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Abstract

Background: The appropriate handling of missing covariate data in prognostic modelling studies is yet to be
conclusively determined. A resampling study was performed to investigate the effects of different missing data
methods on the performance of a prognostic model.

Methods: Observed data for 1000 cases were sampled with replacement from a large complete dataset of 7507
patients to obtain 500 replications. Five levels of missingness (ranging from 5% to 75%) were imposed on three
covariates using a missing at random (MAR) mechanism. Five missing data methods were applied; a) complete
case analysis (CC) b) single imputation using regression switching with predictive mean matching (SI), ¢) multiple
imputation using regression switching imputation, d) multiple imputation using regression switching with
predictive mean matching (MICE-PMM) and e) multiple imputation using flexible additive imputation models. A
Cox proportional hazards model was fitted to each dataset and estimates for the regression coefficients and model
performance measures obtained.

Results: CC produced biased regression coefficient estimates and inflated standard errors (SEs) with 25% or more
missingness. The underestimated SE after SI resulted in poor coverage with 25% or more missingness. Of the Ml

approaches investigated, Ml using MICE-PMM produced the least biased estimates and better model performance
measures. However, this Ml approach still produced biased regression coefficient estimates with 75% missingness.

Conclusions: Very few differences were seen between the results from all missing data approaches with 5%
missingness. However, performing Ml using MICE-PMM may be the preferred missing data approach for handling

between 10% and 50% MAR missingness.

Background

Arbitrary missingness in covariates is common in prog-
nostic modelling studies [1]. Many approaches for hand-
ling missing covariates when fitting a Cox proportional
hazards model have been proposed such as likelihood
based techniques (e.g. [2]) and imputation approaches
(e.g. [3-5]). Likelihood based approaches generally
require problem-specific programmes and therefore are
not generally readily available. The best imputation
approach remains unclear. A simulation study [6] com-
paring imputation procedures suggested that performing
multiple imputation (MI) with regression switching
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(MICE) and using predictive mean matching (PMM) [5]
may be preferred over other MI approaches or single
imputation (SI) with highly skewed incomplete continu-
ous covariates. In addition, MICE was found to produce
similar results to MI using data augmentation and
assuming a joint multivariate normal model or a general
location model [5]. It is not clear whether MICE with
PMM would remain beneficial in other populations,
where the data may be closer to the underlying assump-
tions of the imputation methods.

Simulation studies based on fully generated data may
be criticised for being too simplistic as they often use
models based on limited perceived structures of the
population to generate the datasets thus not always fully
reflecting a realistic population even if based on attri-
butes from real datasets. A resampling study, however,
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samples data from a large empirical complete dataset.
The data in the smaller samples are observations from
real patients [7] and thus reflect the appropriate level of
diversity and variability found in realistic populations
[8]. The initial dataset needs to be sufficiently large to
permit numerous samples of reasonable size to be
selected without seriously endangering any future
assumption of independence; it can be from one large
study (e.g. [9]) or the combination of several similar stu-
dies (e.g. [10]). In addition, for prognostic modelling
studies, an adequate number of events, is considered
necessary to provide stable conclusions within the smal-
ler samples, with a general rule of thumb of at least ten
events per covariate studied [11]. Sampling with replace-
ment, as in bootstrapping [12], replaces selected cases
back into the potential selection pool after each draw
[13]. The variability between samples is similar to what
would be experienced among many samples from an
infinite population [14]. Alternatively, sampling without
replacement allows each case to be selected only once
for a particular sample [13]. Sampling without replace-
ment is only suitable when the available population can
be considered infinitely large, and thus representative of
the true population, or when the maximum sample size
required is less than 10% of the total population [9].

This paper presents the results of a resampling study
to investigate the effects of different methods used to
handle multivariate missing covariate data when fitting a
Cox proportional hazards model to the full set of
covariates.

Methods

Resampling Population

Baseline data from a large randomised colorectal cancer
trial [15,16] formed the empirical population for this
resampling study. Approval from the Chief Investigators
of this trial was granted for use of their data in this
resampling study. Data were available on a total of 7507
patients randomised between May 1994 and September
2003 to assess benefit of adjuvant chemotherapy (CT) in
terms of overall survival. The collection of eight patient,
tumour and planned treatment characteristics was man-
datory at randomisation and hence all were complete
(Table 1). The randomised treatment for each patient
was unavailable for this research. The exclusion of treat-
ment is not detrimental to this resampling study as its
purpose was to assess the impact of enforcing missing
data on an obtained prognostic model for all patients
irrespective of the randomised treatment.

The distribution of age was unimodal but modestly
skewed towards a more elderly population (skewness =
-0.67). Most covariates were weakly associated with each
other, but stage of disease and indication for CT were
highly correlated (phi correlation coefficient (r) = -0.72),
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Table 1 Summary of the data and characteristics of the
colorectal cancer trial patients

Characteristic Label Level N(%)
Age (years) Age Median (IQR) 62 (55-68)
Mean(SD) 61 (9.95)
Sex Sex 1 = Female 3013(40%)
2 = Male 4494(60%)
Site of Cancer Site 0 = Colon only 5197(69%)
1 = Rectum/both 2310(31%)
Stage Stage 0 = Dukes’ A/B 3775(50%)
1 = Dukes' C 3732(50%)
Pre-operative PRE-RT 1 = No 7147(95%)
RT 2 =VYes 360(5%)
Post-operative RT POST-RT 1 = No 6511(87%)
planned 2 =Yes 996(13%)
Indication for CT-INDIC 1 = Clear 4320(58%)
cT 2 = Uncertain 3187(42%)
CT Schedule CT-SCH 1 = Every week 3757(50%)
2 = Every 4 weeks 3750(50%)

Key: IQR = Inter-quartile range, SD = standard deviation, RT = radiotherapy, CT
= Chemotherapy

whilst site of cancer was moderately correlated with
pre-operative radiotherapy (RT) (r = 0.32) and planned
post-operative RT (r = 0.42).

Follow-up information was available until October 2003,
by which time there had been 2652 (35%) events among
the 7507 patients. For the 4855 (65%) patients with cen-
sored observations, the median length of follow-up was
6.5 years with a maximum of 9 years. The Kaplan-Meier
estimated survival probability at five years was 64%.

Samples

Each dataset in the resampling study consisted of 1000
cases, which represented the average sample size from a
review of published prognostic studies [1], and was
sampled with replacement from the full colorectal data-
set. The observed covariate data, survival time and event
status from these sampled cases were utilised. Using
simple random sampling allowed some variability in the
covariate structure and the proportion of events whilst
retaining, on average, the 65% censoring present in the
whole of the colorectal dataset.

Replications

A total of 500 replications were performed. With this
number of replications, regression coefficients for six of
the eight prognostic covariates could be estimated with
at least 5% accuracy [17], given the coefficient values and
associated standard errors (SEs) from fitting a Cox pro-
portional hazards model including all eight covariates to
the whole colorectal dataset. The regression coefficients
for the CT schedule and site of cancer, which were non-
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significant in the model using the whole colorectal data-
set, could be estimated with 13% and 37% accuracy
respectively with 500 replications. An unworkable num-
ber of replications of approximately 3500 and 27000
replications respectively would be required to achieve 5%
accuracy, as the regression coefficients were close to zero.

Imposing missingness on multivariate data

Missingness was imposed on stage, post-operative RT
and age according to seven missing data patterns (R,i =
1,...,7) chosen to match those observed in an ovarian
cancer study [18] (Table 2). In practice, age is unlikely
to be missing, but was used for illustrative purposes to
enable the effects of a continuous covariate with missing
values to be investigated. Five overall rates of missing-
ness, denoted pg, of 5%, 10%, 25%, 50% and 75% per
case were considered to cover the range of missing data
that may be seen in practice, such that p, cases had at
least one covariate with missing values.

Missingness was imposed using a missing at random
(MAR) mechanism [19], where the missingness was
associated with shorter survival times, having cancer of
the rectum or both rectum and colon, having a clear
indication for CT and the observed values of stage,
post-operative RT and age. This MAR mechanism
resulted in a higher proportion of missing observations
among older cases, those with Dukes’ C stage or those
planning on having post-operative RT. The missing data
patterns (Table 2) were generated using the procedures
proposed by van Buuren et al [20], summarised in addi-
tional file 1, to give a total of py cases with at least one
covariate with missing data.

Missing data methods and imputation model
We investigated five missing data methods, for which
code is freely available within the R statistical software

Table 2 Details of the patterns of missingness in the
ovarian cancer study 18
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(Table 3). These were complete case analysis (CC), sin-
gle imputation (SI) using predictive mean matching [5],
MI fitting separate flexible additive imputation models
to each incomplete covariate with predictive mean
matching [21] (MI-aregImpute), MI using regression
switching (MI-MICE) and the addition of predictive
mean matching (MI-MICE-PMM) [5]. Predictive mean
matching incorporates a non-parametric element and
therefore relies less on the parametric assumptions of
the imputation models. The imputation models included
all available covariates, the event status and the survival
times after a logarithmic transformation. Ten imputa-
tions were performed for each of the MI approaches,
which still gave a minimum relative efficiency compared
to using an infinite number of imputations [22] of
approximately 95% when 75% overall missingness was
imposed. Each missing data method was applied to the
same 500 independent samples generated.

Analysis and outcomes of interest

The applicability of the linearity assumption for age was
investigated using fractional polynomials [23], fitted
using the ‘fp’ function within the ‘mfp’ library in the R
statistical software [24]. The appropriate functional form
for fitting the continuous covariate, age, in the regres-
sion model was assessed using fractional polynomials
based on 500 full datasets, prior to missing data being
imposed. The most commonly chosen functional form
for age was linear; selected in 90% (n = 452) of samples.
Therefore, age was fitted assuming a linear relationship
throughout this resampling study.

A Cox proportional hazards model including all eight
covariates was fitted to each dataset. The outcomes of
interest were the regression coefficients, their associated
SEs and the significance of each covariate in the regres-
sion model. The performance of the prognostic model in

Table 3 Details of the five missing data methods

Pattern Stage POST-RT Age Frequency Cumulative . .
R) Probability  probability  \mvestigated
(p) Label Missing data method
0 1 1 1 CcC Complete case analysis
1 1 1 0 0.08 0.08 SI Single imputation using regression switching imputation
2 1 0 1 017 025 with predictive mean matching with only one imputation
3 1 0 0 004 029 Egd using the ‘pmm’ function within the mice library
4 0 ! ! 025 0.4 MI- MI fitting flexible additive imputation models using the
5 0 1 0 0.04 0.58 areglmpute ‘areglmpute’ function in the Hmisc library [21]
6 0 0 1 034 092 MI-MICE MI using regression switching imputation with linear or
7 0 0 0 0.08 1.00 logistic regression models as appropriate for each
% missing 71 o4 5 incomplete covariate fitted using the mice library [40]
out of total MI-MICE- MI using regression switching imputation with predictive
incomplete PMM mean matching fitted using the ‘pmm’ function within
cases the mice library [40]
Key: 1 = observed and 0 = missing Key: PMM = predictive mean matching; Ml = multiple imputation
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each dataset was assessed in terms of the Nagelkerke’s R
statistic [25], the prognostic separation D statistic [26]
and the 2 and 5 year predicted survival probabilities.

The regression coefficient estimates were compared
against the “true” values in terms of their bias, coverage
and efficiency [27]. The average regression coefficient
estimates and associated empirical SE obtained from
performing 20000 replications of 1000 cases with com-
plete data were considered as the “true” values. This
analysis produced SEs that were more representative of
the resampling study to be performed than would have
been obtained from fitting a Cox model to the available
population of 7507 patients.

To incorporate the appropriate uncertainty from
imputation, the results from each multiply imputed
dataset were combined using Rubin’s rules [22] after
suitable transformations to approximate normality, as
previously recommended [28]. The median and inter-
quartile ranges of the Nagelkerke’s R* statistics were
determined for each of the 500 replicated datasets [29].
Any deficiencies in these combining approaches should
be similar across all MI methods, thus still allowing a
valuable comparison. The outcomes of interest from the
500 replicated datasets were summarised using the aver-
age or median value where appropriate.

Results

The average percentage of available covariate data items
for the 1000 cases in each dataset remained relatively
high for all amounts of missingness imposed; ranging
from 99% with 5% missingness to 86% when 75% of
cases had one or more missing data items.

Regression coefficient estimates from a Cox proportional
hazards model
Using a complete case (CC) analysis produced very
unstable regression coefficient estimates when there were
large amounts of missingness, especially for the binary
pre-operative RT covariate, which had a 95:5 split in the
data. All estimates remained within the limits for unpro-
blematic estimates [27] of + 0.5SE from the true value
with up to 50% missingness. Only the regression coeffi-
cient estimates for stage, pre-operative RT, post-opera-
tive RT and indication for CT (Figure 1) could be
deemed problematic [27] with 75% missingness. How-
ever, the percentage biases were more extreme than the
specified accuracy given the number of replications per-
formed for the majority of covariates with 25% or more
missingness (Figure 2). The exceptions were for stage,
sex and age, where the bias remained within the specified
5% accuracy until at least 50% missingness.

After imputation, all regression coefficient estimates
remained within + 0.5SE of the true value for all levels
of missingness (Figure 1). Using SI or MI-MICE-PMM
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produced the least biased estimates for all covariates
(Figure 2). Greater percentage bias was seen for site,
pre-operative RT and post-operative RT when using
MI-MICE than with the other imputation approaches,
producing biases greater than 5% with as little as 5%
missingness. The estimates for stage and indication for
CT were slightly more underestimated after MI using
the “areglmpute” function (MI-aregImpute).

SE of regression coefficient estimates

The average SE estimates from the different MI
approaches were similar and, as expected, fell below the
inflated SE estimates after a CC analysis and in general
above the underestimated SE after SI (Figure 3). The
SEs after a CC analysis were extremely unreliable for
pre-operative RT. With increasing levels of missingness,
the SE after MI increased more for the incomplete bin-
ary covariates than for the continuous covariate; age.

Coverage

Coverage was most affected using SI (Figure 4). The cov-
erage after SI for stage and post-operative RT fell to
around 90% when 25% of the cases were incomplete and
below 80% with 75% missingness. The coverage of indica-
tion for CT fell to around 80% using SI with 75% miss-
ingness. The coverage for the remaining five covariates
for SI and all covariates using a CC analysis or applying
MI remained around 90% for all levels of missingness.

Significance of covariates in the prognostic model

The two highly prognostic covariates of age and stage
remained significant in the model even with 75% miss-
ingness using any missing data method, except when per-
forming a CC analysis where age became non-significant
at the 5% level with 50% or more missingness (Figure 5).
The indication for CT was of borderline prognostic abil-
ity in the resampling study, but became non-significant
after a CC analysis with 10% or more missingness and
after imputation with 25% or more missingness. After SI,
the non-prognostic covariates of site and post-operative
RT became more significant in the model with higher
levels of missingness, although always remaining non-
significant. In contrast, post-operative RT became less
significant in the model with increasing levels of missing-
ness for all the MI approaches.

Model performance measures

The Nagelkerke’s R” statistic increased slightly with
higher levels of missingness after performing a CC ana-
lysis, suggesting that the model had better predictive
ability when fewer cases were analysed (Figure 6a). In
contrast, applying MI-areglmpute produced slightly
lower predictive ability with increasing levels of
missingness.
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Similar prognostic separation values were produced
after imputation for all percentages of missingness
imposed (Figure 6b). However when a CC analysis was
performed, the prognostic separation statistic estimates
were more than + 0.5SE from the true value when the
missingness exceeded 25% missingness.

The predicted survival probabilities were unaffected by
the amount of missingness or the imputation approach
applied (Figure 6¢ and 6d). However, the predicted sur-
vival probability estimates after performing a CC analy-
sis were consistently higher than those obtained after
imputation and diverged further away as the level of
missingness increased, reflecting that the incomplete
cases were associated with survival.

Discussion

This resampling study used a large complete empirical
dataset as the population from which samples were drawn.
Hence, the distributions for the survival times and the cov-
ariates reflected those seen in a real situation. Empirical
evidence from an ovarian cancer study [18] provided

realistic patterns of missingness and the relative propor-
tions of missing values for each incomplete covariate.

This resampling study identified that, with up to 10%
multivariate MAR missingness, a CC analysis provided
reasonable estimates of the regression coefficients, asso-
ciated SEs, significance of the covariates in the model
and model performance measures. However, these mea-
sures were all adversely affected when there were 25%
or more incomplete cases. These findings corroborate
the results seen by others with univariate missingness
([30]; [31]) and with multivariate missingness [6],
although they obtained unbiased regression coefficients
estimates with a MAR mechanism, as the mechanism
that depended on outcome was imposed on the covari-
ate with the least amount of missingness only. These
results suggest that a CC analysis with 10% or less miss-
ingness is useful provided that the missing data mechan-
ism is not highly dependent on outcome, especially at
shorter survival times ([32]; [33]), the sample size is rea-
sonably large [31] and the hazard ratios for survival are
not large [33]. In practice, the missing data mechanism
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is rarely fully known and so the dependence on survival
will be unclear and therefore in general CC analysis
should be avoided. Caution is needed when covariates
have very uneven splits with only a small proportion of
cases in one group, e.g. pre-operative RT, as this can
lead to very unstable regression estimates and SEs when
performing a CC analysis.

Using SI with PMM produced reasonable regression
coefficient estimates that were within 20% of the true
value for all covariates except the non-prognostic covari-
ate site of cancer, where the bias reached 50% with 75%
missingness. The underestimation of the variability and
hence narrower confidence intervals after SI, however,
resulted in poor coverage with 25% or more missingness,
especially for the incomplete covariates. Therefore SI is
not recommended for use with more than 10% MAR
multivariate missingness, as previously found (e.g. [6]).

This resampling study identified that standard MI
methods for handling missing covariate data can be ade-
quately used in prognostic modelling studies where the

outcome is survival time with up to 50% MAR missing-
ness within binary or continuous covariates with moder-
ate skewness. The distribution of the incomplete
covariates can affect the performance of the MI
approaches, as poorer results were seen in another
simulation study with highly skewed covariate data [6].
With more than 50% MAR missingness, MI may pro-
duce biased and misleading results and therefore its use
with this high level of missingness should be with cau-
tion and considered only as part of a sensitivity analysis.
MICE-PMM outperformed all other MI approaches
considered in this resampling study with one moderately
skewed covariate. This corroborated the findings from
previous research, where MICE-PMM was also the pre-
ferred approach with highly skewed covariates ([6]; [34];
[35]; [36]). MICE-PMM proved empirically to be more
useful than those with stronger distributional assumptions,
despite its lack of formal theoretical justifications [37].
The performance of the imputation approaches
depends on the consistency between the imputation and
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analysis models [38], the more compatible these models
are the better the imputation methods will perform.
MICE-PMM imputes data from observed cases with
similar predictive values and therefore relies less on any
distributional assumptions of the covariates and out-
come and on the consistency of the imputation and ana-
lysis models compared to other MI approaches. Any
biases that may occur after including log transformed
survival time and event status in the imputation model
and then using a Cox proportional hazards model to
analyse the imputed datasets are generally smaller when
MICE-PMM is used, This has resulted in an improved
performance of MICE-PMM with a censored survival
outcome and highly skewed covariates [6] but also in
this resampling study with less skewed data.

However, MICE-PMM may not remain the better
approach with more normally distributed incomplete
covariates or with a fully observed normally distributed
outcome, where the imputation and analysis models are
more compatible. In addition, care must be taken when
using MICE-PMM with small samples and when covari-
ates have rare events, as there may not be many available
cases to be used as imputed values. A better approach for
including survival data in an imputation model may be
using the Nelson-Aalen estimate of the cumulative
hazard for survival [39].

These results broadly confirm previous findings, but
they are only based on one realistic population and one
multivariate MAR missing data mechanism. Therefore
the results may not be fully generalisable to alternative
populations, with differing distributions, correlations
and missing data mechanisms.

Conclusion

With 5% missingness, very few differences were seen
between the results from performing a CC analysis, SI
or MI using MICE-PMM. However, applying MI using
MICE-PMM was found in this resampling study to be
the most useful missing data approach for handling
between 10% and 50% MAR missingness.

Additional material

Additional file 1: Appendix. Procedures for generating a multivariate
missing at random mechanism
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