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Abstract
Background: A zero-inflated continuous outcome is characterized by occurrence of "excess" zeros that more than a 
single distribution can explain, with the positive observations forming a skewed distribution. Mixture models are 
employed for regression analysis of zero-inflated data. Moreover, for repeated measures zero-inflated data the 
clustering structure should also be modeled for an adequate analysis.

Methods: Diary of Asthma and Viral Infections Study (DAVIS) was a one year (2004) cohort study conducted at 
McMaster University to monitor viral infection and respiratory symptoms in children aged 5-11 years with and without 
asthma. Respiratory symptoms were recorded daily using either an Internet or paper-based diary. Changes in 
symptoms were assessed by study staff and led to collection of nasal fluid specimens for virological testing. The study 
objectives included investigating the response of respiratory symptoms to respiratory viral infection in children with 
and without asthma over a one year period. Due to sparse data daily respiratory symptom scores were aggregated into 
weekly average scores. More than 70% of the weekly average scores were zero, with the positive scores forming a 
skewed distribution. We propose a random effects probit/log-skew-normal mixture model to analyze the DAVIS data. 
The model parameters were estimated using a maximum marginal likelihood approach. A simulation study was 
conducted to assess the performance of the proposed mixture model if the underlying distribution of the positive 
response is different from log-skew normal.

Results: Viral infection status was highly significant in both probit and log-skew normal model components 
respectively. The probability of being symptom free was much lower for the week a child was viral positive relative to 
the week she/he was viral negative. The severity of the symptoms was also greater for the week a child was viral 
positive. The probability of being symptom free was smaller for asthmatics relative to non-asthmatics throughout the 
year, whereas there was no difference in the severity of the symptoms between the two groups.

Conclusions: A positive association was observed between viral infection status and both the probability of 
experiencing any respiratory symptoms, and their severity during the year. For DAVIS data the random effects probit -
log skew normal model fits significantly better than the random effects probit -log normal model, endorsing our 
parametric choice for the model. The simulation study indicates that our proposed model seems to be robust to 
misspecification of the distribution of the positive skewed response.

Background
Zero-inflated data is frequently encountered in health
science studies and is characterized by the occurrence of

"excess" zeros that more than a single distribution can
explain. There is a considerable amount of literature deal-
ing with the problem of zero-inflated count data such as
Zero Inflated Poisson (ZIP) or Zero Inflated Binomial
(ZIB) mixture models, and their extension to clustered or
longitudinal data structures [1-7]. The early research on
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modeling zero-inflated continuous data was reported in
econometrics literature [8]. Tobin [9] proposed the
"Tobit" model assuming an underlying normally distrib-
uted variable whose non-positive values were considered
as unobserved. In the Tobit model the observed zeros
were treated as the unobserved non-positive values of the
underlying variable that have been left-censored, and a
linear regression model with normally distributed errors
was suggested. Thereby the same stochastic process and
regression parameters determined whether the response
was zero or positive, as well as the magnitude of the posi-
tive response. Cragg [10] proposed a "two-part" model for
semi-continuous data that separately modeled the dichot-
omous nature of the response (zero versus positive val-
ues), and the magnitude of the positive values
respectively. Cragg suggested the probit link for modeling
the binary part and a truncated normal density for the
positive values, allowing a different set of covariates to be
associated with the probability of having a non-zero
response and the magnitude of the positive response
respectively. Duan et al. [11] suggested a logit/lognormal
coupling for the two part model for semi continuous data,
and applied this model to demand for medical care.
Moulton and Halsey [12] generalized the two-part model
with logit/lognormal coupling by incorporating interval
censoring, implying that the observed zeros were either a
realization of the true zero point distribution or observa-
tions from the distribution of the positive outcome
observed as zero due to detection limits. Heckman
[13,14] extended the Tobit model to a two-part model
referred to as the sample selection model that assumed an
underlying bivariate normal error. Duan et al [11,15]
pointed out that this model has poor numerical and sta-
tistical properties. Further discussion and references
regarding sample selection model and its comparison
with the two-part model are provided by Min and Agresti
[8].

Olsen and Schafer [16] and Tooze et al [17] extended
the two-part logit- lognormal mixture model, proposed
by Duan et al. [11] for cross-sectional data, to repeated
measures data by including two subject specific random
effects in the logit and log-normal components respec-
tively. These authors assumed that the random effects fol-
low a bivariate normal distribution, and allowed for the
two random effects to be correlated. Recently some addi-
tional work has been reported in literature extending
mixture models for a continuous outcome with a discrete
component to clustered data. Li et al [18] presented a
zero-inflated log-normal model that takes hierarchical
clustering structure of a data into account; they incorpo-
rated nested random intercepts in the linear predictors of
the logit and lognormal model components respectively,
assuming the random effects are independently and nor-
mally distributed. Liu et al [19] proposed a multi-level

two-part random effects logit-lognormal model; two
nested random effects were included in each part to
model the nested clustering structure in a data, assuming
the respective random effects in the two parts followed a
bivariate normal distribution. More recently Su et al [20]
showed that bias can be induced for regression coeffi-
cients when random effects are truly correlated but mis-
specified as independent in a 2-part mixed model.

The positive part of a zero-inflated continuous variable
is often skewed to the right, logarithmic transformation
had been suggested to correct for the skewness. Although
Olsen and Schafer [16] allowed a more general transfor-
mation (a monotone increasing function) that would
make the positive component approximately Gaussian,
they only used a log transformation in the illustrative
example reported in their paper and did not discuss the
choice of the adequate transformation. The customary
statistical approach of applying a log transformation in
setting of right skewness is ad hoc, and may or may not
optimally account for distributional characteristics of the
data under study. As a referee noted the log transforma-
tion may often over-transform the data making the distri-
bution skewed in the opposite direction. In an attempt to
remedy this problem Chai and Bailey [21] extended the
cross-sectional two-part model by suggesting a skew-
normally distributed error in the regression equation for
log-transformed positive values, and proposed a probit/
log-skew normal mixture model for cross-sectional data.
The skew-normal distribution accommodates asymmetry
in a more flexible manner, and can model both positively
or negatively skewed data (depending on the sign of the
skewness parameter) reducing to the normal distribution
when the skewness parameter is zero. Tooze et al [22] and
Kipnis et al [23] suggested a different remedy to deal with
the problem of skewness of the positive responses in the
two-part model for longitudinal semi-continuous data.
They introduced the Box-Cox transformation of the posi-
tive responses so that on the transformed scale the within
subject error and the subject specific random effect in the
regression model of the positive part were approximately
normally distributed. The normality transformation was
done within the modeling step so that the positive
responses were transformed to normality conditionally
on the covariates in the model, and the Box-Cox transfor-
mation parameter was estimated along with the regres-
sion parameters in the maximum likelihood procedure.
When adopting the Box-Cox transformation approach
one has to make an assumption that such a transforma-
tion does exist. In the present communication we adopt
the approach suggested by Chai and Bailey [21] to model
the positive part of semi continuous data using the skew-
normal distribution. In the Discussion section we will
comment on the comparison of the Box-Cox transforma-
tion approach with our present model.
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In this paper we present an extension of the cross-sec-
tional two-part Bernoulli-log-skew-normal mixture
model, suggested by Chai and Bailey [21], for longitudinal
zero-inflated continuous data. We modeled the clustering
structure of the data by introducing correlated bivariate
normal random effects in both parts, similar to what
Olsen and Schafer [16] and Tooze et al [17] did for mod-
eling longitudinal data in the two-part model with nor-
mally distributed error for log transformed positive
responses. As discussed above Chai and Bailey [21] sug-
gested the Bernoulli-log-skew-normal model for cross-
sectional data thereby presenting a more flexible
approach for modeling the asymmetry of the positive
responses as compared to the ad hoc log transformation.
Like Chai and Bailey [21] we used the probit link to
model the binary component, however a logit link can
also be used. The potential of the proposed model was
demonstrated through analysis of a real data from a study
titled "Diary of Asthma and Viral Infections Study". In
addition, by fitting a random effects probit-lognormal
mixture model on the dataset, we conducted a likelihood
ratio- test for the skewness parameter in the log skew
normal distribution, and demonstrated that the random
effects probit/log-skew normal mixture model fits better
on the dataset as compared to the random effects Ber-
noulli-log normal model proposed in references [16-19].
Moreover, in order to assess the aptness of the proposed
probit/log-skew normal mixture model we conducted a
probit/log-beta regression simulation for repeated mea-
sures data.

Methods
Probit log-skew normal mixture model for repeated 
measures
Let Yij be an observation from the jth measurement on the
ith subject with all Yij ≥ 0. The probability density function
of Yij is:

We used the probit link function for pij:

where Φ is the standard normal cumulative distribution
function, X(1)ij is the vector of explanatory variables asso-
ciated with the probability of the ith subject being symp-
tom free at the jth occasion, and β(1) is the vector of
corresponding regression parameters. The positive out-

come, Yij > 0, was assumed to follow a skew normal (SN)
distribution.

X(2)ij is the vector of explanatory variables associated
with the severity of symptoms for the ith subject at the jth
occasion, β(2) and is the vector of corresponding regres-
sion parameters. μ,σ,δ are the parameters of the skew
normal distribution (we are setting μ = XT

(2)ij β(2) + τ1i), δ
is referred to as the skewness parameter (see Additional
File 1). The reason for modeling the positive outcome on
the logarithmic instead of the original scale is to ensure
positive estimation as log of negative numbers does not
exist. In order to model the correlation among repeated
measurements on the same subject, we included two ran-
dom effects (τ0i , τ1i) in the linear predictors of the two
regression model components respectively. We assumed
that these random effects follow a bivariate normal distri-
bution (BVN), that is,

S11 and S22 being the variance of the random effects in the
probit and log-skew-normal components respectively
and S12 being the covariance between the two random
effects.

Maximum Marginal Likelihood Estimation
Defining an indicator function, Iij (Iij = 1 if Yij = 0, Iij = 0 if
Yij > 0) likelihood contribution from the ith subject can be
expressed as follows:

where mi is the number of repeated measurements on
the ith subject and f(τ0i, τ1i) is the joint distribution of the
two random effects. We assumed that f(τ0i, τ1i) is bivariate
normal.

Assuming the measurements on different subjects are
independent, the likelihood to be maximized is:

where n is the total number of subjects in the sample. In
the Maximum Marginal Likelihood Estimation approach
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integration over random effects is approximated by
numerical integration. We used Gaussian quadrature to
obtain the marginal likelihood and employed Double
Dogleg optimization method to maximize the likelihood.
This optimization technique combines the concept of the
Trust Region and Quasi- Newton methods and works
well for medium to moderately large optimization prob-
lems [24-26].

Diary of Asthma and Viral Infection Study
Respiratory viral infections (RVI), most commonly of rhi-
novirus, have been found to coincide with the majority of
children's asthma exacerbations throughout the year,
including the post summer vacation epidemic periods, in
both community and hospital based studies [27-30]. Chil-
dren admitted to hospital for wheezing have been shown
to have a significantly higher rate of RVI [28,29]. Further-
more, asthma exacerbations in children are highly cyclic
and follow predictable seasonal patterns [30]. The 'Diary
of Asthma and Viral Infection Study (DAVIS)', a 12
month, cohort study was conducted at McMaster univer-
sity to monitor infection and respiratory symptoms
including asthma exacerbations in children aged 5-11
years with and without asthma. The study objectives
included investigating the response of respiratory symp-
toms to RVI in children with and without asthma over a
one year period. The study period was the 2004 calendar
year. Respiratory symptoms were recorded daily using
either an Internet or paper-based diary. Changes in
symptoms were assessed by study staff and led to collec-
tion of further information, the use of spirometry and
collection of nasal fluid specimens for virological testing.
Virological testing was conducted using polymerase
chain reaction techniques as previously described [31].

The study was designed and executed by academic
investigators (with Neil W Johnston as the principal
investigator, PI) and was approved by the Research Ethics
Board of St. Joseph's Healthcare, Hamilton (R.P. #03-
2195). Written informed consent for children to partici-
pate was obtained from parents of all subjects and assent
from appropriately aged children. The raw data is accessi-
ble only to the PI and the research team, as was approved
by the Research Ethics Board. Individuals who wish to
have access to the data for replicating the study results are
advised to contact the PI for necessary Research Ethics
Board (or Institutional Review Board) approval.

Six lower respiratory tract (LRT) symptoms (cough
during the day, cough during the night, wheeze, difficulty
breathing or shortness of breath during the night, diffi-
culty breathing or shortness of breath during the day and
breathing problems interfering with child's regular activi-
ties during day) were categorised by subjects on a 5 point
scale from 0 (none) to 4 (very severe). Overall daily LRT
symptom scores were determined by summing the six

LRT symptom scores, emulating the approach taken in a
previous study [27]. For most of the subjects many daily
LRT scores were zero leading to sparse data, hence daily
LRT scores were aggregated to give weekly average LRT
scores. This was done by writing a SAS macro that exe-
cuted PROC EXPAND for each subject. PROC EXPAND
can change the frequency of a single time series such as
conversion from daily measurements to weekly or
monthly averages or totals. The weekly interval was
defined as Sunday to Saturday, giving a total of 51 weeks
for the year 2004. If a daily measurement was missing for
a given week for a subject, the missing value was replaced
by the weekly average. If more than two measurements
were missing for a week, the weekly average was treated
as a missing value.

Data for 190 subjects (135 asthmatics and 55 non-asth-
matics) were available for the analysis. The majority of
the subjects (172) had measurements for all 51 weeks,
one subject had measurements for only 41 weeks,
whereas 17 subjects had measurements ranging from 44
to 50 weeks. Eleven subjects entered the study later than
the 1st week but no later than the 8th week of the year. The
subjects started dropping from the study after the 41st

week. One hundred and eighty- six subjects had weekly
LRT measurements after the 46th week.

A histogram of weekly average LRT scores indicated
that about 75% scores were zero and the positive scores
seemed to be represented by a continuous skewed distri-
bution (Figure 1). The zeros correspond to the absence of
respiratory symptoms during a week, and the positive
scores measured the severity of the respiratory symptoms
when present. In order to account for the excess zeros
and repeated measurements on each subject over the
weeks of the year, we propose the mixture model (1) that
first considers the response as a dichotomous variable
(zero versus greater than zero), and then models the posi-
tive response using log skew normal distribution. The
clustering structure of the data is modeled by the two
correlated random effects in each part. The regression
analysis was aimed at investigating the relationship of
children's respiratory symptom scores with viral infection
status throughout the year 2004, adjusting for their asth-
matic status, age and sex.

The mixture model (1) was fitted using PROC
NLMIXED on SAS (see SAS codes in Additional File 2).
We started with fitting a main effect model with asth-
matic/non-asthmatic status, child's sex and age, week of
follow-up and viral infection status as independent vari-
ables in both model components (-2LL = 14181, BIC =
14270, AIC = 14215). The variable "week" was coded as
week = 1 corresponding to the 1st week of January (start-
ing 4th January that was the 1st Sunday of January 2004),
week = 2 to the 2nd week and so on. Viral infection status,
being a time-dependent variable, was defined as positive
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for a week if the subject had any respiratory virus
detected during that week, negative otherwise; it was
coded as "1" if the subject was viral positive and "0" if viral
negative for a given week. Initially age and week of fol-
low-up were modeled as linear continuous variables. Ini-
tial values of parameters were taken from a probit-log
skew normal mixture model without random effects (that
converged more quickly). In addition the initial parame-
ter values for the variance and covariance of the random
effects were set as s11 = 0.5, s22 = 0.5, s12 = 0. Generalized
Additive Model (GAM) approach was used to examine
the scale of continuous predictor variables, age and week
of follow-up, with reference to their regression relation-
ship with weekly LRT scores. GAM is a non-parametric
smoothing technique for exploring the scale of an inde-
pendent continuous variable for a regression model [32].
The exploratory GAM analysis indicated a quadratic
scale for both age and week (more pronounced for week).
Fitting the mixture model by including square terms for
age and week in both model components gave -2LL =
14069, BIC = 14179, AIC = 14111. Wald p-values that
were employed for preliminary screening indicated that
the square terms for age could be removed from the
model. Fitting the mixture model again with week of fol-
low-up modeled as quadratic and age as linear in both
model components led to -2LL= 14069, BIC= 14169,
AIC= 14107. Hence based on the log-likelihood, AIC and

BIC criteria the week of follow-up was modeled as qua-
dratic, whereas age was modeled as linear in both model
components respectively. Next all possible two-way inter-
actions were included in both mixture model compo-
nents (-2LL = 14037, BIC = 14241, AIC = 14115). Using
the Wald p-values of the interaction terms for prelimi-
nary screening we obtained the final model (- 2LL =
14056, BIC = 14166, AIC = 14098) including two interac-
tions that were both statistically and biologically signifi-
cant (Table 1).

Simulation Study
We carried out a simulation study to assess the perfor-
mance of the proposed random effects probit log-skew
normal model, if the underlying distribution of the posi-
tive response is different from log-skew normal. For the
simulation study we generated repeated measures data
from a probit log- beta model stated as follows:

where xij is a binary time dependent predictor variable
(similar to the viral infection status in the DAVIS data, xij
= 1 if ith subject is viral positive for jth week, xij = 0 if nega-
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Figure 1 Histogram of weekly average LRT scores.
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tive). εij follows a beta distribution with probability den-
sity:

where α > 0, β > 0 are the parameters of the beta distri-

bution and  is the beta func-

tion. A random variable Y follows a four parameter beta
distribution if:

where ε ˜ BETA(α, β) and parameters Θ and (Θ + scale)
define the minimum and maximum values of Y respec-
tively. Hence in model (2) log (Yij | Yij > 0) follow the four
parameter beta distribution with Θ = (α1 + β1xij + τ1i). τ0i
and τ1i are the subject specific random effects such that

The rationale for selecting the beta distribution to
model the positive response in our simulation study was
that, similar to the skew normal distribution, it can be
positively (β >α) or negatively (β <α) skewed, as well as
symmetric (β = α). The skewness of the beta distribution
is:

We generated 50 repeated measurements correspond-
ing to each week for each of 200 independent clusters
(subjects) and assigned the following values for the model
parameters, α0 = -1, β0 = 2.5, α1 = - 20, β1 = 0.75, s11 = 1, s22
= 0.2, s21 = 0.2, scale = 30. For each

subject at every week the time dependent binary cova-
riate xij was generated as a Bernoulli variable with proba-
bility = 0.03 (of all weekly average LRT scores in DAVIS
data for about 3% viral infection variable was positive).
The true values of α1 parameters and scale were specified
so that the minimum and the maximum values of (Yij | Yij
> 0) are approximately equal to e-20 ≈ 0 and e(-20 +30) = e10

(that is a very large number) respectively, thereby simu-
lating a situation where the positive outcome can be con-
sidered as a continuous variable bounded below at zero.

We considered two scenarios with respect to specifying
the parameters of the beta distribution, (i) a negatively
skewed beta distribution (β = 70, α = 130, skewness = -
0.0883) and (ii) a symmetric beta distribution (β = α =
100, skewness = 0). For each of the two scenarios 200
datasets were generated from model (2) and probit log-
skew normal model (1) was fitted on each dataset. We
also did some simulation runs generating data from a
positively skewed beta distribution (β = 130, α = 70, skew-
ness = -0.0883) and fitted random effects probit-log-skew
normal model.

Results
Analysis of DAVIS
The final fit of the mixture model (1) to DAVIS data is
reported in Table 1. The covariates significantly associ-
ated with the probability of having no LRT symptoms
were asthmatic/non-asthmatic status, week of follow-up
and viral infection status (probit component). The highly
significant positive estimate of βvirus indicates that for the
week a child was viral positive, the probability of being
LRT symptom free was much less than that for the week
the child was viral negative (p-value < 0.0001, beta =
2.459). The variable week was modeled as quadratic in
the linear predictor of the regression model of the probit
component. Moreover, there was a significant interaction
between the asthmatic/non-asthmatic status and (the lin-
ear term of ) week of follow-up (Wald p-value = 0.0150).
We also examined the interaction of asthmatic/non-asth-
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Table 1: Probit/log-skew normal model for weekly LRT 
scores. Parameter estimates (standard errors) n= 190.

Final Model (LRT)

probit log-skew-normal

β0 -0.635(0.285)** 0.298(0.263)

βasthamatic 0.598(0.104)*** 0.096(0.089)

βmale 0.024(0.078) -0.129(0.076)*

βage -0.027(0.031) 6.2e-3(0.028)

βweek -0.050(0.005)*** -3.0e-3(0.008)

βweek*week 8.5e-4(0.9e-4) *** 3.5e-4(1.0e-4)***

βvirus 2.459(0.126)*** 0.744(0.057)***

βage*week - -2.0e-3(0.7e-3)***

βasthamatic*week -6.4e-3(2.6e-3)** -

σ 0.666(0.049)***

δ -0.952(0.100)***

s11 1.023(0.183)***

s22 0.214(0.041)***

s21 0.267(0.077)***

-2 Log Likelihood 14056

AIC 14098

BIC 14166

* p-value < 0.10 ** p-value < 0.05 *** p-value < 0.01



Mahmud et al. BMC Medical Research Methodology 2010, 10:55
http://www.biomedcentral.com/1471-2288/10/55

Page 7 of 12
matic status with the quadratic term in week (that is asth-
matic*week*week) but that was insignificant based on the
Wald, likelihood, AIC and BIC criteria. The probability of
being LRT symptom free was lower in the beginning of
the year, increased from January to August, and after that
decreased until December (Figure 2). The association
between the probability of being symptom free and the
asthmatic/non-asthmatic status can be clearly seen from
Figure 2; the probability of being symptom free is smaller
for asthmatics relative to non-asthmatics throughout the
year, the difference being more pronounced in the begin-
ning of the year.

Covariates associated with the severity of LRT symp-
toms were subject's age and sex, viral infection status and
week of follow-up (log skew normal component). There
was no significant difference in the severity of the LRT
symptoms between asthmatic and non-asthmatic chil-
dren (p-value = 0.2758). For the week a child was viral
positive the severity of LRT symptoms was significantly
greater than for the week he/she was viral negative (p-
value < 0.0001, beta = 0.744). There was some marginal
evidence that the severity of LRT symptoms was lesser for
the male relative to the female children (p-value = 0.0938,
beta = -0.1286). As for the probit component, the qua-
dratic term for week was significant in the log-skew nor-
mal component. Moreover, there was a significant
interaction between the age of a child and (the linear

term of) the week of follow (p-value = 0.0069). We also
examined the interaction of age with the quadratic term
in week (that is age*week*week), however that was insig-
nificant based on the Wald, likelihood, AIC and BIC cri-
teria. In Figure 3 we plot predicted values of log(LRT > 0)
from the fitted model versus week of the year for two age
groups, < 8 years (mean age) and ≥8 years, along with
mean log(LRT > 0) values at each week computed from
the data. (In Figure 4 mean LRT > 0 scores on the original
scale, computed from the data, are plotted versus week of
follow-up). The severity of LRT symptoms was higher in
the beginning of the year, decreased in summer and
increased again by the end of the year. The severity of
LRT symptoms was higher for children younger than 8
years relative to older children, and seemed to exhibit a
more pronounced seasonal pattern.

From the model fit in Table 1 we note that the Wald p-
value for the skewness parameter (δ) was highly signifi-
cant (p-value < 0.0001, estimate of δ = -0.952). This sug-
gests the importance of using the log-skew-normal
distribution to model the positive response for this data,
using the log-normal distribution would be inadequate.
We also conducted the likelihood ratio test for testing the
hypothesis H0: δ = 0 by fitting a probit log-normal model;
chi-square test statistic, x2 (df = 1) = 10, p-value < 0.005
indicating significance of the skewness parameter (δ). In

Figure 2 Probability of being LRT symptom free versus the week of the year.
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addition we note that for the probit-log-normal mixture
model AIC = 14106 and BIC = 14171, these criteria also
suggest that the probit-log- skew normal mixture model
reported in Table 1 is superior to probit log-normal
model. We note the sign of the estimate of the skewness
parameter indicating a negatively skewed distribution for
the log of positive LRT scores. We would like to point out
here that for certain parameterization of skew normal
distribution the Fisher information matrix is singular
when asymmetry parameter is equal to zero. This leads to
difficulties regarding asymptotic distributions for maxi-
mum likelihood estimators and likelihood ratio statistic
[33]. However, for alternative parameterization of skew
normal distribution these difficulties are resolved, and
the likelihood function exhibits a more regular behaviour
without a stationary point when the asymmetry parame-
ter is equal to zero [33]. In our model we used the skew
normal parameterization suggested by Sahu et al [34] that
was also employed by Chai and Bailey [21] in their probit
-log- skew normal mixture model for zero-inflated con-
tinuous cross-sectional data. Chai and Bailey [21] con-
ducted and reported the likelihood ratio test for testing
the null hypothesis: asymmetry parameter (for the skew-
normal distribution) = 0.

Moreover, the Wald p-values for the variance of the
random effects (s11, s22) in the two model components

respectively were highly significant (p-value < 0.0001)
indicating the random effects were needed in the model
to account for the correlation among measurements on
the same subject. The significant positive covariance (s21)
between the two random effects has an intuitively appeal-
ing interpretation; the higher the probability of a subject
of being positive for LRT symptoms, the greater the
severity of LRT symptoms.

Results of the simulation study
The results of the simulation study are presented in Table
2. In the simulation study we generated data from ran-
dom effects probit log-beta model (2) and fitted random
effects probit log-skew normal model (1). In Table 2 we
report the bias and mean square error for the estimated
values of the intercept (in the probit component), regres-
sion coefficients corresponding to the time dependent
binary variable, xij and the variance and covariance of the
random effects in the two model components respec-
tively from the simulation runs. We note that the regres-
sion coefficient corresponding to xij in the continuous
part, for both log-skew-normal and log-beta model, is the
difference in the expected value of log(Yij | Yij > 0) when
xij = 1 versus xij = 0 and hence is comparable. However,
the intercepts in the log-skew-normal and log-beta mod-
els are not comparable. As discussed in the Methods sec-

Figure 3 Log (LRT > 0) versus the week of the year
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tion, we considered two scenarios with respect to
specifying the parameters of the beta distribution (i) a
negatively skewed beta distribution, and a (ii) symmetric

beta distribution. For both these scenarios the simulation
results indicate that the estimates seem to be unbiased,
particularly for the regression coefficients corresponding
to the time dependent predictor variable in both model
components. This suggests that the probit-log skew nor-
mal model performs reasonably well, as the primary goal
of the simulation study was to assess the ability of the
model to estimate the affect of an explanatory variable on
the response.

For scenario (i) where we generated the datasets from a
negatively skewed beta distribution, the mean (standard
deviation) of estimates of δ (the skewness parameter in
the probit-log-skew normal model) was -0.7031 (0.1951)
and for scenario (ii) corresponding to a symmetric beta
distribution, the mean (standard deviation) of estimates
of δ was -0.3171 (0.2760) from the 200 simulation runs.
This suggests that the log-skew normal model correctly
identified the negatively skewed as well as the symmetric
distribution; for the former the mean estimated value of δ
was negative, and for the latter though the mean esti-
mated value was somewhat negative but does not appear
to be significantly different from zero due to the large
standard deviation. We also did some simulation runs
generating data from a positively skewed beta distribu-
tion (β = 130, α = 70, skewness = 0.0883) and fitted probit-
log-skew normal model that gave similar results.

Figure 4 Mean LRT > 0 versus the week of the year
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Table 2: Simulation Results from 200 simulation runs. Fitted 
model is probit-log-skew-normal.

PROBIT component β < α 1 

(negatively skewed)
β = α 2 

(symmetric)

Bias MSE 4 Bias MSE

Intercept (-1)3 0.0303 0.0128 0.0054 0.0116

βViral Infection (2.5) -0.0186 0.0130 -0.0064 0.0112

s11 (1) -0.0927 0.0243 -0.0914 0.0235

Log-beta component

Intercept (-20)

βViral Infection (0.75) 0.0004 0.0050 -0.0090 0.0055

s22 (0.2) -0.0059 0.0010 -0.0085 0.0012

s12 (0.2) -0.0167 0.0028 -0.0199 0.0033

1. β = 70, α = 130
2. β = α = 100
3. Numbers in parentheses refer to true parameter values
4. Mean Square Error (MSE)
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Discussion
In this communication we have presented a probit/log-
skew-normal mixture model for continuous repeated
measures data with a discrete component at zero. We
modeled the clustering

structure of the data by including two random effects in
the probit and log-skew-normal model components
respectively, assuming the random effects follow a bivari-
ate normal distribution. In case of longitudinal data
structure, in addition to random intercepts it may be of
interest to include a random slope for time in the contin-
uous component as suggested by Su et al [20]. This can be
done through a straightforward extension of the model
we proposed by including a random slope for time in the
log-skew normal component, assuming the three random
effects follow a trivariate normal distribution. Recent
research has focused on the impact of misspecification of
random effects distribution on the maximum likelihood
estimates for generalized linear mixed models (GLMM).
For the case of linear mixed models (that correspond to
the identity link function for GLMM) the parameter esti-
mates are rather robust with respect to deviation from
normality of random effects. However, for random-inter-
cept logistic models the estimates of the mean structure
parameters can have substantial bias upon misspecifica-
tion of random effects distribution in case of large ran-
dom effects variance [35]. In our present analysis the
maximum likelihood estimates of the variances of ran-
dom intercepts in the two parts are rather small (of the
order of magnitude of 1 in the binary and 0.2 in the con-
tinuous component) thereby suggesting that the potential
bias in the estimates of fixed effects in case of misspecifi-
cation of random effects distribution could be small.
However, there can be considerable bias in the estimate of
variance components in case of misspecification of the
random effects distribution, thereby making it difficult to
distinguish between the small or large variance scenarios
[35]. This suggests the need for further research to inves-
tigate the impact of misspecification of random effects
distribution on the estimates of fixed and random effects
in a two-part mixture model for semi-continuous data.
This research will be particularly relevant as the continu-
ous model component constitutes a non-linear mixed
model. Investigating the impact of the distribution of ran-
dom effects on parameter estimation in mixture models
for clustered semi continuous data will be taken up as
future research.

For longitudinal data, subject specific random effect
models account for the correlation among measurements
on the same subject through the concept of heterogeneity
among subjects; some subjects are intrinsically high
responders, others low-responders. However, serial cor-
relation models time varying stochastic process within a
subject [36]. In our proposed random effects mixture

model, serial correlation can be incorporated by includ-
ing a lagged response variable as a predictor variable in
the model [37].

The potential of the proposed model was demonstrated
through analysis of a real dataset from DAVIS. The
response variable of interest was the weekly average LRT
symptom score; about 75% of these scores were zero and
the positive scores formed a skewed distribution. We
assumed that the zeros correspond to 'true zeros' indicat-
ing absence of any LRT symptoms. This assumption
seems reasonable in the context of LRT symptoms
reported by subjects in DAVIS, where zero scores corre-
spond to "No symptoms". Incorporating interval censor-
ing in a zero-inflated mixture model implies that the
observed zeros are either a realization of a 'true zero'
point distribution, or an observation from the distribu-
tion of the positive outcome observed as zero due to
detection limitation [12]. The latter does not seem to be
relevant for the self-reported LRT symptoms in DAVIS,
detection limits are usually relevant for measurements
involving laboratory markers [12,21].

As discussed above, in addition to random intercepts
we also included a random time slope in the log-skew
normal component for the main effect mixture model for
DAVIS; the estimate of the variance of the random slope,
though significant, was quite small (0.0002) implying that
the random effect of time did not vary substantially from
subject to subject.

For the positive outcome the log-skew-normal distribu-
tion fits significantly better, for the dataset we used as an
example, as compared to log-normal distribution sug-
gested by authors in references [17-20]. For the binary
component of the mixture model either a probit or a logit
link can be used, authors in references [17-20] presented
a logit-lognormal coupling for their mixture models. We
also fitted a logit-log-skew-normal random effects mix-
ture model on DAVIS data, however with the probit link
the likelihood of the fitted model was higher than that
with the logit link, though a likelihood ratio test could not
be conducted as the models were not nested.

We conducted a simulation study, to assess the perfor-
mance of log skew normal distribution in modeling the
positive component of the response, by generating
repeated measures data from a probit log-beta model,
and fitting the proposed probit-log-skew normal mixture
model. The results of the simulation study indicate that
the probit-log-skew normal mixture model performs rea-
sonably well in estimating the true regression parameters,
when the underlying distribution of the log transformed
positive response was a beta distribution. Like the skew-
normal distribution, the beta distribution can be posi-
tively or negatively skewed or symmetric. The skew-nor-
mal distribution did demonstrate an ability to recognize a
negatively skewed and a symmetric beta distribution cor-
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rectly, though the skewness parameters for the skew-nor-
mal and the beta distribution were not directly
comparable.

Finally the Box-Cox transformation approach to nor-
mally transform both the skewed positive observations of
a semi continuous longitudinal outcome, and the subject
specific random effects in the regression model of the
positive part [22,23] seems to be a potentially interesting
alternative to the random effects regression model with
log-skew-normally distributed errors we have suggested
in this paper. A formal comparison between these two
different approaches will be taken up as future research.

Conclusions
Mixture models offer an informative and elegant regres-
sion approach, allowing assessment of association of a
potential risk factor with both the probability of being
symptom free and the severity of symptoms for a
response with clustering at zero. We proposed a probit-
log skew normal mixture model for zero-inflated
repeated measures data, and demonstrated its potential
by analyzing real data from DAVIS. We showed that for
this data probit-log skew normal mixture model fits sig-
nificantly better than the Bernoulli -log normal model
proposed in previous references. The probability of a
child being free of lower respiratory track symptoms was
lower for a week he/she was positive for viral infection
relative to a week viral infection was negative. Moreover,
the severity of the respiratory symptoms was greater for
the week the child was viral positive. The results of our
simulation study indicate that our proposed model per-
forms reasonably well even if the underlying distribution
of the positive outcome is misspecified.
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