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Abstract

features which may influence our interpretation.

Background: When a patient experiences an event other than the one of interest in the study, usually the
probability of experiencing the event of interest is altered. By contrast, disease-free survival time analysis by
standard methods, such as the Kaplan-Meier method and the standard Cox model, does not distinguish different
causes in the presence of competing risks. Alternative approaches use the cumulative incidence estimator by the
Cox models on cause-specific and on subdistribution hazards models. We applied cause-specific and
subdistribution hazards models to a diabetes dataset with two competing risks (end-stage renal disease (ESRD) or
death without ESRD) to measure the relative effects of covariates and cumulative incidence functions.

Results: In this study, the cumulative incidence curve of the risk of ESRD by the cause-specific hazards model was
revealed to be higher than the curves generated by the subdistribution hazards model. However, the cumulative
incidence curves of risk of death without ESRD based on those three models were very similar.

Conclusions: In analysis of competing risk data, it is important to present both the results of the event of interest
and the results of competing risks. We recommend using either the cause-specific hazards model or the
subdistribution hazards model for a dominant risk. However, for a minor risk, we do not recommend the
subdistribution hazards model and a cause-specific hazards model is more appropriate. Focusing the interpretation
on one or a few causes and ignoring the other causes is always associated with a risk of overlooking important

1. Background

In medical research, each person studied can experience
one of several different types of events over the follow-
up period and survival times are subject to competing
risks if the occurrence of one event type prevents other
event types from occurring. For example, in a study of
bone marrow transplantation, leukemia relapse and
death in remission are competing risks [1,2]. Leukemia
relapse will not be observed once patients have died.
Similarly, in a study of people with diabetes, end-stage
renal disease (ESRD) and death compete for the life of
the person, and each influence the risk of the other
[3,4]. When a person experiences an event other than
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the one of interest in the study, the probability of
experiencing the event of interest is frequently altered.
Thus, caution is needed when we estimate survival
probability of the event of interest in competing risks
analysis [5]. Accordingly, if a person reaches the primary
event of interest (e.g, ESRD), the other event (e.g, death
without ESRD) is censored. The competing risk model
can be described by specifying the cause-specific hazards
as visualized as in Figure 1.

With competing risks data, the nonparametric Kaplan-
Meier [6] cumulative hazard function, {1 - Sxu(%)}, has
been used in some research. However, studies have
demonstrated that {1 - Sg;(2)} is inappropriate because
it overestimates the probability of occurrence of the
event of interest [7-12]. The bias is especially great
when the hazard of the competing events is large [13].
An alternative method to the inappropriate cumulative
hazard function is Cox cause-specific hazard [14] and
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Figure 1 Competing risk models with K different event types.

cumulative incidence functions (CIF), which are the
most important approaches to analyse competing risks
data [12]. The cause-specific hazard measures the
instantaneous failure rate due to one risk at a time. It is
routinely estimated by constructing the Cox models on
cause-specific hazards and treating time to event from
the other competing risks as censored [11,12]. For each
risk, the effects of prognostic factors are assessed as
constant hazards ratios on the instantaneous failure rate
of this risk. The CIF is an important quantity related to
one risk in the context of competing risks. The CIF
curve provides a better incidence curve associated with
one risk than {1 - Sxas(2)}. It also provides a meaningful
interpretation in terms of failure due to one risk regard-
less of whether competing risks are independent. Com-
paring the CIF curves is analogous to the log-rank test
and is identical to the log-rank test in the absence of
competing risks [15]. Gray considered a class of K-
sample tests for the cumulative incidence based on
weighted averages of subdistribution hazard functions
[15]. Such tests do not require the independence
assumption and does not adjust for other covariates.

In recent years, research methods centered on directly
assessing covariate effects on a CIF have been developed
[16,17]. One important work is the proportional subdis-
tribution hazards model proposed by Fine and Gray
[16]. This approach directly measures the covariate
effects on the cumulative failure probability due to one
risk, in the presence of other risks. As in any other
regression analysis, modeling CIF for competing risks
can be used to identify potential prognostic factors for a
particular event in the presence of competing risks, or
to assess a prognostic factor of interest after adjusting
for other potential risk factors in the model.

The primary aim of this paper is to apply regression
models on cause-specific hazards and subdistribution
hazards to people with diabetes and to examine the esti-
mates obtained by such models. We have identified the
competing risk of “ESRD” versus “death without ESRD”
in a diabetes population and evaluate the risk factors
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that are associated with these two outcomes. In the next
section, we introduce a description of the diabetes
study. In Section 3, models on cause-specific and sub-
distribution hazards for analysis are reviewed. In Section
4, the models are applied to the diabetes dataset to mea-
sure the hazard ratios of covariates and the cumulative
incidence function. Section 5 contains a discussion
about results and conclusions.

2, Study Description

2.1. Clinical Background

Diabetes is one of the most common chronic diseases
occurring globally. In developed countries, population
aging, inactivity, growing prevalence of obesity, and
improved management of chronic complications
have contributed to an epidemic of type 2 diabetes
(T2DM) [4,18-23]. T2DM is particularly common
among African Americans, Latinos, Native Americans,
and Asian Americans/Pacific Islanders [24]. Increasing
rates of T2DM among African-American and Canada’s
First Nations peoples reflect a parallel epidemic of over-
weight/obesity caused in large part by disruption of tra-
ditional cultures and lifestyles [25-27]. In addition to the
above, risk factors for diabetes include obesity, physical
inactivity, advanced aging, high blood pressure and/or
high cholesterol, and family history of diabetes
[24,26,28]. It has been reported that T2DM contributes
to and is associated with increased mortality in end-
stage renal disease (ESRD) populations [18,28,30]. Dia-
betic nephropathy affects about 10-20% of people with
diabetes [31,32] and is a leading cause of ESRD
[21-23,31]. Furthermore, studies have shown that indivi-
duals with both diabetes and ESRD have higher morbid-
ity and mortality rates than individuals with only one of
these conditions [4,33,34]. Finally, it has also been
reported that women with ESRD have worse outcomes
compared to men [4,28,29].

2.2 Study Population
We conducted a population study of diabetes, utilizing
data drawn from the Saskatchewan Ministry of Health
administrative databases. Descriptions of the overall
study design and profile have been published elsewhere
[27]. Briefly, Saskatchewan is a mid-western province of
Canada with a population of approximately one million
people through the years of study. Approximately 99%
of the provincial population are beneficiaries of a uni-
versal health care system and recorded in the Ministry
of Health’s insurance registry. For this sub-study, 8274
First Nations people age 20 years or older with a dia-
betes incident year between 1980 and 2005 were identi-
fied as registered Indians in the databases.

In this study we excluded diabetes records related to a
gestational record to ensure that gestational diabetes
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cases were not counted as diabetes cases. The ESRD
case definition was based on physician fee-for-service
codes for chronic dialysis and renal transplantation. To
qualify as a chronic dialysis patient in the study, a per-
son was required to have received dialysis for at least 90
days, and to have received that treatment without any
break of 21 days or greater. We excluded 20 patients
who were classified as having reached ESRD prior to
diabetes diagnosis. For all patients in the study, we
obtained the following information: birth year, sex, and
diabetes incident year. Where applicable, the ESRD inci-
dent year, year of death, and any period of health care
coverage loss were also provided. A competing risk
model was used to analyze the risk of two event types -
ESRD or death without ESRD. Censoring time was set
at December 31, 2005. In this study we explored and
determined the effect of diabetes on ESRD and death
when demographic characteristics were taken into
account in the competing risks analysis.

3. Models

3.1. Standard single event time model

Let T be a random variable representing survival time
that has a density function, f{¢), and the distribution
function, F(t). The survival function at time ¢, S(¢), is
defined to be the probability that the survival time is
greater than ¢, where S(t) = P(T > t) = 1 - F(t). The sur-
vival function, therefore, represents the probability that
an individual survives from the time origin (for example,
time of the study enrollment or disease diagnosis) to
sometime beyond t. The hazards function or hazard
rate, /(t), is the probability that an individual dies at
time ¢, conditional on having survived to that time,
which is defined as:

h(t) = lim

At—0

P(t<T<t+At|T2t)
At '

The hazard function, therefore, represents the instan-
taneous death rate for an individual surviving up to time
t and provides a full characterization of the distribution
of T. [35].

The main concern with this approach is how to study
the impact of important covariates on the distribution
of T. To do this, we assume the variation in the distri-
bution of event and censoring times can be character-
ized by a vector of observed explanatory covariates, z,
which can be either time-invariant or time-dependent
covariates. Under the Cox proportional hazards model,
the hazard function for the event time T associated with
the covariates z is defined as:

h(t) = ho(t) e 2.
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Here, the function /y(t) is an unspecified baseline
hazard function and gives the shape of the hazard func-
tion. If all explanatory covariates are zero, the hazard
function will be the baseline hazard /,(%). If two indivi-
duals have identical values of the measured covariates,
they will have identical hazard functions. The cumula-
tive hazard function given z is defined by

A(t; 2)= A1) eP 2, where Ao(t) is the cumulative

t
baseline hazard and A,(t) = Jho(u)du. The survival
0

function is then obtained from the cumulative hazard
function such that S(¢) = exp{- A(t; z) }.

3.2. Models on cause-specific hazards

Competing risks in survival analysis refer to a situation
where subjects under investigation are exposed to more
than one possible type of events. Thus, each subject is
associated with a pair (7, D) where T is the time-to-
event (event time or failure time) and D is the type of
the event for that subject. Here we assume that the pos-
sible causes are numbered from 1, .., K. The cause-spe-
cific hazard function in the competing risks model is
the hazard of failing from a given cause k in the pre-
sence of the competing events

hy (t)= lim

At—0

{P(tST<t+At,D:k|T2t)

}with D=1,..,K.
At

With covariates, the regression model on cause-specific
hazards is It z) = hou(t) e P 2.

The total hazard, h(%z), equals the value of its corre-
sponding hazards function summed up to time ¢. It is
then

K
h(t; z)= th(t).
k=1

This equation means that the all-cause hazard rate is
the sum of K hazards.

t
Define A (t;z) = Agy(t) e? %, where Ay, () = Jhok(u)d“
0

and Si(t; z) = exp{- Ax (t; z)}. Although we can estimate
Si(t; z) from the cause-k specific cumulative hazard, exp
{- 4k (t z)} is not interpretable as the marginal survival
function for cause-k specific alone [12]. Instead Si(t; z)
is the survival probability for the k'™ risk if all other
risks were hypothetically removed.

With competing risks data, the cumulative incidence
curve derived from cause-specific hazard functions pro-
vides important event information for a specific cause.
The cause-specific cumulative incidence function (CIF)
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of cause k at time ¢, [i(t), is defined by the probability of
failing from cause &,

I(t)=P(T<t,D=k) k=1,..,K.

Given the covariate value z, the CIF for cause k is also
defined as

I(t: z) :J.S(u; z) dA,(u;z) = J-S(u; z) hy,(u)du
0 0

where S(t; z) and Ay ( z) are the adjusted overall survi-
val and cumulative hazard based on certain types of
cause-specific hazard regression models [12]. This
expression shows that the cumulative incidence of a spe-
cific cause k is a function of both the probability of not
having the event prior to another event first (S(z)) up to
time ¢ and the cause-specific hazard (/,(u)) for the event
of interest at that time [7,8,12]. Estimation of the CIF can
be obtained by using the cause-specific hazard.

Lunn-McNeil [36] extends to only one Cox model on
cause-specific hazards rather than separate cause-speci-
fic models for each competing risk. Their method is an
adaptation of Cox regression requiring event type indi-
cator variables, which corresponds to different event
types.The Lunn-McNeil approach stratified by event
type gives identical results to those obtained from sepa-
rate Cox models. The unstratified Lunn-McNeil model
is an unstratified Cox proportional model, which can be
used when constant hazard ratios between risk types is
assumed. The unstratified Lunn-McNeil method
assumes that different risk types have proportional base-
line hazard functions. By contrast, the stratified method
permits distinct baseline hazards for each event type
[17]. If the proportionality assumption is not satisfied,
then the stratified Lunn-McNeil model should be used.

3.3. Model on a subdistribution hazards

Fine and Gray [16] proposed a regression modeling
applied directly on a cumulative incidence function for
particular use in competing risks analysis. For any event
type, this approach focuses on the hazard associated
with the CIF, Ii(t; z), which expresses the effect of cov-
ariates directly on the CIF. This is done via the subdis-
tribution hazard function h*(% z):

h* (G2)=h*y, (1) e 2.

The CIF on the subdistribution is the function such that

I(t;2)=1 —exp{—jh *. (4, z) du}.
0
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Here h*(% z) is not the cause-specific hazard. The CIF
for cause k not only depends on the hazard of cause &,
but also on the hazards of all other causes. For this
approach, the subdistribution hazard is also defined as

h*, (t;z)=li
K (62) ALIE)]O{ At

__dlog{ 1-1,(t;z)}
N dt

P [zST<t+Az,D=k\TzzU(T<mD¢k)]}

so that the covariate effect directly relates to the
cumulative incidence function [12]. Fine and Gray
imposed a proportional hazards assumption on the sub-
distribution hazards and gave estimators and large sam-
ple properties [12]. This method takes into account
other events and does not make any assumptions about
their independence between the event time and censor-
ing distribution, i.e., the censoring mechanism is inde-
pendent of disease progression.

Estimation of the covariates coefficients for the models
on cause-specific and subdistribution hazards follows
the partial likelihood approach used in the standard Cox
model. However, the difference between cause-specific
and subdistribution hazards lies in the risk set. For the
cause-specific hazard, /(% z), the risk set decreases at
each time point at which there is an event of another
cause. For the subdistribution hazard, %*(tz), a person
who has an event from another cause remains in the
risk set [16]. In our study, we have applied the Cox
models on the cumulative incidences of ESRD and
death without ESRD, and have determined the subdistri-
bution hazards ratios.

4. Results

Of the 8254 subjects in the study, 3718 (45%) were male
and mean age at diabetes diagnosis was 47.2 (s.d = +
14) years old. During the study period (median follow-
up time = 8.2 years), 1482 (17.9%) subjects died without
ESRD and 200 (2.4%) developed ESRD. Of 200 ESRD
patients, mean age of ESRD was 56.5 (s.d.= + 11.2) years
old and 110 (55%) died. The events of interest were the
times to ESRD, or death without ESRD. The study cen-
soring time was set at December 31, 2005. In contrast
to other contributions that focused on describing the
study population [27], we used the data below to illus-
trate the application of the competing risk hazards mod-
els and provide comparisons between techniques.

In our study, we applied the Cox models on cause-
specific and subdistribution hazards to obtain the cumu-
lative incidences of ESRD and death without ESRD: the
hazards ratios are given in Table 1. The results show
that the effect sizes from the cause-specific and subdis-
tribution hazards models are quite close for death events
but are different for ESRD events. This indicates that
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Table 1 Estimation of hazard ratio (H.R), 95% confidence interval (C.l), and p-value from the Cox cause-specific and
subdistribution hazards models of time from the diabetic diagnosis to ESRD and to death without ESRD

Competing Risk Model Covariate H.R 95% C.l p-value
ESRD Male 1513 1.146 - 1.998 0.004
Cox
cause-specific Age < 40 - -
hazards model 40 < Age < 6 1.149 0.849 - 1.554 0.368
60 < Age 1.405 0.891 - 2.215 0.144
Cox Male 1.323 1.006 - 1.742 0.045
subdistribution
hazards model Age < 40 - -
40 < Age < 60 0923 0.685 - 1.243 06
60 < Age 0.53 0.335 - 0.838 0.007
Death without ESRD
Cox Male 1.377 1.243 - 1525 < 0.0001
cause-specific
hazards model Age < 40 - -
40 < Age < 60 268 2267 - 3.158 < 0.0001
60 < Age 10.23 8653 - 12.09 < 0.0001
Cox Male 1.36 1.226 - 1498 < 0.0001
subdistribution
hazards model Age < 40 - - -
40 < Age < 60 265 2.248 - 3126 < 0.0001
60 < Age 9.96 8453 -11.74 < 0.0001

the covariates interacted with the two event types. Males
were at 51% and 32% higher hazard risks of ESRD com-
pared to females in the cause-specific and subdistribu-
tion models, respectively (Table 1). Age at diabetes
diagnosis had a significant effect on development of
ESRD. Data also showed that age greater than 60 years
old was not different compared to age less than 40 years
old on the risk of ESRD in the cause-specific model
(p-value = 0.144). However, it was significant in the sub-
distribution model (p-value = 0.0066).

Male sex and increasing age were significant predic-
tors for death without ESRD (Table 1). Even when the
competing risk of ESRD occurrence was taken into
account, males and older age groups had a higher prob-
ability of death without ESRD than females and young
age groups, respectively. The cause-specific and subdis-
tribution hazards models showed that males faced a
1.37 times higher risk of death without ESRD than
females. Risk of death without ESRD also increased
with age. People aged 40 to 60 years had 2.65 times
higher risk of death compared to those aged younger
than 40 years in the subdistribution model (95% C.I:
2.267 - 3.158, p-value < 0.0001). After adjusting for sex,
this is interpretable as the risk of death without ESRD
for people aged 40 to 60 increasing by 165% compared
to people younger than 40.

Table 2 shows the risk of ESRD and death without
ESRD when the data were analyzed by the unstratified
Lunn-McNeil model under the assumption that the
baseline cause specific hazards are proportional. Here
the hazard of ESRD and death without ESRD were both
increased by 40% for males compared to females. The
risk type hazard ratio of 2.44 in the Table 2 indicates
that for females younger than 40 years, the hazard of
death without ESRD is 2.44 times higher than that of
ESRD (95% C.I: 1.788 - 3.328, p-value < 0.0001). As
clinically expected, older patients had a higher risk of
death, but age did not show an effect on ESRD risk.
Note that because the stratified Lunn-McNeil model is
identical to the Cox cause-specific model, it is not dis-
cussed further.

Figures 2a-c and Figures 3a-c show the estimates of the
CIF curves of risk of ESRD and death without ESRD by
sex for subjects younger than 40 based on the Cox cause-
specific, subdistribution hazards models, and the unstrati-
fied Lunn-McNeil model. Estimates for the cause-specific
hazards model provided a slightly higher CIF curve than
for the subdistribution hazards model and the unstratified
Lunn-McNeil model (Figures 2a-c). The cumulative inci-
dence probability of ESRD approached 6.6% in females
and 9.4% in males in the cause-specific model (Figure 2a),
6.8% in females and 8.9% in males in the subdistribution
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Table 2 Estimation of hazard ratio (H.R), 95% confidence interval (C.l), and p-value from the Lunn-McNeil unstratified
models assuming constant ratios between ESRD and death without ESRD

Competing Risk Covariate H.R 95% C.l p-value
ESRD Malegspp 1.395 1.057 - 1.84 0.0186
Ageesrp) < 40 -
40 < Agespp) < 60 1.078 0.797 - 1457 0.627
60 < Agegsrp) 1.004 0.641 - 1574 0.985
Death without ESRD  Risk type * 244 1.788 - 3.328 < 0.0001
Male geatry 140 1264 - 155 < 0.0001
Age(deathy < 40 - - -
40 < Age(death < 60 2.708 2291 - 3.202 < 0.0001
60 < Age(geath) 10.73 9.078 - 1268 < 0.0001

* The reference competing risk type is ESRD.

model (Figure 2b), and 6.2% in females and 8.2% in males
in the unstratified Lunn-McNeil model (Figure 2c) at 20
year after diabetes diagnosis.

Figures 3a-c show the estimates of the CIF curves of
risk of death without ESRD by sex for subjects younger
than 40 based on the cause-specific and subdistribution
hazards models, and the unstratified Lunn-McNeil
model. The estimated CIF curves based on the three
models are almost identical for the first 22 years. The
cumulative incidence probability of death approached
15% in females and 20% in males at 20 years after dia-
betes diagnosis.

5. Discussion
In this study we used diabetes data to demonstrate ana-
lyses for competing risks and showed the differences in

estimates obtained by the cause-specific and subdistribu-
tion hazards models, and the Lunn-McNeil model. Our
analyses showed that the three models yielded different
results with regard to the effects of covariates. The CIF of
the cause-specific hazards model revealed a higher CIF
curve than the subdistribution hazards model: the unstra-
tified Lunn-McNeil model was lower yet. However, the
cumulative incidence curves of risk of death without
ESRD on those three models were very similar. Our data
showed such noticeable phenomenon consistently
throughout the other covariate (age, sex) categories.

The Kaplan-Meier survival estimate is not applicable
for competing risks analysis. The Cox proportional
regression approach requires a proportionality assump-
tion. If the number of competing events is large or
some events are rare, the proportionality assumption is

(2
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'
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o.

<
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Figure 2 2a-2c: Estimates of the cumulative incidence curves of risk of ESRD. Estimates were by sex for subjects younger than 40 years old
patient based on (a) the cause-specific hazards model; (b) the subdistribution hazards model; (c) the unstratified Lunn-McNeil model. Dashed line
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Figure 3 3a-3c: Estimates of the cumulative incidence curves of risk of death without ERSD. Estimates were by sex for subjects younger
than 40 years old patient based on (a) the cause-specific hazards model; (b) the subdistribution hazards model; (c) the unstratified Lunn-McNeil

often not satisfied. When the proportionality assumption
is violated, the effects of covariate on the CIF curve can
no longer be expressed by a simple number [13]. Gooley
showed how the cumulative incidence curve can also be
obtained [37]. The cumulative incidence of a specific
event k is a function of both the probability of not hav-
ing the event prior to another event (S(x)) up to time ¢
and the cause-specific hazard (/1;(u)) for the event of
interest at that time [7,8,12].

Our study showed that the estimates of the covariates
coefficients on the cause-specific hazards and on the
subdistribution hazards models were different. Latouche
et al showed that the effects of covariate on the cause-
specific hazard and on the subdistribution hazard were
normally different [38]. Their paper addressed the rela-
tionship between the Cox cause-specific and subdistri-
bution hazards models using a simulation study. The
cumulative incidence of the minor (smaller number of
events) risk may be greatly governed by the outcome of
the dominant (larger number of events) risk. For exam-
ple, age <40 that is protective against both risks may
yield higher cumulative incidences regarding the minor
risk than is observed in those age 40 - 60. The potential
for misleading information makes it undesirable to
interpret a covariate effect on a minor risk. In our
study, there were 200 ESRD patients and 1482 deaths
without ESRD, and the two risks are highly unbalanced.
This is a good example of how use of the subdistribu-
tion hazards model on ESRD for a minor risk is not reli-
able, and why people should be cautious in interpreting
such analysis. Thus, direct assessment of the covariate

effect in the subdistribution model should not be con-
ducted on the cumulative incidence of the minor risk.
For death without ESRD as the dominant risk, one can
use either a cause-specific hazard or subdistribution
hazard model. However, for a minor risk, only the Cox
cause-specific hazards model appears reliable.

The cause-specific hazard can be modeled using the
Cox model, which is broadly used in medical research.
The cause-specific hazard model may be more clinically
understandable when assessing the prognostic effect of
the covariates on a specific cause because we see that
the covariate effect would be to reduce or increase the
instantaneous probability of the event of interest irre-
spective of other covariate effect. However, when the
study objective is to compare the probability of the
event of interest, then the subdistribution hazards model
will be appropriate. While the subdistribution hazards
model might be limited to populations with similar
characteristics and similar competing risk rate, the
cause-specific hazard model is applicable for any popu-
lation with similar characteristics regardless of the rates
of competing risk events [39]. A cause-specific hazard
can be expressed graphically, but they are not easy to
interpret. Additional issues arise with interpretation of
covariates on the hazard scale. The Cox subdistribution
hazards model provides a methodology for modeling
CIF with covariates using a proportional hazards
assumption. The CIF are well suited to summarize com-
peting risks data with a graphic display of the probabil-
ities of event causes against time [8]. The CIF curve
derived from a cause-specific hazard function provides
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the probability of failure due to the event of interest in
competing risks analysis [16,37-40].

An advantage of the Lunn and McNeil approach is
that it facilitates direct comparisons between different
event types. Depending on whether the assumption of
proportional baseline cause-specific hazards holds, an
unstratified or a stratified Cox regression could be
applied. The unstratified method assumes that the base-
line hazards for different risk types are proportional,
while the stratified one allows for different hazards in
each event type [41]. When the assumption of propor-
tional baseline cause-specific hazards is satisfied, inter-
pretation of the estimates from the unstratified Lunn
and McNeil model is straightforward and allows assess-
ment of the relative clinical importance of different
event types. An advantage of the L-M model compared
to the Cox cause-specific model is the flexibility to per-
form statistical inferences about various features of the
competing risks using the information directly provided
in the computer output. However, for the unstratified L-
M model the constant assumption must be held within
strata, otherwise the model is not valid. In most studies,
different competing risk types will have substantially dif-
ferent underlying hazard functions and thus the applic-
ability of the unstratified L-M model is restricted.
Another limitation is that carrying out the L-M model
requires additional data layout coding [42].

The cause-specific and subdistribution models share
the same proportional hazards assumptions but normally
the covariate effects on the cause-specific hazards and on
the subdistribution hazards models are different [37].
This occurs because the effect of a covariate on the
cumulative incidence of a particular cause is mediated via
its direct effect on the cause specific hazard of that cause
and via its indirect effect on the cause specific hazards
for other cause [43]. Regarding the covariate effects, the
results of the subdistribution hazards model have similar
interpretations compared to the Cox model approach for
competing risk data analysis: €® represents the increase of
the hazard of the subdistribution due to one unit increase
of z. However, the cause-specific models

do not allow for a probability interpretation because
the cumulative probability depends on other cause-
specificevents. Thus, a summarizing the probability of
the different effects of the cause-specific hazards is chal-
lenging [2,43,44]. Nonparametric inference for general
summary measures for differences on the cumulative
incidence functions was proposed [43]. It had also been
shown that a proportional subdistribution hazards
model provides an interpretable summary when the
overall effects of covariate on the CIF are of interest [2].
Under the non-proportional subdistribution hazards, the
estimated subdistribution hazards ratio for the CIFs is
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also interpretable as a time-averaged hazard ratio
[44,45]. Further, even if the proportional subdistribution
hazards model is misspecified, it provides an interpreta-
ble summary of separate cause-specific analyses [44].

The cause-specific and subdistribution models both
require assumptions of proportional hazards. The pro-
portionality assumption can be checked by evaluating
the log{- log Sxai(t)} or by plotting residuals (Cox-Snell ,
Martingale, or Deviance residuals) or by adding time-
dependent covariates in the model [12,35,46]. For the
Cox cause-specific hazard model, the statistical software
is available in many commercial statistical software
packages and makes it easy to fit the models. However,
for the sub distribution hazard models, currently stan-
dard procedure is not available in SAS, but SAS macros
[47], STATA with compet.ado or R-package cmprsk are
available.

In our study, we used data from administrative data-
bases to estimate the competing risks of ESRD and mor-
tality in First Nations people with diabetes. Since it was
not a prospective study design and the subjects’ clinical
characteristics were not available, other important risk
factors for ESRD and mortality could not be assessed. If
the study had access to patients’ demographics beyond
age, gender and ethnicity and clinical information such
information could be incorporated in the competing
events analyses of ESRD and death. Interplay between
the competing risks of ESRD and death might give the
complete story about the effects of risk factors. If risk
factors are different for two competing events then it is
necessary to examine the decomposed outcomes on
ESRD and mortality since pathways to the two events
may be different. Establishing risk factors that cause
progression to ESRD and distinguishing such risk factors
from those that increase mortality can clearly predict
two endpoints of ESRD and death, and can also be used
as a decision making instrument.

6. Conclusion

In the analysis of competing risk data it is important to
present both the results of the event of interest and the
results of competing risks. One can use either the
cause-specific hazards model or the subdistribution
hazards model for a dominant risk. However, for a
minor risk we do not recommend the subdistribution
hazards model and a cause-specific hazards model is
more appropriate in competing risk data analysis. In
interpreting the results of a competing risks analysis, we
should always take into account all causes. Focusing the
interpretation on one or a few causes and ignoring the
other causes is always associated with a risk of overlook-
ing important features which may influence our inter-
pretation. Investigators should take care in setting up
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the right models to answer the questions of interest in
their research. A graphic illustration of CIF curves will
provide important additional insight, although the statis-
tical tests like the log-rank test remains appropriate for
testing group differences on each event type. Applying
them together as complementary measures of risk
clearly can expand a decision-making instrument for
many competing risks studies.
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