors and overstate predictor-outcome rela-
tionships when the sample size is not large [32], which is 
not uncommon in pediatric research studying post-oper-
ative risks, especially for clinical populations like CP.

Another variable selection technique, Least Absolute 
Shrinkage and Selection Operator (LASSO) [33], can 
potentially offer an alternative providing improved pre-
dictive ability [33, 34]. LASSO is a regularization tech-
nique that applies a penalty to non-zero coefficients that 
“shrinks” the parameter estimate towards zero, optimiz-
ing the bias-variance tradeoff to enhance the model’s pre-
dictive ability [35]. The LASSO approach was developed 

Conclusions  Potential predictors of the development of post-operative complications were identified in this study 
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to overcome the limitations that occur when there are 
many predictors within the model. By shrinking variables 
estimates towards zero, the LASSO model can effectively 
exclude some irrelevant variables and produce sparse 
estimations that are more simple and interpretable than 
models developed using other approaches. The LASSO 
shrinkage regression model has been increasingly used 
to adjust various confounders and investigate the asso-
ciations between several predictors and a health outcome 
[36, 37].

Consider the following comparison between equa-
tions for linear regression and LASSO regression. In the 
typical set up for linear regression, let Y be the depen-
dent variable, X the independent variables (predictors), 
n the number of subjects (sample size), and p the num-
ber of predictors. The linear regression model assumes 
E(Y|X = x) = β0 + xT β and the estimated parameter ^ β (a 
vector with length p) is the one that minimizes the sum 
of deviation squares ∑i = 1 n (yi − β0 − xi T β) 2 over the 
space of β. However, the LASSO penalty is to minimize 
∑i = 1 n (yi − β0 − xi T β) 2 /(2n) + λ∑j = 1 p |βj|, where λ 
is a tuning parameter that can be determined using cross 
validation. Lasso regression will automatically select vari-
ables that are useful, discarding the useless or redundant 
variables [38].

Objectives
In this paper, we constructed models to predict respira-
tory complications and infection following spine surgery 
in children with CP. Currently there is little evidence on 
which variables are contributing factors despite their 
high prevalence following spine surgery among children 
with CP [7, 8, 39, 40]. Variables that may contribute to 
risks include diverse demographic, clinical (e.g., comor-
bidities), biological, behavioral, and socio-ecological fac-
tors [41–48]. Data exploration is ideal in this context as 
it helps to identify potential predictors for future testing 
starting from a wide, unknown set of variables. It remains 
challenging to develop robust variable selection methods 
in order to enhance predictability.

The primary objective of this exploratory study was 
to examine the utility of an administrative database for 
predicting post-operative outcomes in children with CP 
through examination of the performance of stepwise 
and LASSO regression techniques in variable selection 
and the development of clinically useful prediction mod-
els. We further sought to identify potential predictors of 
respiratory complications and infection following spine 
surgery among children with CP, with the goal of using 
this exemplar for informing future research processes 
determining which variables to consider for developing 
risk prediction models.

Sequestering large sample sizes can be challenging for 
the pediatric CP population undergoing spine surgery, 

limiting the number of variables for modelling. We 
therefore focused on high priority potential predictors, 
including age, sex, and comorbidities, and used clinical 
data to address optimally the study objective. In order to 
meet our objective, we asked the following questions: (1) 
Which variable selection approach, stepwise or LASSO, 
is best used to determine potential predictors of respira-
tory complications and infection development in children 
with CP following spine surgery? (2) Which comorbidi-
ties are associated with the development of respiratory 
complications and infection following spine surgery in 
children with CP?

Patients/methods
Design, database, and representation
This retrospective cohort study accessed patient-level 
medical claims from 01/01/2001-12/31/2018 from 
Optum’s de-identified Clinformatics® Data Mart Data-
base [49]. This database was selected because it repre-
sents a large, geographically diverse population from 
across the United States and allows for tracking of patient 
claims longitudinally in both the outpatient and inpatient 
settings. Claims, although primarily used for billing reim-
bursement of healthcare services, can readily be linked to 
medical conditions within the database by searching for 
unique codes attached to patient-level data. The codes 
used to identify CP, the surgery type, medical comorbidi-
ties and complications including respiratory complica-
tions and infection are presented in Supplementary Table 
1.

Ethical approval
Data were de-identified. All data management proto-
cols were approved and a waiver of informed consent 
was granted by the University of Michigan’s Institutional 
Review Board (HUM00174549).

Cohort selection
A flow chart of the inclusion and exclusion criterion is 
presented in Fig. 1. Children were included if they were 
≤ 25 years old by the date of their index spine surgery, 
underwent surgery between 01/01/2002-09/30/2018, 
had ≥ 12-months pre-operative (baseline information) 
and ≥ 3-months post-operative (outcomes) continu-
ous health plan enrollment. If children had < 3-months 
of post-operative continuous health plan enrollment 
but experienced the outcome prior to loss to follow-up, 
they were included in the study (excluded, n = 5 [2.2%]). 
To optimize sensitivity and specificity of the cohort, CP 
was identified by ≥ 2 claims with a pertinent code for CP, 
where each claim for CP was on a separate day within 
12-months of one another [50].
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Outcomes
The two outcome variables of interest were post-opera-
tive respiratory complications and infections. These out-
comes were selected because they were identified as two 
of the leading complications following spine surgery in 
children with neuromuscular scoliosis with 22.7% of the 
children experiencing respiratory issues and 10.9% devel-
oping an infection [51]. Respiratory complications were 
defined as the incidence of occurrence respiratory issues 
within 3-months post-operatively and including the first 
indication of any of the following conditions: pneumo-
nia, aspiration pneumonia, atelectasis, pleural effusion, 
pneumothorax, pulmonary edema, or other respiratory 
complications. The infection outcome included the inci-
dence of infection within 3-months of surgery, including 
the first indication of the following conditions: surgical 
site infection, urinary tract infection, meningitis, peri-
tonitis, sepsis, or septicemia. We selected the 3-month 
timeframe to allow for sufficient time for complications 

to develop following spine surgery, consistent with prior 
work [44].

It was not possible to determine with high confidence 
if occurrence of some of the specific conditions (e.g., atel-
ectasis, pneumonia) were truly an incident event if that 
child had an occurrence of the same condition in the 
baseline period. For example, if a child had evidence of 
pneumonia pre-operatively, a post-operative claim for 
pneumonia may have been a follow-up healthcare service 
for the pre-operative condition. To obtain incident out-
come events, specific conditions occurring in the base-
line period were not counted as incident events during 
the follow-up period.

Selection of possible predictors
Using clinical knowledge and informed by the literature 
[43–48], we initially considered 26 variables as potential 
prognostic or causal predictors of the outcomes, includ-
ing age, sex, and 24 comorbidities derived from diagno-
ses or relevant medications. Given the limitations of our 

Fig. 1  Flow chart of the inclusion and exclusion criterion
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available sample size, we reduced the number of potential 
predictors prior to the exploratory modelling: the first 
reduction phase considered logistical factors and clinical 
theory and the second reduction phase used data-driven 
techniques.

For the first reduction phase, we considered the logis-
tics of the data source, such as the sensitivity and specific-
ity, either using the literature or relying on our experience 
with claims data. This process led to the exclusion of two 
variables; (1) dysphagia and (2) non-ambulatory status. 
Variables with n < 5 were either combined with other 
physiologically relevant variables or were excluded. This 
led to the construction of three variables: “cardiovascular 
disease” combining five variables (congenital heart dis-
ease; cardiac conduction disorders and arrythmias; heart 
failure; hypertension; cerebrovascular disease); “gastro-
intestinal issues” combining four variables (constipation; 
gastrointestinal bleeding or obstruction; pancreatitis; 
evidence of a gastronomy tube); and “anemia/coagulation 
deficiency” combining two variables (anemia deficiency; 
coagulation deficiency). This step also led to the exclusion 
of three variables (chronic kidney disease; liver disease; 
metabolic disease). At the end of this phase, the number 
of potential predictors was reduced to 12 variables.

For the second phase, a correlation matrix was devel-
oped for the 12 remaining variables to assess for collin-
earity, as interpretations from the exploratory modelling 
technique described below can be biased if collinearity 
is present [52]. Evidence of collinearity among variables 
was based on a medium effect size (e.g., |0.30|) of the 
bivariate relationship between each variable. A larger 
effect size (e.g., |0.40| to |0.70|) has been suggested, but 
we opted for |0.30| given the relatively small sample size 
[53]. There was evidence of collinearity between “gas-
trointestinal issues” and “gastroesophageal reflux” (phi 
coefficient, 0.32). We combined the latter with the for-
mer given the physiological relevance, and there was no 
longer evidence of collinearity with any variables. At the 
end of this phase, there were 11 potential predictors for 
exploratory modelling.

Statistical analysis
Baseline descriptive characteristics (age, sex, race, U.S. 
region of residence, surgery year, type of CP), prevalence 
of potential predictors, and outcome events were sum-
marized for the cohort.

Logistic regression models were developed for each 
outcome using stepwise regression for variable selec-
tion. Stepwise regression is ideal for data-driven explor-
atory screening of potential predictors when there is 
limited evidence of variable contribution to the outcome 
[54]. The 11 potential predictors were entered into each 
model. In separate models, age was treated as continu-
ous, narrow categorical (< 9, 9–11, 12–14, 15–18, and 

19–25 years), and broad categorical (< 12, 12–18, and 
19–25 years) to examine for effects on interpretations. 
Following recommendations [55], P ≤ 0.25 was used 
to allow a variable to enter the model and P ≤ 0.20 was 
used to retain variables in the final model. We opted for 
a more lenient threshold for retaining variables, as com-
pared to P ≤ 0.15 for example [55], given the small sample 
size and to avoid preemptively excluding possibly impor-
tant variables for future investigations.

The intended use of this statistical approach was for 
data exploration. Interpretations from this exploratory 
modelling approach are analytically and conceptually 
different than inference-based modelling [23]. This sta-
tistical approach does not account for data-driven mod-
elling decisions that give rise to the final model. Thus, the 
statistical parameters often used to interpret inference-
based modelling are biased in this exploratory model-
ling approach, such as underestimating standard errors 
creating narrower confidence intervals and lower P-val-
ues, overstating the true association [23, 55]. Therefore, 
the primary interpretation of this study was to identify 
which variables were retained in the final model, consis-
tent with the goal of the exploratory phase of this work. 
Other statistical parameters were provided for compara-
bility with future studies, including the effect size as the 
odds ratio (OR), model discrimination via the c-statistic 
(≥ 0.70 indicates a “good” predictive model), and model 
fit using the Hosmer-Lemeshow (HL) goodness-of-fit test 
(P ≤ 0.05 indicates poor model fit). Confidence intervals 
and P-values for the variables are not presented to avoid 
misinterpretation of the exploratory findings.

Sensitivity analysis
We performed two sets of logistic regression with 
LASSO using the 11 variables. The first analysis applied 
no method for choosing an optimal model. This was 
done recognizing that some variables may be important 
to include in future studies regardless of the statistical 
parameters observed in this cohort. The second analy-
sis used a traditional approach for choosing an optimal 
model using Akaike’s Information Criterion (AIC), a 
measure of model fit that helps to balance the bias-vari-
ance tradeoff. The variables retained and their effect size 
(i.e., OR) from the first analysis were presented. The vari-
ables retained from the second analysis are noted, but the 
effect size is not presented, as this second analysis pro-
vides a subset of variables with similar effect sizes as the 
first analysis.

For patient de-identification purposes, variables with 
< 11 cases were either not reported or suppressed to 
comply with the Data Use Agreement. Analyses were 
performed using SAS version 9.4.
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Results
The baseline descriptive characteristics of the 220 chil-
dren with CP who underwent spine surgery is presented 
in Table 1.

Approximately 80% (n = 175) of the children were 12 
years or older with almost equal numbers of females 
(n = 107, 48.6%) and males (n = 113, 51.4%). Close to 75% 
(n = 164) were white and the vast majority were non-
Hispanic (n = 201, 91.4%). The children resided through-
out the United States. The prevalence of the 11 variables 
considered to be potential predictors of the development 
of a respiratory complication or an infection is presented 
in Table 2. During the 3-month follow-up, 21.8% (n = 48) 
developed a respiratory complication and 12.7% (n = 28) 
developed an infection.

3-Month incidence of respiratory complication
The variables retained in the final model using stepwise 
regression included five comorbidities: gastrointestinal 

issues; bladder dysfunction; cardiovascular disease; ID, 
ASD or global developmental delay; and epilepsy, regard-
less of how age was treated (Table  3). When treated as 
continuous or broad categorical, but not narrow categor-
ical, age was also retained in the final model. The c-sta-
tistic for each model ranged from 0.76 to 0.78, indicating 
good model discrimination.

Sensitivity analysis for respiratory complication
The results using LASSO for variable selection are pre-
sented in Table 4 when predicting 3-month incidence of 
developing a respiratory complication.

The model discrimination was slightly improved using 
LASSO over the primary analysis using stepwise logis-
tic regression (c-statistic ranged from 0.78 to 0.80 vs. 
0.76–0.78) and the effect size was attenuated as expected 
due to penalization of the regression coefficients. The 
first analysis (no method for choosing an optimal model) 
resulted in all 11 variables retained in the final model 
regardless of how age was treated, but the post-penal-
ized OR of some variables was close to 1.00, indicating 
little influence on the outcome. For the second analysis 
(lowest AIC to choose the optimal model), the final vari-
ables retained were largely consistent with the primary 
analysis, except for the additional retainment of asthma/
chronic obstructive pulmonary disease for all models and 

Table 1  Demographic and clinical characteristics of the cohort 
(N = 220)

% (n)
Age, mean (SD) 14.5 (4)
  <9 years 5.5 (12)
  9–11 years 15.0 (33)
  12–14 years 30.9 (68)
  15–18 years 34.1 (75)
  19–25 years 14.6 (32)
Sex
  Female 48.6 (107)
  Male 51.4 (113)
Race
  Black 7.3 (16)
  Hispanic 8.6 (19)
  White 74.6 (164)
  Asian/missing/other 9.5 (21)
U.S. region of residence
  West 17.3 (38)
  Midwest 33.2 (73)
  South 38.2 (84)
  Northeast 11.4 (25)
Type of CP
  Spastic quadriplegia 43.2 (95)
  Spastic diplegia or hemiplegia 8.2 (18)
  Other/unspecified 48.6 (107)
Year of index surgery
  2002–2007 16.8 (37)
  2008–2013 43.6 (96)
  2014–2018 39.6 (87)
Baseline occurrence of outcome
  Respiratory complication 8.2 (18)
  Infection < 4%*
SD, standard deviation. *N < 11 cases and not presented for patient de-
identification purposes

Table 2  Prevalence of the 11 potential predictors for the 
development of post-operative respiratory complication and 
infection (N = 220)

% (n)
Age, mean (SD) 14.5 (4.0)
  <9 years 5.5 (12)
  9–11 years 15.0 (33)
  12–14 years 30.9 (68)
  15–18 years 34.1 (75)
  19–25 years 14.6 (32)
Sex
  Female 48.6 

(107)
  Male 51.4 

(113)
Epilepsy 53.2 

(117)
Gastrointestinal issues 17.3 (38)
Intellectual disabilities, autism spectrum disorders, or global 
developmental delay

14.1 (31)

Sleep apnea 11.8 (26)
Asthma/Chronic obstructive pulmonary disease 8.6 (19)
Cardiovascular disease 6.4 (14)
Hypothyroidism < 5%*
Anemia or coagulation deficiency < 5%*
Bladder dysfunction < 5%*
SD, standard deviation. *N < 11 cases and not presented for patient de-
identification purposes
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anemia or coagulation deficiency when age was treated as 
narrow categorical.

3-Month incidence of infection
The variables retained in the final models using step-
wise regression included age, sex, cardiovascular dis-
ease, and asthma/chronic obstructive pulmonary disease 
when treating age as continuous or narrow categori-
cal (Table  5). When age was treated as broad categori-
cal, cardiovascular disease was not retained in the final 
model, but bladder dysfunction was. The c-statistic for 
each model ranged from 0.64 to 0.71, indicating poor to 
good model discrimination.

The results using LASSO for variable selection are pre-
sented in Table 6 when predicting 3-month incidence of 
infection.

The model discrimination was slightly improved over 
the primary analysis (c-statistic ranged from 0.68 to 
0.72 vs. 0.64–0.71). The first analysis resulted in 9 to 11 
variables retained in the final model depending on how 

Table 3  Results of stepwise regression for variable selection 
predicting 3-month incidence of post-operative respiratory 
complications (N = 220)
Predictors retained in final model Odds ratio
Age as continuous
  Age (continuous) 1.10
  Gastrointestinal issues 6.77
  Bladder dysfunction 3.48
  Cardiovascular disease 2.56
  ID, ASD, or global developmental delay 2.35
  Epilepsy 0.49
Model discrimination, c-statistic 0.77
Model fit, HL goodness-of-fit test 0.98
Age,  narrow categorical*
  Gastrointestinal issues 5.93
  Bladder dysfunction 3.39
  Cardiovascular disease 2.36
  ID, ASD, or global developmental delay 2.23
  Epilepsy 0.47
Model discrimination, c-statistic 0.76
Model fit, HL goodness-of-fit test 0.09
Age,  broad categorical**
  Age group, 19–25 years (reference: <12 years) 4.18
  Age group, 12–18 years (reference: <12 years) 1.52
  Gastrointestinal issues 7.17
  Bladder dysfunction 3.77
  Cardiovascular disease 2.64
  ID, ASD, or global developmental delay 2.37
  Epilepsy 0.48
Model discrimination, c-statistic 0.78
Model fit, HL goodness-of-fit test 0.18
ID, intellectual disabilities; ASD, autism spectrum disorders; HL, Hosmer-
Lemeshow. *Age categorized as < 9, 9–11, 12–14, 15–18, and 19–25 years old. 
**Age categorized as < 12, 12–18, and 19–25 years old

Table 4  Results of LASSO regression for variable selection 
predicting 3-month incidence of post-operative respiratory 
complications (N = 220)
Predictors retained in final model Odds ratio
Age as continuous
  Age (continuous) 1.07
  Sex, males (reference: females) 0.98
  Gastrointestinal issues 5.63
  Bladder dysfunction 2.06
  ID, ASD, or global developmental delay 1.97
  Chronic obstructive pulmonary disease 1.77
  Cardiovascular disease 1.75
  Hypothyroidism 1.01
  Sleep apnea 0.96
  Anemia or coagulation deficiency 0.87
  Epilepsy 0.54
Model discrimination, c-statistic 0.78
Model fit, HL goodness-of-fit test 0.64
  Age,  narrow categorical*
  Age group,  19–25 years 3.53
  Age group,  15–18 years 1.49
  Age group, 9–11 years 0.95
  Sex, males (reference: females) 0.91
  Gastrointestinal issues 6.36
  Bladder dysfunction 4.51
  Cardiovascular disease 2.32
  ID, ASD, or global developmental delay 2.09
  Asthma/chronic obstructive pulmonary disease 2.06
  Hypothyroidism 1.21
  Sleep apnea 0.70
  Epilepsy 0.53
Anemia or coagulation deficiency 0.36
Model discrimination, c-statistic 0.80
Model fit, HL goodness-of-fit test 0.16
Age,  broad categorical**
  Age group,  19–25 years 3.73
  Age group, 12–18 years 1.33
  Sex, males (reference: females) 0.94
  Gastrointestinal issues 6.34
  Bladder dysfunction 4.36
  Cardiovascular disease 2.35
  ID,  ASD,  or global developmental delay 2.25
  Asthma/Chronic obstructive pulmonary disease 2.00
  Hypothyroidism 1.09
  Sleep apnea 0.70
  Epilepsy 0.53
  Anemia or coagulation deficiency 0.40
Model discrimination, c-statistic 0.80
Model fit, HL goodness-of-fit test 0.32
ID, intellectual disabilities; ASD, autism spectrum disorders; HL, Hosmer-
Lemeshow.*Age categorized as < 9, 9–11, 12–14, 15–18, and 19–25 years old. 
**Age categorized as < 12, 12–18, and 19–25 years old. Italicized variables 
indicate the final variables retained in the model when selecting based on the 
lowest Akaike’s Information Criterion
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age was treated. The relative contribution of age and sex 
was consistent with the primary analysis, and the retain-
ment of the comorbidities with the highest effect size 
was also consistent with the primary analysis. However, 
the LASSO technique resulted in additional retainment 
of comorbidities that may have meaningful associations 
to consider for future studies, such as gastrointesti-
nal issues, bladder dysfunction, epilepsy, and anemia or 
coagulation deficiency. The second analysis resulted in no 
variables retained regardless of how age was treated.

Discussion
This study demonstrated relative consistency between 
the two approaches, stepwise and LASSO regression, for 
identifying potential predictors of respiratory complica-
tions and infection in children with CP following spinal 
surgery. LASSO better modified the effects that fit the 
predictors, whereas stepwise may not have been as flex-
ible in this regard. This difference in model performance 
may be related to the small sample size in this study.

These findings can be used to inform the development 
of clinical risk prediction models by considering the use 

Table 5  Results of stepwise regression for variable selection 
predicting 3-month incidence of post-operative infection 
(N = 220)
Predictors retained in final model Odds ratio
Age as continuous
  Age (continuous) 1.08
  Sex, females (reference: males) 2.13
  Cardiovascular disease 2.59
  Asthma/Chronic obstructive pulmonary disease 2.49
Model discrimination, c-statistic 0.64
Model fit, HL goodness-of-fit test 0.02
Age,  narrow categorical*
  Age group, 19–25 years (reference: <9 years) 7.73
  Age group, 9–11 years (reference: <9 years) 5.73
  Age group, 15–18 years (reference: <9 years) 2.77
  Age group, 12–14 years (reference: <9 years) 2.01
  Sex, females (reference: males) 2.32
  Asthma/Chronic obstructive pulmonary disease 3.12
  Cardiovascular disease 2.62
Model discrimination, c-statistic 0.71
Model fit, HL goodness-of-fit test 0.42
Age,  broad categorical**
  Age group, 19–25 years (reference: <12 years) 1.80
  Age group, 12–18 years (reference: <12 years) 0.58
  Sex, females (reference: males) 2.00
  Asthma/Chronic obstructive pulmonary disease 2.77
  Bladder dysfunction 2.77
Model discrimination, c-statistic 0.70
Model fit, HL goodness-of-fit test 0.67
*Age categorized as < 9, 9–11, 12–14, 15–18, and 19–25 years old; HL, Hosmer-
Lemeshow. **Age categorized as < 12, 12–18, and 19–25 years old

Sensitivity Analysis for Infection

Table 6  Results of LASSO regression for variable selection 
predicting 3-month incidence of post-operative infection 
(N = 220)
Predictors retained in final model Odds ratio
Age as continuous
  Age (continuous) 1.06
  Sex, males (reference: females) 0.53
  Cardiovascular disease 1.73
  Asthma/Chronic obstructive pulmonary disease 1.65
  Gastrointestinal issues 1.54
  Bladder dysfunction 1.48
  Hypothyroidism 1.02
  Anemia or coagulation deficiency 0.99
  Epilepsy 0.78
Model discrimination, c-statistic 0.68
Model fit, HL goodness-of-fit test 0.69
Age,  narrow categorical*
  Age group, 19–25 years 5.20
  Age group, 9–11 years 3.75
  Age group, 15–18 years 1.81
  Age group, 12–14 years 1.28
  Sex, males (reference: females) 0.45
  Asthma/Chronic obstructive pulmonary disease 2.43
  Cardiovascular disease 2.23
  Bladder dysfunction 2.20
  Hypothyroidism 1.46
  Gastrointestinal issues 1.26
  ID, ASD, or global developmental delay 1.08
  Sleep apnea 0.93
  Epilepsy 0.75
  Anemia or coagulation deficiency 0.54
Model discrimination, c-statistic 0.71
Model fit, HL goodness-of-fit test 0.39
Age,  broad categorical**
  Age group, 19–25 years 1.80
  Age group, 12–18 years 0.56
  Sex, males (reference: females) 0.50
  Bladder dysfunction 2.52
  Asthma/Chronic obstructive pulmonary disease 2.15
  Cardiovascular disease 2.00
  Hypothyroidism 1.63
  Gastrointestinal issues 1.38
  ID, ASD, or global developmental delay 0.96
  Sleep apnea 0.79
  Epilepsy 0.73
  Anemia or coagulation deficiency 0.63
Model discrimination, c-statistic 0.72
Model fit, HL goodness-of-fit test 0.45
ID, intellectual disabilities; ASD, autism spectrum disorders; HL, Hosmer-
Lemeshow. *Age categorized as < 9, 9–11, 12–14, 15–18, and 19–25 years old. 
**Age categorized as < 12, 12–18, and 19–25 years old. When selecting the final 
model based on the lowest Akaike’s Information Criterion, no variables were 
retained in any model
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of age, sex, and certain comorbidities depending on the 
risk of interest as explicated in Tables 3, 4, 5 and 6. Five 
prior studies have begun to examine the risk predictors of 
respiratory complications [43, 45–48] and infections [47, 
48] following spine surgery in children with CP. Signifi-
cant limitations exist, however, across this body of work. 
Data for these studies were drawn from retrospective 
chart reviews (n = 4; 80%) [43, 45–47] or a pre-established 
database (n = 1, 20%) [48], both with their inherent limi-
tations. Relatively small sample sizes (i.e., n = 74–127), a 
significant issue in research conducted on this popula-
tion, was also noted in two-thirds of the studies [43, 45, 
46, 48]; thus, impeding the ability to assess for predic-
tors simultaneously in a systematic manner (e.g., limited 
to bivariate associations). Also, of note, three (60%) of 
the studies are over a decade old, not capturing current 
surgical techniques and standards of post-operative care 
[43, 45, 46]. Future methodologic and clinical studies are 
needed to test and confirm the observed associations 
and identify other variables not examined in this study 
that may be potential predictors (e.g., anthropometrics). 
Taken together, model findings should be interpreted 
as hypothesis-generating (exploratory) as opposed to 
hypothesis-testing (inference).

The primary interpretations for 3-month risk of respi-
ratory complications were largely consistent when vari-
able selection was performed using stepwise selection 
or LASSO. However, LASSO using AIC to choose the 
optimal model additionally retained asthma/chronic 
obstructive pulmonary disease and anemia/coagulation 
deficiency. These additionally retained variables seem 
appropriate to consider in future testing to explore the 
potential underlying mechanisms linking these comor-
bidities with risk of respiratory complications although, 
inferences on the observed associations are beyond the 
scope of this exploratory study. Some of the primary 
interpretations for 3-month risk of infection were also 
consistent across variable selection techniques, such 
that age, sex, cardiovascular disease, asthma/chronic 
obstructive pulmonary disease, and bladder dysfunc-
tion were retained with the highest effect size. However, 
LASSO using AIC to choose the optimal model retained 
none of the 11 variables, suggesting that introduction 
of these variables added to model complexity beyond 
the regression’s intercept alone. The number of post-
operative infections was small (n = 28); limiting model 
interpretations.

The varied results for infection risk reflect the limita-
tions of modelling the number of predictors for the num-
ber of outcome events. One common way to identify how 
many predictors should maximally fit a given data set is 
using the ratio of outcome events per independent vari-
able (EPV). A rule-of-thumb is 1:10, such that 1 predic-
tor can be considered per 10 outcome events [56], but 

stricter (e.g., 1:4) and more lenient (e.g., 1:20) EPVs have 
been suggested [44], as the bias-variance tradeoff can 
depend on other factors, such as the magnitude of effect 
sizes and collinearity among predictors [57, 58]. This 
study had an EPV of ~ 4–5 when modelling respiratory 
complications and ~ 2–3 when modelling infection. We 
intentionally aimed to reduce bias from a low EPV by 
mitigating collinearity among potential predictors prior 
to entering the statistical model, which decreases bias for 
a given EPV [55].

It has been recommended that variable selection not 
be performed when EPV < 10 due in part to issues of false 
discoveries when using variable selection methods (e.g., 
overstating true associations) [55]. However, this rec-
ommendation may have been made under the context 
of inference and may not fully apply to exploration. On 
the other hand, it has been suggested that articulating 
that the modelling goal is exploratory and with appropri-
ate interpretations (e.g., variable retainment rather than 
P-values), the issues of false discoveries are minimized 
[23]. This relates to the notion that there are no claims 
of confirmation of the observed associations, and that 
associations require future testing with independent 
data. In light of the low EPV, this study is necessary given 
the importance of the topic and challenges in sequester-
ing large sample sizes with sufficient EPV from children 
with CP undergoing spine surgery. Further, to augment 
impact, we performed two commonly used variable 
selection methods, each with their own set of strengths 
and weaknesses, to assist interpretations informing 
future study designs.

Another challenge encountered was how to model age, 
especially in children with complex chronic conditions. 
Continuous variables can be complex if the relationship 
is non-linear. A common data-driven method to trans-
form non-linear variables is using restricted cubic splines 
[59]. However, this method makes linear assumptions at 
the ends of the association. In the context of this study, 
the ends of the age-risk association may behave non-lin-
early in a way that should be captured due to the clinical 
relevance. For example, the LASSO method modelling 
respiratory complications found that 19–25 year olds 
had the highest adjusted effect, which reduced consider-
ably with the next youngest age group before tapering out 
to no-to-minimal effect. We therefore opted for a more 
basic initial assessment by treating age as continuous and 
in clinically relevant categories. In general, older age was 
associated with greater risk of respiratory complications, 
but the association may not be linear across the full age 
span and especially among the younger half of the cohort. 
The association appeared more variable for infection.
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Limitations
The limitations of this study must be discussed. Infor-
mation on severity of CP is not provided in claims data. 
However, studies have demonstrated that children with 
more severe CP subtypes have a higher proportion 
and number of comorbidities [4, 60] and this was likely 
accounted for, at least in part, from the comorbidity vari-
ables. Further, spine surgeries are typically performed 
in children with more severe CP as the incidence and 
severity of scoliosis is directly proportional to the extent 
of the child’s neurological impairment and inversely pro-
portional to the child’s functional abilities [61, 62]. This 
study was unable to assess the type of surgery due to the 
relatively small dataset and few outcome events, which 
may contribute to prediction of the outcome. Future 
work may incorporate the type of surgery as a potential 
predictor. The generalizability of findings is not known. 
It has been suggested that privately insured children with 
CP represent mild to severe CP, but a slightly less medi-
cally complex segment of the broader pediatric popula-
tion with CP who are eligible for federal insurance, with 
potential insufficient racial representation of non-white 
children [13, 50, 63]. In this study, some patient char-
acteristics (e.g., age, sex) and prevalence of comorbidi-
ties (e.g., hypothyroidism) were similar to other studies 
examining risk of complications following spine surgery 
among children with CP [44, 45]. Moreover, in the study 
with ~ 2,800 children with CP undergoing spine surgery, 
41.4% had private insurance which was not strongly asso-
ciated with outcomes [49], suggesting reasonable use 
of this private insurance database to meet the study’s 
exploratory goals. There may be other relevant comor-
bidities not examined in this study to consider in future 
studies. Suboptimal sensitivity and specificity of comor-
bidities could underestimate or distort the associations 
observed in this study. Recording of comorbidities is 
often accurate but may be incomplete in both numbers 
and severity. Undercoding is a limitation of all admin-
istrative databases [64]. We attempted to mitigate this 
bias by using comorbidities with reasonable detection 
in claims, which was based on the literature or our own 
experience with claims data.

Conclusion
While the model performance was similar between 
approaches, LASSO had a slight improvement in the 
c-statistic. Further, LASSO penalizes regression coeffi-
cients, which enhances the potential for generalizability 
of the developed algorithm to other datasets. Further, 
this exploratory study identified potential age, sex, and 
comorbidity predictors for risk of respiratory complica-
tions and infection following spine surgery among chil-
dren with CP. These associations will need to be tested 
in independent datasets for confirmation. The study 

findings provide novel information to inform the design 
of future inference-based studies and development of 
clinical risk prediction models, ultimately to improve 
post-op monitoring and secondary preventions.
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