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Abstract
Objectives: A recent joint report from the Institute of Medicine and the National Academy of Engineering, highlights 
the benefits of--indeed, the need for--mathematical analysis of healthcare delivery. Tools for such analysis have been 
developed over decades by researchers in Operations Research (OR). An OR perspective typically frames a complex 
problem in terms of its essential mathematical structure. This article illustrates the use and value of the tools of 
operations research in healthcare. It reviews one OR tool, queueing theory, and provides an illustration involving a 
hypothetical drug treatment facility.

Method: Queueing Theory (QT) is the study of waiting lines. The theory is useful in that it provides solutions to 
problems of waiting and its relationship to key characteristics of healthcare systems. More generally, it illustrates the 
strengths of modeling in healthcare and service delivery.

Queueing theory offers insights that initially may be hidden. For example, a queueing model allows one to incorporate 
randomness, which is inherent in the actual system, into the mathematical analysis. As a result of this randomness, 
these systems often perform much worse than one might have guessed based on deterministic conditions. Poor 
performance is reflected in longer lines, longer waits, and lower levels of server utilization.

As an illustration, we specify a queueing model of a representative drug treatment facility. The analysis of this model 
provides mathematical expressions for some of the key performance measures, such as average waiting time for 
admission.

Results: We calculate average occupancy in the facility and its relationship to system characteristics. For example, 
when the facility has 28 beds, the average wait for admission is 4 days. We also explore the relationship between arrival 
rate at the facility, the capacity of the facility, and waiting times.

Conclusions: One key aspect of the healthcare system is its complexity, and policy makers want to design and reform 
the system in a way that affects competing goals. OR methodologies, particularly queueing theory, can be very useful 
in gaining deeper understanding of this complexity and exploring the potential effects of proposed changes on the 
system without making any actual changes.

Introduction
Over the past two decades, operations researchers
increasingly have examined health care systems. One of
the leading journals in the field, Operations Research,
devoted an entire issue to health care research in Novem-
ber, 2008 [1]. This research employs the latest in opera-

tions research methodology (e.g., Ross and Jayaraman
[2]). Articles published in the operations research (OR)
literature examines a broad range of issues, including (but
not limited to) capacity planning and management in
hospitals [3,4] and multisite service systems [5]; organ
donation and allocation [6,7] and dialysis [8]; workforce
scheduling [9]; the occurrence of disease, including men-
tal disorder [10]; the effect of promotional tools [11];
patient queues and delays [12,13]; the prediction of health
care costs [14]; drug treatment [15]; the effects of reim-
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bursement policy [16,17]; and breast cancer diagnosis
and treatment[18].

In contrast, very little of this research appears in the
standard journals in health policy and health services
research (for exceptions, see [19-21]). The disjuncture,
therefore, lies between the development of these tools
and their application to real-world problems. This need is
reflected in a recent joint report from the Institute of
Medicine and the National Academy of Engineering. This
landmark report identifies many potential benefits of OR
in healthcare and recommends several measures to
strengthen the link between the two. For example, the
report recommends that health care become one of the
standard applications taught to engineering students.
Conversely, the report advocates that providers integrate
system tools in the actual delivery of care. Such tools
might include system-wide data standards and hand-held
digital recall devices for doctors and nurses.

An OR perspective typically frames a complex problem
in terms of its essential mathematical structure. Such a
model has three main components: an objective function,
decision variables, and constraints. The purpose of the
model is to identify the relationships between alternative
choices and key outcomes. For example, a common appli-
cation of OR tools involves queues for services. In a typi-
cal queueing application, the objective could be to
minimize staffing costs, a constraint could be that aver-
age waiting time remains below some level, and the deci-
sion variable could be the number of servers to be
employed. Once the model is specified, OR offers a vari-
ety of tools for understanding the implications of alterna-
tive choices. For example, a mathematical solution may
identify the optimal decision and allow one to estimate
the impact of sub-optimal choices. In many instances,
standard mathematical solutions for common problems
exist; many rather different applications (e.g., the line at a
bank teller or the waiting room at a health clinic) have a
similar mathematical structure.

Like any modeling, OR simplifies the actual phenom-
ena. A model generally cannot completely represent
every detail of a complex system. A model captures the
essence of a system; as a result, some details of that sys-
tem are ignored. One needs to balance the level of detail
with the analytic tractability of the model. As model com-
plexity grows, the model becomes more realistic yet more
difficult to solve. Standard solutions may no longer exist,
requiring the analyst to develop complex simulations or
new mathematical techniques to solve the problem. One
can balance these concerns by calibrating the model--by
assessing its ability to reproduce key features of the sys-
tem(s) being modeled.

Modeling has several benefits. The model may identify
unanticipated, system-wide consequences of a decision.
For example, adding more lines at a fast food restaurant

during lunch time may generate increasingly small reduc-
tions in waiting time by customers; or laying off one of
our four cashiers may increase waiting times only by 10%.
Particularly valuable is the fact that the model may reveal
these consequences before the decision is actually imple-
mented.

This article illustrates the use and value of operations
research tools in health care. We employ queueing mod-
els as an illustration. Queueing models are useful in that
they provide solutions to problems of waiting that are
particularly relevant in health care. More generally, they
illustrate the strengths of modeling in health care
research and service delivery. Section 1 provides back-
ground on queueing theory. Section 2 provides some
examples of how queueing theory has been used in
healthcare. Section 3 develops a modeling approach for
an illustrative example, drug treatment. This section also
makes a broader point involving the benefits of modeling
more generally.

Methods: A Brief Introduction to Queueing Theory
Queueing Theory (QT) is the study of waiting lines and is
one of the oldest areas of OR. QT grew out of an article
by Erlang [22], which provided some of the most widely
used tools in mathematical modeling. QT focuses on sys-
tems in which "customers" arrive, wait for their turn for
service, are served, and then leave. Telecommunications,
inventory management, and healthcare all represent
areas of application to which these tools have been
applied.

Queues develop because of the random manner in
which customers arrive and the times it take to serve
them. In many systems, administrators need an under-
standing of the relationships between key performance
measures and controllable system parameters. QT
defines these relationships mathematically under certain
conditions, which reveals the potential effects of deci-
sions on performance measures. For example, the theory
allows one to determine a mathematical expression that
relates average customer waiting time to the number of
servers. The decision-maker then can examine how the
average waiting times change with the number of servers
and determine how many servers to employ accordingly.

Queueing theory offers key insights that initially may
be hidden. For example, a formal model allows one to
incorporate randomness in key parameters, such as arriv-
als of phone calls at a system. As a result of this random-
ness, these systems often perform much worse than one
might have guessed based on deterministic conditions
(no randomness). Poor performance is reflected in longer
lines, longer waits, and conversely lower levels of server
utilization overall. For example, an emergency room may
have sufficient staffing for the average load on a night, but
the staffing level will not be sufficient on all nights
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because of the randomness in patient arrivals. As a result
some of the patients will end up waiting for a very long
time. QT can help in determining staffing levels that will
help ensure that the percentage of long waits remain
below a certain level.

Most queues we observe in our daily lives may seem
simple from the outside, but they are in fact so complex
that they cannot be characterized mathematically. For
example, we can easily determine the arrival rate of cars
to a drive-thru fast-food restaurant, but a complete math-
ematical description of the exact times at which cars will
arrive is mathematically difficult. Even in cases where
such characterization is possible, the description is typi-
cally very complex and therefore does not permit mathe-
matical analysis. Any QT work assumes the existence of
certain conditions on the system analyzed, which conve-
niently allow the mathematical analysis to proceed. Thus,
QT analyzes "idealized" models, which typically do not
exist in practice but can serve as approximations ranging
from reasonable to excellent. Often, the same idealized
model can be used to represent a variety of queueing sys-
tems, e.g., one model may approximate the ticket line at a
movie theater, the cars lined up at the drive-thru, and the
patients waiting in the emergency room.

Queueing theorists typically use Kendall's notation as
short-cut notation for complete descriptions of queueing
models. (See Table 1.) That notation comprises five
essential characteristics. These are the (1) Arrival Process
(A), (2) Service Time Distribution (B), (3) Number of
Servers (C), (4) System Capacity (K), and (5) Service Dis-
cipline (D). The first characteristic, the arrival process,
generally is specified as deterministic or stochastic.
Deterministic processes involve constant times between
events (such as customer arrivals); stochastic processes

involve random variation in these times. The last charac-
teristic refers to the process that determines the order in
which waiting customers are served. The queue is then
simply described (By Kendall's notation) as the "A/B/C/K/
D queue." If the system capacity K is not given, it is
assumed to be infinite. If the service discipline is not
given, it is assumed to be First-Come-First-Served
(FCFS).

For example, the notation M/D/3/20 indicates a queue-
ing system in which arrival process is Markovian (inter-
arrival times are exponentially distributed); service times
are deterministic; there are three servers; system capacity
is 20; and service discipline is FCFS. On the other hand,
D/G/1 queue has deterministic arrivals, general service
times (i.e., service time distribution is irrelevant), single
server, infinite system capacity, and FCFS as the service
discipline.

The QT literature offers many standard queueing mod-
els. The solutions to those models reveal its key features,
such as mathematical expressions for the average waiting
time. The results of these analyses can be readily used in
different application areas where these queueing models
are good fits. For example, one of the simplest queueing
models is the M/M/1 queue. For this queue, if the arrival
rate is λ, and the expected service time is 1/μ, the average
number of customers waiting in the system (including
those receiving service) is (λ/μ)/(1 - λ/μ). Then, if one is
interested in determining the average number of custom-
ers waiting in a queueing system for which the M/M/1
queue would be a good fit, all s/he needs to do is plug in
the actual values for the arrival rate λ, and the service rate
μ. QT provides similar ready-to-use solutions to a num-
ber of queueing systems although the mathematical
expressions can be significantly more complex.

Table 1: Kendall's notation for Queueing Models

Position Meaning Description

1st (A) Arrival Process This parameter describes how customers arrive at the system. In particular, whether they 
arrive in groups or as individuals and the distribution of inter-arrival times.

2nd (B) Service Time Distribution This parameter describes the distribution of service times.

3rd (C) Number of Servers Often this parameter is 1, meaning that there is only one server, but multi-server systems are 
common, and so most results are generalized to an arbitrary number of servers, c. Some 
queues can also have infinite servers.

4th (K) System Capacity This parameter indicates how many custometers can be served at one time, including those in 
service. It is often assumed to be sufficiently large as to never be an issue.

5th (D) Service Discipline This parameter refers to the order (or discipline) that arriving customers are served. For most 
examples the discipline is First Come First Served (FCFS). But other options exist such as Last 
Come First Served (LCFS) and Service In Random Order (SIRO)
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QT literature is not limited to models that can be
described by Kendall's notation. There are many realistic
features that one can add to such models although the
analysis typically gets more complex with each addition.
For example, one feature relevant to healthcare is reneg-
ing customers . These customers choose to leave the sys-
tem before being served. "Leaving" can describe a wide
range of phenomena within the healthcare setting. In an
emergency room leaving can be those who get tired of
waiting. On the other hand, in a mass casualty event,
leaving could refer to those patients who die before being
seen. Another set of models that are relevant within
healthcare setting are queueing networks. In these mod-
els customers move between queues and possibly leave
the system at some point. Such models can describe the
movements of the patients, for example, between surgery,
the recovery room and regular inpatient care [23].

While vast, the QT literature does not provide answers
for every possible queueing model. In general, as one
changes the Markovian assumptions for the arrival and
service processes or adds some of the complications dis-
cussed above, the analysis becomes more complex. For
such systems, simulation may be better suited. In a simu-
lation study, researchers first build a model of the actual
system using simulation software. When simulating, the
computer generates vast numbers of customers (or other
entities) who travel through the model, which could con-
sist of a single queue or a network of queues. As these
entities travel through the model, the computer records
the desired data, which are then used to describe system
performance, such as the average waiting time per cus-
tomer.

Simulation is one tool for bypassing the difficult analyt-
ical problems resulting from complex queueing situa-
tions. Another involves mathematical approximations to
simplify features of the model (such as the objective func-
tion). In most interesting problems, difficult equations
arise which are impossible to solve generally. However,
various approximations can make the problem tractable
(e.g., a Taylor Series approximation to a difficult-to-eval-
uate function).

Applications of Queueing Theory in Health Care
Queueing models have been used to answer a variety of
questions in health care. These applications involve a
range of problems that vary greatly in scale. Some exam-
ples are how to allocate hospital beds [24], schedule sur-
geries [25], and triage patients [26], but researchers
typically have focused on waiting times and utilization.
These papers have explored the trade-offs between these
two goals, minimizing patients waits and maximizing
resource (staff, equipment, beds, etc.) utilization. Green
[27] provides a good overview of this literature. Health-
care applications tend to be very complex, and so there

have been a number of extensions to the classic models to
bridge the gap between the models and reality. Some
extensions include reneging (i.e., leaving the queue before
being served) [28], variable arrival rates [29], and block-
ing (i.e., customers done with one phase of service, not
advancing through the system due to others being served)
[30].

Some QT research has examined patient flows and
considered how redistribution of resources or redesign of
systems could improve flow. Often commercial software,
such as QNA, is very helpful to real-world providers.
Such applications may reduce or eliminate bottlenecks
that reduce quality of care [31].

Queueing has also been used in the design of whole sys-
tems in healthcare. Most of this work focuses on finding
proper capacity, such as the marginal cost of additional
beds [32]. Some studies examine multiple elements work-
ing together such as facilities working in the same region
[30,33].

The next section illustrates queueing theory and the
tools of OR more generally. This section will look at how
a simple model in QT can answer difficult questions in
healthcare management.

An Illustration: The Management of Drug 
Treatment Facilities
The history of treatment for substance abuse is long, and
effective drug treatment has proven elusive. Some pro-
grams have demonstrated success. Brief intervention and
social skills training have both shown significant efficacy
(in particular over traditional 12-step programs, [34]).
Simply finding an effective treatment, however, is only the
beginning of service delivery . A range of problems sepa-
rate potential patients from actually receiving appropriate
care. These issues include funding as well as training pro-
viders to actually deliver the service. Key issues of capac-
ity planning also are involved: a provider offering the
effective treatment needs to deliver it in sufficient quan-
tity to those who would benefit.

For these types of problems, OR in general and queue-
ing models in particular have much to offer. Consider a
residential drug treatment facility. This hypothetical
facility can be modeled using an M/D/c queue. This
model was chosen because it best approximates many key
features of this application. First, potential customers
(individuals requiring treatment) arrive, at random,
according to a Poisson process with some constant rate
(M for arrivals). If space is available for them to enter
treatment they do; otherwise, they must wait. Second,
services take a deterministic amount of time: each patient
spends k weeks in treatment and then is discharged (D for
service). Facility capacity is determined by the number of
patients they can house at one time, here referred to as
the number of beds (c servers). We also assume that the
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waiting list has no maximum and that the arrival rate
does not depend on the number of clients being treated at
a point in time. Finally, we assume decisions about whom
to treat is "First Come First Served".

Tijms [35] has examined this specific queue. The solu-
tion involves solving an infinite set of linear equations.
The author does so by using a common approximation in
OR: he reduces the number of equations to a finite num-
ber using the geometric tail approximation. This approxi-
mation assumes that the probability of having
successively greater numbers of people in a queue decays
exponentially as the length of the queue increases. Using
this simplified system, one can solve directly for the long-
run average number of people in the queue. From that
solution, one can calculate other key outcome measures,
such as the distribution of waiting times, the proportion
of arrivals that need to wait and measures of system utili-
zation. (See mathematical appendix 1 for more details.
The appendix also provides the Matlab code needed to
produce the solutions reported below.)

One can take Tijms' results and examine questions
about performance or questions policy maker might have
regarding the facility. For example,

• What will average occupancy be? How long can 
patients expect to wait for a bed?
• Can the facility accommodate referrals from a local 
hospital? If so, how many extra beds will be required?
• If this facility is consolidated with two others (leav-
ing overall capacity unchanged), who will benefit? 
Customers, the facilities, both or neither?

To answer these questions, one needs the 3 key param-
eters. Any facility can provide these figures; we selected
hypothetical values for arrival rate (λ = 1 per day); for
length of treatment (28 days; μ = 1/28); and number of
beds (C = 32). We illustrate the model's solution for these
hypothetical parameters, but of course, the reader with
access to Matlab could calculate a solution for a different
facility, perhaps better reflecting the circumstances in his
or her community.

Question 1: What will average occupancy be? How long
can patients expect to wait for a bed? 

The long-run expected occupancy at a point in time is
28 beds occupied. On 33.6% of all days, the facility is full;
66.4% of patients experience no wait for services. Only on
22.2% of days are fewer than 25 beds occupied. Of those
who do wait, the expected wait for a bed is 4.11 days.
Only 5.8% of patients have to wait more than one week.
So, based on these benchmarks our hypothetical clinic is
meeting realistic operating goals.

Question 2: Can the facility accommodate referrals
from a local hospital? If so, how many extra beds will be
required? 

Suppose a local hospital is considering closing its treat-
ment unit. If it does, it will refer an average of 2 patients

per week. Based on the hospital's estimate, the arrival rate
will now be 9/7 (1.2857) patients per day. We know that
not all beds are in continual use now, since the occupancy
should be 28 patients, so we might try adding no beds.
However, from an easy check for stability we see that will
not work. From introductory QT, it is well known that if
there is no limit to the number waiting and λ ≥ μ * C, the
system is unstable (the length of the line will grow with-
out bound). Put into words, if the arrival rate is greater
than the total service rate when all servers are working,
the facility will never (in the long run) be able to keep up.
We can clearly see from the stability condition we need at
least 36 beds (additional 4 beds)

How many beds to add beyond 4 is difficult to calculate
because one must decide how much of an increase in
waiting is tolerable. However, by utilizing QT one can
look at the various possibilities instantly; one can deter-
mine the various outcomes without having to implement
them and then observe the consequences. Figures 1 and 2
report the relationship between added beds and waiting
times.

Figure 1 shows the relationship between the number of
beds added and two key performance measures. At 7
beds, the average percent of beds occupied is 92.3%, a
slight increase over the original rate (87.5%). 9 additional
beds restore the system to this original rate. At 7 beds,
roughly half of arrivals do not wait (50.7%)--a rate sub-
stantially worse than observed originally (66.4%).

Figure 2 reports the average waiting time for an arrival
that is not immediately served. For 7 beds, the wait is
marginally longer than our original model (5.21 days). At
9 beds, the impact of the additional customers is elimi-
nated.

From the figures it is clear that we should add more
than 7 beds, otherwise we expect performance metrics to
deteriorate, at least from the client's perspective. From
the facility perspective, some benefits accrue: the percent
of beds occupied increases. Adding 9 beds keeps the per-
formance metrics at similar (or slightly improved values)
at a minimum number of additional beds.

Question 3: Suppose this facility is one of three in the
area and that the owners of the facilities are considering a
merger under which patients would be shared across
facilities. Who will benefit? Patients, the firms, both, or
neither?

Assuming that the two other facilities are identical to
our initial facility (1 arrival per day, 28 day treatment, and
32 beds) and close enough such that patients could be
moved from one facility to the other with negligible cost,
the three merged facilities would have an overall capacity

9
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1
28
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of 3 arrivals per day, offers 28 days of treatment, and
administers 96 beds. Does tripling both the number of
beds and customers produce any real changes in the
functioning of the facility? While not apparent, this
merger (or pooling) does fundamentally change the
nature of the system. Now excess capacity in what used to
be a separate facility can be shared with the other facili-
ties. What does this change mean for key stakeholders?

After the merger the average occupancy is unchanged
(87.5%). However, the patients' experiences are dramati-
cally improved. The percent of arrivals who experience
no wait rises to 87.7% (from 66.4%) and the expected wait
drops to 1.55 days (from 4.11). clearly this shows that the
merger should improve the experiences of patients.

The owners of the firm will be interested in how they
would benefit from the merger. In the post-merger sys-
tem, while the average occupancy has stayed the same,
the number of idle beds has increased. To raise revenue,
the facility may take more transfers from other facilities
or otherwise increase the number of patients without
damaging the patients' experience.

Table 2 reveals the effect of the additional arrivals. The
first line shows the key system characteristics at the origi-
nal arrival rate. We see that small increases in the arrival
rate cause the occupancy to increase substantially.
Increasing arrivals to 3.3 per day (a 10% increase) raises
occupancy to 96.3%. Concomitantly, the patients' experi-
ence deteriorates--now only 41.4% are admitted immedi-
ately, and the waiting times (for those who do wait)
increases to 4.24 days. Further increases are especially
dramatic. At 3.5 arrivals, all of the beds are occupied all of
the time, and all patients wait. And the system is now
unstable as waiting times explode without bound.

An alternative option would be to cut the number of
beds and so reduce overhead. This option is summarized
in table 3.

One can see that two beds can be eliminated without
much impact. However, cutting more than ten beds
would have large negative effects on the patient's experi-
ence with little gain for the facility. Doing so would cause
73.7% of patients to wait, with average wait exceeding
seven days.

Figure 1 Number of beds added and key performance measures.
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Discussion
In the last 100 years, medical care has advanced tremen-
dously, arguably more than in the entire history of
humanity prior to that point. Revolutionary treatments
have been developed, and people live longer and healthier
lives as a result. Improved technology, however, has little
power to improve the lives of ordinary citizens unless it is
disseminated efficiently and quickly.

Moving from better treatment to better health involves
a series of steps; stumbles at any stage can rob patients of
the benefits they might gain from better treatments. In
some cases, the barrier to better care can be quite simple.
For example, it is well established that patients having
experienced an acute myocardial infarction should
receive an aspirin within 24 hours of hospital admission.
More than one in six participants in the Medicare pro-
gram, however, still do not receive the aspirin [36]. More
generally, only half of all patients receive "best practice"
treatment for their illness [37]. The failure of providers to
follow treatment guidelines is just one example of how

knowledge of effective care may not translate into effec-
tive care.

Other barriers to care are further removed from the
actual experience of care. One such barrier involves the
management of resources. Arguably, the technology of
treatment has far surpassed the technology of managing
the delivery of care. The IOM/NAE report has labeled
this disjuncture, the "paradox of American Health
Care"[[37], p.11]. This paradox reflects a variety of
causes, some beyond the reach of the tools of operations
research. One cause is the financing of care fosters a "cot-
tage industry" structure [37]. The resulting fragmentation
of care further degrades the quality of care.

As this paper illustrates, one set of tools for improving
the delivery of health care can be found in the tools of
operations research. We illustrate one of those tools here,
queueing models. As is true of the broader set of OR
tools, queueing models can accommodate key features of
the delivery process of interest, such as the random
nature of patient arrivals. Then in turn the model can

Figure 2 Average waiting time for an arrival not immediately served.
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identify how key outcomes may change in response to
policy changes. As we illustrate with an example involv-
ing drug treatment, a queueing model can identify the
effect of such changes before they are actually imple-
mented in the real world.

One key aspect of the health care system is its complex-
ity, and policy makers want to design and reform the sys-
tem in a way that fosters goals that can be competing. For
example, policy makers have established a regulatory

environment that creates barriers between different orga-
nizations within the health care system. Efforts to verti-
cally integrate different levels of health care delivery raise
antitrust concerns. For example, a hospital may purchase
or merge with a provider of home health care, and such
integration may improve the coordination between those
providers. However, such integration may raise the
potential for anticompetitive behavior, such as the steer-
ing of patients by the hospital to its provider. Such inte-

Table 2: Effect of the additional arrivals on Key Outcomes

Arrivals rate (per day) Avg. Percent of Beds 
Occupied

Percent of Arrivals Who Do 
not Wait

Avg. Wait Given That the 
Arrival Must Wait (in days)

3, (After Merger, no action) 87.5 87.7 1.55

3.1 90.4 78.0 1.90

3.2 93.3 63.2 2.55

3.3 96.3 41.4 4.24

95/28 (3.39) 99.0 13.2 14.3

3.5 and above 100 0 Infinite

Original situation (pre merger) 87.5 66.4 4.11

Table 3: Effect of reductions in the number of beds on Key Outcomes

Beds Cut (NumberLeft) Avg. Percent of Beds 
Occupied

Percent of Arrivals Who 
Don't Wait

Avg. Wait Given That the 
Arrival Must Wait (in days)

0, (96) (no action) 87.5 87.7 1.55

2 (94) 89.3 81.6 1.78

4 (92) 91.3 73.3 2.13

6 (90) 93.3 61.9 2.71

8 (88) 95.4 46.5 3.87

10 (86) 97.7 26.3 7.36

11 (85) 98.8 14.0 14.4

12 or more 100 0 Infinite

Original situation (pre merge) 87.5 66.4 4.11
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gration, therefore, may foster the improved management
of resources but may have hidden costs.

More generally, these types of complex decisions are
the ones for which the benefits of an OR approach are
likely the greatest. An OR model can reveal how different
choices balance the benefits of vertical integration with
the potential market distortion it creates.

Appendix 1: Equations and the Matlab Code Used 
to Compute the Performance Measures for the 
Example Queueing Application Considered in the 
Paper
Originally, all the calculations were done by using the M-
files presented here. During the writing of this paper, the
authors came across a piece of software, MCQueue (writ-
ten by H.C. Tijms and M.C.T. van de Coevering). This
piece of software was used to help confirm the results
from the M-files contained here. The software can be
found at http://staff.feweb.vu.nl/tijms/.

Tijms gives the following (p. 289 eqn 4.5.6)

And

Where:
• pj is the long run average time spent in state j. (j peo-
ple in the system)
• λ is the arrival rate of customers
• D is the service time for a customer
• c is the number of servers

This infinite set of equations is then reduced by the
geometric tail approach, Pj ≈ σ * τ j, for j ≥ M . (4.5.7)
Where τ is the unique solution to eλD(1-τ)τc = 1. (4.5.8)

We then solve the resultant system using Gaussian
elimination.

To achieve this, we use 3 M-files, "pandlcalc," "mat-
maker," and "taucalc."

Each files purpose:
• "pandlcalc" handles the solving of the systems of 
equations, and computing the interesting perfor-
mance characteristics
• "matmaker" creates the matrix which contains the 
finites system of equations
• "taucalc" calculates tau for use in the other M-files

The inputs are:

• λ, the arrival rate of customers
• D, the service time for a customer
• c, the number of servers
• tau0, an initial guess for value of tau (it is not impor-
tant to have a good guess, so long as it is above 1, we 
use 1.5)
• e, which is an error bounding term used in a few 
places (1e-6 or 1e-10 is usually good and the execu-
tion time is still quick)
• M, is the M for the geometric tail approximation

function output = pandlcalc(lambda, D, c, tau0, e, M)
%this calculates the pvalues and a host of other useful

information
% get system of equations and initial tau
mat = matmaker(lambda, D, c, tau0, e, M);
rhs = zeros(M+c+1,1);
rhs(M+c+1, 1) = 1;
tau = taucalc(lambda, D, c, tau0, e);
% calculate initial pvalues
pvals = linsolve(mat, rhs);
%calculate simga, until stable and get resultant pvalues
newsigma = 1;
oldsigma = .1;
while ~(((newsigma/oldsigma) < = (1+e)) && ((old-

sigma/newsigma) < = (1+e)))
oldsigma = newsigma;
for i = 0:c-1

newsigma = newsigma + pvals(i+1)*(tau^i-tau^c);
end
newsigma = newsigma/(c-lambda*D*tau);
rhs(M+c+1, 1) = 1-newsigma*(((1/tau)^(M+c))/(1-(1/

tau)));
pvals = linsolve(mat, rhs);

end
%calculate performance measures
numinsys = 0;
numwaiting = 0;
expocc = 0;
proportionnowait = 0;
for i = 0:c-1

numinsys = numinsys + i*pvals(i+1);
expocc = expocc + i*pvals(i+1);
proportionnowait = proportionnowait + pvals(i+1);

end
for i = c:M+c

numinsys = numinsys + i*pvals(i+1);
expocc = expocc + c*pvals(i+1);
numwaiting = numwaiting + (i-c)*pvals(i+1);

end
% calculating waiting time via Little's Law
waittime = numwaiting/lambda;
actualwaits = waittime/(1-proportionnowait);
%{
%alt method
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avgtimeinsys = numinsys/lambda
avgwaittimeinsys = avgtimeinsys-D
waittime2 = avgwaittimeinsys/(1-proportionnowait)
%}
%{
%for ploting, if desired
CDFpvals = pvals;
sum = 0;
for i = 1:length(pvals)

sum = sum+pvals(i);
CDFpvals(i) = sum;

end
clf;
t = 1:length(pvals);
plot(t, pvals, t, CDFpvals);
figure;
plot(t, pvals);
figure;
plot(t, CDFpvals);
%}
output = [numinsys; expocc; proportionnowait; num-

waiting; waittime; actualwaits];
function out = matmaker (lambda, D, c, tau0, e, M)
%this makes the matrix which represents the system of

equations for use in
%pandlcalc
%initialize the matrix
mat = zeros(M+c+1, M+c+1);
%fill in the matix
for i = 1:M

for j = 1:c+i-1
if j < = c

mat(i, j) = exp(-lambda*D)*(lambda*D)^(i-1)/fac-
torial(i-1);

else
mat(i, j) = exp(-lambda*D)*(lambda*D)^(i-j+c)/

factorial(i-j+c);
end

end
end
mat = mat-eye(M+c+1, M+c+1);
%continue to fill in for the values which the geometric

tail approximation
%will handle
tau = taucalc(lambda, D, c, tau0, e);
for i = M+1:1:M+c

mat(i, i+1) = tau;
end
for j = 1:M+c+1

mat(M+c+1, j) = 1;
end
%output
out = mat;
function out = taucalc(lambda, D, c, tau0, e)

%this calculates tau using the recommendation from
Tijms p.289

%initialize
taunew = tau0;
tauold = taunew+e+.1;
%iteratively solve
while abs(taunew-tauold) > e

tauold = taunew;
taunew = (c*log(tauold))/(lambda*D)+1;

end
%output
out = taunew;
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