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Abstract

Background: Sequentially ordered multivariate failure time or recurrent event duration data are commonly
observed in biomedical longitudinal studies. In general, standard hazard regression methods cannot be applied
because of correlation between recurrent failure times within a subject and induced dependent censoring.
Multiplicative and additive hazards models provide the two principal frameworks for studying the association
between risk factors and recurrent event durations for the analysis of multivariate failure time data.

Methods: Using emergency department visits data, we illustrated and compared the additive and multiplicative
hazards models for analysis of recurrent event durations under (i) a varying baseline with a common coefficient
effect and (i) a varying baseline with an order-specific coefficient effect.

Results: The analysis showed that both additive and multiplicative hazards models, with varying baseline and
common coefficient effects, gave similar results with regard to covariates selected to remain in the model of our
real dataset. The confidence intervals of the multiplicative hazards model were wider than the additive hazards
model for each of the recurrent events. In addition, in both models, the confidence interval gets wider as the
revisit order increased because the risk set decreased as the order of visit increased.

Conclusions: Due to the frequency of multiple failure times or recurrent event duration data in clinical and
epidemiologic studies, the multiplicative and additive hazards models are widely applicable and present different
information. Hence, it seems desirable to use them, not as alternatives to each other, but together as
complementary methods, to provide a more comprehensive understanding of data.

1. Background

Sequentially ordered multivariate failure time data or
recurrent event time data are commonly observed in
biomedical longitudinal studies. Examples include tumor
recurrences, epileptic seizures, asthma attacks,
migraines, infectious episodes, myocardial infarctions,
injuries, and admissions to the hospital.

In general, standard hazard regression methods cannot
be applied because of correlations between multivariate
failure or recurrent event times within a subject. Adjust-
ment is necessary for existing correlations, and more
sophisticated analytic approaches are needed to obtain
accurate estimates and efficient inferences. In the pre-
sence of the dependence between recurrent event times
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within a subject and subject-specific susceptibility across
subjects, a variety of statistical methods have been
proposed for the estimation of the covariate effect. In
survival analysis, multiplicative and additive hazards
models provide the two principal frameworks for study-
ing the association between risk factors and recurrent
event durations for the analysis of multivariate failure
time data.

The majority of existing regression methods for
analyzing multivariate failure or recurrent event time
data assumes multiplicative covariate effects. Various
authors have considered multivariate failure time models
to be extensions of the Cox proportional hazards model
[1]. The multivariate model with a Markov assumption,
the conditional approach, the marginal approach, and
the random effects approach are among them. Anderson
and Gill proposed use of modeling under a Markov
assumption [2]. Wei et al and Lee et al proposed use of
the marginal approach [3,4]. Prentice et al proposed use
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of a semi-parametric model when multivariate failure
times are conditionally independent, given the covariates
[5]. Others used the random effect frailty model or the
conditional frailty model for such recurrent event data
analysis [6,7]. The popularity of these multiplicative
models derives not only from their utility and wide
applicability, but also from convention and the availabil-
ity of statistical software. In general, consideration is not
given to the possibility that the true underlying covariate
effects may add to, rather than multiply, the baseline
hazards. The semiparametric additive hazards model
proposed by Lin and Ying [8] is the most closely con-
nected analogue of the multiplicative Cox hazards
model. Their additive hazards model assumes that
covariates act in an additive manner on an unknown
baseline hazard rate and that the effect of a covariate is
time-invariant. Numerous authors advocated and uti-
lized the additive hazards models for multivariate failure
time data [9-14].

In this paper, we applied both multiplicative and addi-
tive models to the pediatric firearm victim’s emergency
department visit data. We considered the gap time
model to be a multiplicative hazards model, as recom-
mended for analysis of recurrent event time data by sev-
eral authors [7,15]. We considered the Lin and Ying’s
model [10] to be an additive hazards model in our data
analysis. The multiplicative and additive hazards models
for analysis of recurrent event data with two scenarios
were considered: (i) a varying baseline with a common
coefficient effect and (ii) a varying baseline with an
order-specific coefficient effect. The proposed models
were applied to the emergency department (ED) visits of
pediatric firearm victims, and difference between the
models was examined.

Four additional sections comprise this paper. In
Section 2, the models and methods for the analysis of
recurrent event duration data are reviewed. In Section 3,
a description of the ED visit study and the methods
applied to this dataset are provided. Section 4 contains a
discussion, in which the applicability and appropriate-
ness of each model are discussed.

2. Methods

Within the framework of the multiplicative or additive
hazards regression models, a variety of models have
been proposed and utilized in real applications. Among
the rich selection of different models, the gap time
model as an extension of the multiplicative Cox pro-
portional hazards model [5] and the Lin and Ying’s
additive model (L-Y model) [8,10] received the greatest
attention due to easy interpretation of the covariate
effects. These two models assume unspecified baseline
hazards and constant covariate effects. In the models,
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we will assume that all censoring is non-informative
and independent.

2.1. Basic Notations

Suppose that there are n subjects and that each subject
can experience K failures or recurrent events. Suppose
that censoring is non-informative, which means that
knowledge of a censoring time for a subject provides no
further information about the subject’s likelihood of
survival at a future time. Let T}, be the time when the
kth failure occurs for the ith subject and Cj be the cor-
responding censoring time. T is measured from the
subject’s study enrollment and the censoring Cj occurs
after the subject has been entered into a study to the
right of the last known failure time; thus, it is right
censoring. When Tj; is subject to right censoring, the
kth failure time Xj; is a minimum of (T, Cy), i.e., Xj is
equal to Ty if the event was observed and is equal to
C,. if it is censored. Let 0, = I(T;, < Cy), where 1I(.) is
an indicator function and takes the value 1 when Tj; <
Cir and is 0 otherwise. Let Z;, be a covariate vector of
p-dimensions for the ith subject at the kth failure. For
each of the K failures, the hazard function for the ith
subject with respect to the kth failure,d; (¢), is assumed
to take additive or multiplicative forms.

2.2. Multiplicative hazards model

The gap time model requires the same assumptions as
the Cox proportional hazards model, but they allow the
baseline hazard to vary from recurrence to recurrence.
Gap time is defined the time between two successive
failures experienced by the same subject [5]. For the gap
time model, the hazard function is

Air(£) = Ao (t — te—1) P Zi(0) )

where ¢ is the time since a patient’s study enrollment
and f;_; is the time of the (k-I)th failure. Note that A
(t) are unspecified baseline hazard functions varying
with k = 1, .., K. The corresponding partial likelihood

function [16,17] is
Bik
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where G, = X;; -X;x; is the inter-event or gap time
interval and Yy (t) = I (Gy = t) is a risk set indicator. E
is a p-vector of regression coefficients of Z;.

In order to draw a semi-parametric inference on g for
the model (1), the score functions U(E) are obtained by
differentiating the logarithm of L(E) with respect to g.
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The maximum partial likelihood estimator /§ is obtained

by solving the corresponding score equation,
dlnL ( q)
A P - o- When failure times are independent, the
ap

variance-covariance matrix is estimated from the inverse
of the information matrix, 171(5), called the “naive”
variance-covariance matrix; however, when failure times
are dependent, 1—1(5) is not a good estimator of the
variance-covariance matrix. When there are dependen-
cies, the variance-covariance matrix Q(é), the so-called
“sandwich” or “robust” variance-covariance estimator, is
obtained from Q(é) = 1*1(5) V(é) 1*1(5), where V(é) is
a data-based estimator, i.e., the cross-product of the

empirical score residual matrix W(E) Here,
n K

VH =330 3 wa (7) wa(f) and

i=1 k=1 I=1
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and
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Sl(o) (Xi,k—l + le) = Z Y]k (le) eﬂ’ij(Xi,k—1+Gik).
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Therefore, it that
Q(B) = [W(A) I (B)]' [W(B)17!(B)} which is called
the “robust” variance-covariance estimate, and a detailed
derivation is given by Wei et al [16] and Lin [17]. To
account for the within-subject correlation, we used this

robust “sandwich” method in the estimation of standard
errors.

turns out

2.3. Additive hazards model

The additive hazards model is considered for multivari-
ate survival data in which individuals may experience
events of same or different types and in which there
may also be correlation between individuals. A p-vector
of the covariates Z;; in the additive hazards model acts
additively on unknown baseline hazards, while it acts
multiplicatively in the multiplicative model. The hazard
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function A;; (¢) for the kth gap time ¢ since a patient’s
last failure is in a linear form,

Aie(t) = Aok(t) + B'Zu(t) ®)

Where A (£) is the unknown and unspecified baseline
hazard function for the kth gap time and gisap x 1
vector of the regression coefficients. When there is only
one failure event (i.e., K = 1), the model (3) reduces to a
univariate additive hazards model [8].

It turns out that a convenient representation of the
data is given by the counting process, N (f). With the
commonly employed counting process notation, an at-
risk indicator is defined as Y (t) = I(G;x < t), and
observed-event counting processes are defined as

¢
Ni(t) =I(Gir, < t, S =1) = /d[\]ik(s). The marginal
0

filtration Fj (¢) is defined by
Fi(t) =0 {Nik(u), Yir(u), Zin(u), 0 <u< t} .

By the Doob-Meyer decomposition,

t

Ni(t) = Ma(0) + / Vi (1) 21t Zat) s, @)
0

where M, (t) is a local square-integrable martingale
with respect to Fi (t) [2]. As a result of the underlying
correlation, M;; (¢) is not a martingale with respect to
the joint filtration generated by all the failures, censor-
ing, and covariates up to time ¢ [18]. From (4),

dMi(t) = DN (t) — Y (t) dAor(t) — Yae(t) B Zin(t) dt.

If the édenote the estimates of the true regression

parameter g, then under the working independent
assumption, the cumulative baseline hazard function Agy
(2) for the kth failure can be estimated by

Ao(t) = i/ AN (u) — flké”) B Zir(u) du.
i; (1)

i=1
Lin and Ying (1997) proposed to estimate g from the
following estimating function

K n %
u@e)=y_ Z/Zik(f) {dNik(f) = Yir(t) dAok(t; B) — Ya(t) B Zu(t) dt]‘
k=1 i=1 3
By substituting A(t), the above function is equivalent
to

K n %

U@ - 33 [ {20 - 20} {aNut) - vat) f zu0) e

k=1 i=1
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where

RACEAO
Z()=""
;Yik(t)

The estimate of the model parameter g is obtained by
solving the equation U(ﬁ) = 0 and we obtain the consis-

tent estimator ,§’

-1

A K n 7
B = ZZink(t) (Za(t) — Zu(0)]** dt

k=1 i=1

K n <
AT / (Zi(t) — Zu(1)] dNu(0)

k=1 i=1 0

®2 = g4a’. The variance-

where for any vector 4, a
covariance matrix of § may be estimated by ATV AT

where

n

K oo
A= Z/ {Za(1) —Zk(t)}®2 Ya(t) dt,
0

i=1 k=1

and

n K % ®2
v= [ [ {720 - 20} {avu) - vut dhouto) - 5 2ut0) mz)dz]]

i=1 k=17

Using empirical process theory, U () is shown to be a
sum of independently, identically distributed random
variables and thus follows a zero-mean Gaussian process
by the functional central limit theorem; see Pollard [19],
page 53, or van der Vaart & Weller [20], Section 2.11.
Using Taylor’s series expansion and some probability

arguments, 51/2 (l[}’ — 1[3’) converges in distribution to a
zero-mean normal distribution [11].

3. Results

3.1. Study Description

The pediatric firearm victim’s ED visit study was a ret-
rospective cohort study. Data consisted of medical
record reviews of follow-ups of firearm victims
younger than 19-years-old who were presenting to the
Pediatric Emergency Department/Trauma Center at
the Children’s Hospital of Wisconsin and all other hos-
pitals in the Milwaukee metropolitan area between
1990 and 1997.

Table 1 Number of revisits to the emergency department.
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More detailed descriptions of the study design and
profile have been published elsewhere [21,22]. Briefly, a
total of 511 subjects were eligible for this study; this
sample was taken from the pediatric firearm ED visit
database. The events of interest are the times to ED
revisit following the initial visit due to injury. Each
subject experienced, at various times, a varying number
of visits to the ED, which represent the whole observa-
ble history of his/her recurrences. Each subject has a
number of ED visits and contributes several observa-
tions, which are dependent when there is inter-subject
variation. Of these 511 subjects, 263 (51.5%) had at least
one ED revisit during the follow-up period (median
follow-up time = 3.2 years). Table 1 summarizes the
number of events experienced by the 511 subjects dur-
ing the follow-up period. A total of 571 occurrences of
ED revisits were observed, with some persons experien-
cing a rather large number (up to six revisits). In our
study, any ED revisit due to injuries was defined as a
recurrent event, and up to four revisits per subject were
used in the subsequent analysis, as too few subjects
experienced more than four revisits. The main purpose
of this study, however, was to illustrate the application
of the multiplicative and additive hazards models to
recurrent event duration data and provide comparisons
between the models, rather than give universally valid
estimates for ED revisits in a pediatric population.

3.2. Analysis of the dataset

We applied the multiplicative and additive hazards
described in Section 2 to the ED visit gap time data,
allowing a varying baseline with common coefficient
effects and with order-specific coefficient effects, respec-
tively. The adequacy of the models was assessed by resi-
duals and Arjas plots. The ED revisit was defined as the
recurrent event. When a subject is already in the ED,
the subject is not at the risk for an ED revisit. Four
baseline characteristics — age, gender (male = 1;
female = 0), race/ethnicity (black = 1; others = 0), and
parents (1 if subject had parents as guardian; O other-
wise) — were included in the models. We fitted the
multiplicative gap time model and the L-Y additive
hazards model. When we assume that the regression
parameters were similar for all ED revisits or are
interested in global covariate effects, we can adopt a
model with a common covariate effect, i.e., §, = g for
all k = 1, .., K. Table 2 shows the coefficient estimates
and standard errors of the common covariate effects.
When we assume that the regression parameters are

Number of events 0 1 2

3 4 5 6 Total

Number of subjects (%) 248 (48.5) 130 (254)

52 (102)

30 (5.9 25 (4.9) 9 (1.8 17 (3.3) 511 (100)
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Table 2 Additive and multiplicative hazards models for recurrent event time, with a varying baseline and common

coefficient effect.

Model Covariate Estimate S.E Chi-square p-value

Additive Hazards Model Gender * -0.152 0.034 19.7 <0.0001
Race/ethnicity & 0.058 0.027 4.71 0.030
Age 0.009 0.003 6.34 0.012
Parent @ 0.033 0.024 191 0.167

Multiplicative Hazards Model Gender -0.654 0.139 354 <0.0001
Race/ethnicity 0.335 0.148 6.31 0.012
Age 0.043 0.016 822 0.004
Parent 0.152 0117 2.37 0.124

Estimation of regression coefficients with “robust” standard errors (S.E.), chi-squares, and p-values.

* gender = 1 if subject is male and 0 if otherwise.
&race/ethnicity = 1 if subject is Black and 0 if otherwise.
@ parent = 1 if subject had parents or a single parent as guardian(s), and 0 if otherwise.

different for each ED revisit order, we can use a model
with an order-specific covariate effect. Table 3 shows
the coefficients estimates and standard errors of the
order-specific covariate effects.

The estimates from the additive and multiplicative
hazards models had the same signs, indicating the same
directions of the covariate effects. The standard errors
from the additive hazard model were smaller than those
of the multiplicative model. However, while the p-values
for the two models differ, the inferences were consistent.
Almost all of the models from both the common and
order-specific covariate effects showed that gender was
the significant risk factor for ED revisits.

Both additive and multiplicative hazards models with
varying baseline and common coefficient effects gave
similar results with regard to covariates selected to
remain in the model (Tables 2). Three covariates
showed significant impact on ED revisits in both
hazards models: gender, race/ethnicity, and age. The
result obtained under the additive model with a varying
baseline and common coefficient effect in Table 2 sug-
gested that females tended to have more-delayed ED
revisits, compared to males, and being older and black
were associated with significantly shorter gap times. On
the other hand, the gap time did not seem to be related
to having a parent as a guardian; the p-values were
0.167 and 0.124 for the additive and multiplicative
hazards model, respectively. Estimates of the ED revisit
order-specific covariate effects for the models with
varying baselines are shown in Table 3. For all orders,
k =1, .., 4, gender was again the only significant risk
factor for an ED revisit in the multiplicative hazards
model, but this was not true for the additive hazards
model. In both models, age was significant for the 2"
revisit but not for any other revisit. Ethnicity and having
a parent as a guardian were not significant in the addi-
tive model for all k.

To illustrate the prediction of the survival probability for
a given subject, Figures la-d and 2a-d (a dashed curve for
the multiplicative hazards model; a solid curve for the L-Y
additive hazards model) showed the estimated survival
curves for a 15-year-old patient, a black male with a parent
as guardian, under the multiplicative and additive hazards
models with a varying baseline and common coefficient
effect. The selected covariate values were roughly the
sample median. Figures 1a-d show the estimated survival
functions, based on the additive and multiplicative hazards
models with a varying baseline and common coefficient
effect were very similar. Comparing to the Kaplan-Meier
estimate, the estimates of both additive and multiplicative
hazards models were larger than the K-M estimate for all
k. However, the differences of the estimate increased as
the order increased. Figures 2a-d show the estimated sur-
vival curves based on the additive and multiplicative
hazards models, with a varying baseline and order-specific
coefficient effect, for each order k=1, .., 4. For k=1, 2, 3,
the survival curves of these two models were almost iden-
tical. For the higher revisit orders (Figures 2c-d), the mul-
tiplicative hazards model had slightly higher survival
curves than the survival curves estimated under the addi-
tive hazards model. The confidence intervals of the addi-
tive and multiplicative hazards models were similar except
the order 4 and get wider as the revisit order increases
because the risk set decreased as the revisit order
increased. All these facts concerning the prediction of the
survival probability were consistently observed when the
values of the covariates were changed. The martingale and
deviance residuals for these two models with common
coefficient effect showed that the models fit well
(Figure 3a-d). The residuals plots and the Arjas plots of
the covariates for the models with a varying baseline and
order-specific covariate effect showed that the models also
fit well. (figures not shown). For all estimations in
this study, we used SAS PHREG procedure to fit the



Table 3 Recurrent event time models with varying baseline and order-specific coefficient effects, from the additive and multiplicative hazards models.

Model Order Covariate Estimate S.E Chi-square p-value
Additive Hazards Model 1 Gender * -0.103 0.06 2.96 0.085
Race/ethnicity & 0.068 0.036 3.66 0.056
Age 0.004 0.005 0.60 0439
Parent © 0.063 0034 6.70 0.065
2 Gender -0.202 0.067 9.13 0.003
Race/ethnicity 0.038 0.051 0.55 0457
Age 0015 0.005 794 0.005
Parent 0.028 0.049 033 0.567
3 Gender -0.181 0.053 1.7 0.001
Race/ethnicity 0.003 0.078 0.002 0.967
Age 0.011 0.008 1.92 0.165
Parent -0.025 0.046 0.30 0.583
4 Gender -0.158 0.013 265 0.103
Race/ethnicity 0.068 0.121 0.32 0.571
Age 0.021 0.013 265 0.104
Parent -0.075 0.088 073 0.394
Multiplicative Hazards Model 1 Gender -0464 0.179 736 0.007
Race/ethnicity 0.391 0.175 5.05 0.025
Age 0.021 0.021 115 0.285
Parent 0.347 0.144 5.99 0.014
2 Gender -0.864 0.235 15.7 < 0.0001
Race/ethnicity 0.185 0.262 045 0.505
Age 0.078 0.029 6.33 0.012
Parent 0.112 0215 0.31 0.577
3 Gender -0.747 0.25 821 0.004
Race/ethnicity 0.085 0.445 0.04 0.842
Age 0.051 0.047 1.03 0.309
Parent -0.138 0.248 0.29 0.589
4 Gender -0.732 0.28 544 0.02
Race/ethnicity 0.357 0.469 048 049
Age 0.103 0.073 1.71 0.191
Parent -0.31 0323 0.89 0.345

Estimation of regression coefficients, “robust” standard errors (S.E.), chi-square, and p-values.

* guardian = 1 if subject had parents or a single parent as guardian(s), and 0 if otherwise.
&race/ethnicity = 1 if subject is Black and 0 if otherwise.
# gender = 1 if subject is male and 0 if otherwise.
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Figure 1 Estimates of the survival curves of the models with a varying baseline and common coefficient effect. Estimates of the survival
curves for a 15-year-old, black male who has parents as guardians and no previous injury history, under the multiplicative hazards model
(dashed curve), Lin & Ying's additive hazards model (solid curve), and the Kaplan-Meier (dotted curve) with a varying baseline and common
coefficient effect for the revisit k = 1 (1a: top left), k = 2 (1h: top right), k = 3 (1c: bottom left), and k = 4 (1d: bottom right).
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multiplicative model and a SAS macro for additive model.
All codes for the programs can be found in Appendix.

4. Discussion

Among recurrent event data, correlation between event
durations within a subject exists. For an example, one
can suppose that more frequently a subject experiences
episodes of injury, the sooner the next injury is likely to
occur. In this study, the additive and multiplicative
hazards regression models for the recurrent event
duration analysis were examined and illustrated with a
real dataset. Differences in estimates from the models
under (i) a varying baseline with a common covariate
effect and (ii) a varying baseline with an order-specific
covariate effect were compared using the pediatric
firearm victim’s ED visit data. The additive and multipli-
cative models revealed similar results with regard to
covariates selected to remain in the model: gender, race/
ethnicity, and age. The estimated survival functions,

based on the additive and multiplicative hazards models
from our data, were similar. Our example showed that
the goodness-of-fit of both multiplicative and additive
hazards models was satisfactory.

The standard errors increase as the order increases
because the size of the risk set for the models decreases
after each revisit. If the risk set decreases rapidly, then it
yields estimates that are less reliable with a small risk
set size. However, in our study, the standard errors
increased moderately. The coefficients of the models
cannot be compared directly because the coefficients of
the former act in a multiplicative way on an unknown
baseline hazard, whereas the coefficients of the latter act
in an additive way on unknown baseline hazard or
represent coefficient function for added risks. A naive
way of comparing the models would be comparing
p-values, which would indicate the power of rejecting
the null hypothesis for selected covariate in the models.
In order to detect any difference between models in
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Figure 2 Estimates of the survival curves of the models with a varying baseline and order-specific coefficient effects. Estimates of the
survival curves for a 15-year-old, black male who has parents as guardians and no previous injury history, under the multiplicative hazards

model (dashed curve), Lin & Ying's additive hazards model (solid curve), and the Kaplan-Meier (dotted curve) with a varying baseline and revisit
order-specific coefficient effects for the revisit k = 1 (2a: top left), k = 2 (2b: top right), k = 3 (2c: bottom left), and k = 4 (2d: bottom right).
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terms of prediction, a comparison between two model-
based survival curves with the nonparametric estimate
of the survival function could be performed. In our
study, the survival curves of these two models were
larger than the Kaplan-Meier estimate for all order, but
the differences were negligible.

The additive model is plausible for many applications
and is often attractive in epidemiologic applications, for
example, a study of diabetic patients [23]. In such a
study, Ao is taken to be the baseline mortality of the
standard population and § measures excess risk for the
patients under study. The excess mortality is more
appealing than the relative mortality to provide an infer-
ence on how the study population” mortality differs
from that of the standard population.

The additive and multiplicative hazards models can
capture the risk process for patients with average
comorbidity profiles equally well. In cases where both
the additive and multiplicative models fit the data fairly
well, an additive specification may be preferred, due to

the interpretation of the regression parameters. One of
the major advantages of using the additive hazards model
over the multiplicative hazards model is that the resulting
regression parameter estimator has a closed form [13].
Regression coefficients from the additive model are more
interpretable in public health research since they repre-
sent differences in event rates, as opposed to ratio [24]. A
practical drawback of using the additive models is that
the current standard procedure for fitting additive mod-
els is still limited, whereas statistical software for the
multiplicative model is available and easy to use.

In the presence of the dependence between recurrent
events in multivariate failure time data, frailty model
have been proposed for the estimation of the covariate
effect by incorporation of additional unobserved random
frailty effects into standard survival models [6]. The cov-
ariate estimates in the frailty model are estimated condi-
tionally on the unobservable frailty, and because of this,
their interpretation is often ambiguous [7]. When the
primary interest of investigation is a measurement of
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the dependence of correlated repeated events within a
subject, the frailty model approach is adequate [25].
However, our study does not focus on the dependence
measurement of recurrent events.

Recurrent event duration data are the archetypical
example of series data, which differ from parallel mul-
tivariate failure time data. Because the study period is
typically less than the first failure time, the marginal
distribution of the second gap time is not identifiable
unless within-subject failure times are independent.
Even if the total times are censored independently, the
subsequent failure times will be subject to induced
dependent censoring [17,18]. To analyze such recur-
rent event duration data, the non-informative censor-
ing assumption is required for the validity of the

statistical analysis. However, when the recurrence is
influencing a censoring mechanism such as dropout or
death, censoring is informative about the event
process; therefore, the non-informative censoring
assumption is violated, and subjects in the risk set do
not form a representative sample from the target
population. An important assumption of the models
examined in this paper is that the recurrent event pro-
cess is independent of the censoring process. Suitable
modification of the methodologies needs to be further
studied to adjust for such informative censoring
mechanisms related to terminal events in the recurrent
event analysis [26]. In addition, there is relatively little
information in the literature on the goodness-of-fit for
multiple failure time models.
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5. Conclusion

In this study, we illustrated and compared the additive
and multiplicative hazards models for analysis of recur-
rent event durations. In summary, the choice between
the additive and multiplicative models will typically be
an empirical matter. Due to the frequency of recurrent
event duration data in clinical and epidemiologic stu-
dies, the proposed additive and multiplicative methods
are widely applicable. The two modeling approaches
have sound biological bases, providing complementary
information about the association between risk factors
and death. An overall conclusion is that the additive and
multiplicative hazards models present different aspects
of the association between risk factors and the event
durations. Hence, two hazards models give different
information and it seems desirable to use them — not as
alternatives to each other, but as complementary
methods — together to gain a more comprehensive
understanding of the data. Practitioners may benefit
from the use of these statistical models, which help in
predicting the effect of one or more variables and in
verifying their influence on study outcomes.

Appendix

Suppose a subject has four recurrent events, say at ¢;, ¢,
t3, and t,. For the model analysis the subject is repre-
sented as a set of rows with time intervals of (0, ¢,], (0,
ty - t1], (0, t3 - t5], and (0, ¢4 - t3] for the gap time. Let-
ting gap be equal to t; - t;; for k = 1, .. 4, then the fol-
lowing programs specify the models.

A1. Data Management for recurrent events
data counting;

set firearm;
gap = tstop-tstart;

bguardnl = 0;
if visit = 1 then bguardnl = bguardn;
bguardn2 = 0;
if visit = 2 then bguardn2 = bguardn;
bguardn3 = 0;
if visit = 3 then bguardn3 = bguardn;
bguardn4 = 0;

if visit = 4 then bguardn4 = bguardn;
bracenl = 0;
if visit = 1 then bracenl = bracen;

bracen2 = 0;
if visit = 2 then bracen2 = bracen;
bracen3 = 0;
if visit = 3 then bracen3 = bracen;
bracen4 = 0;

if visit = 4 then bracen4 = bracen;
bagel = 0;
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if visit = 1 then bagel = bage;

bage2 = 0;

if visit = 2 then bage2 = bage;
bage3 = 0;

if visit = 3 then bage3 = bage;
bage4 = 0;

if visit = 4 then bage4 = bage;
sexnl = 0;

if visit = 1 then sexnl = sexn;
sexn2 = 0;

if visit = 2 then sexn2 = sexn;
sexn3 = 0;

if visit = 3 then sexn3 = sexn;
sexn4 = 0;

if visit = 4 then sexn4 = sexn;
run;

A2. SAS PHREG procedure for multiplicative model
title ‘Gap Time Multiplicative Model with different betas
and different baselines;

proc phreg data = counting;

model gap*status(0) = guardl guard2 guard3 guard4
racel race2 race3 race4
sex] sex2 sex3 sex4;
strata visit;
id IDnumber;
run;

title ‘Gap Time Multiplicative Model: common beta
and different baselines’;
proc phreg data = counting covs(aggregate);

model gap*status(0) = guard race sex;
strata visit;

id IDnumber;

run;

A3. SAS Macro for additive model
%est(counting, gap, fail, visit, 4, id, bguardn bracen sexn
bage);

proc transpose data = best out = best;

proc transpose data = se out = se;

proc transpose data = wlwse out = wlwse; run;

data item;

Variable = ‘bguardn’; output;
Variable = ‘bracen’; output;
Variable = ‘sexn’; output;
Variable = ‘bage’; output;
run;

data all;
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merge item best (rename = (coll = Estimate))
se (rename = (coll = Naive_SE))
wlwse (rename = (coll = Sandwich_SE));
Chisq = (Estimate/Sandwich_SE)**2;
Prob = 1-probchi(Chisq,1);
drop _name_;
run;

title ‘Additive model - gap time’;

title2 ‘common beta, different baselines’;

proc print data = all; run;

%est(jing2, gap, fail, visit, 4, id,

bguardnl bracenl sexnl bagel bguardn2 bracen2
sexn2 bage2 bguardn3 bracen3 sexn3 bage3 bguardn4
bracen4 sexn4 bage4);

proc transpose data = best out = best;

proc transpose data = se out = se;

proc transpose data = wlwse out = wlwse; run;

data item;

Variable = ‘bguardnl’; output;
Variable = ‘bracenl’; output;
Variable = ‘sexnl’; output;
Variable = ‘bagel’; output;
Variable = ‘bguardn2’; output;
Variable = ‘bracen2’; output;
Variable = ‘sexn2’; output;
Variable = ‘bage2’; output;
Variable = ‘bguardn3’; output;
Variable = ‘bracen3’; output;
Variable = ‘sexn3’; output;
Variable = ‘bage3’; output;
Variable = ‘bguardn4’; output;
Variable = ‘bracen4’; output;
Variable = ‘sexn4’; output;
Variable = ‘bage4’; output;
run;

data all;

merge item best (rename = (coll = Estimate))
se (rename = (coll = Naive_SE))
wlwse (rename = (coll = Sandwich_SE));
Chisq = (Estimate/Sandwich_SE)**2;
Prob = 1-probchi(Chisq,1);
drop _name_;
run;

title ‘Additive model - gap time’;
title2 ‘different betas, different baselines’;
proc print data = all; run;
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