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Abstract

Background: The current situation in the treatment of chronic myeloid leukaemia (CML) presents a new challenge
for attempts to measure the therapeutic results, as the CML patients can experience multiple leukaemia-free
periods during the course of their treatment. Traditional measures of treatment efficacy such as leukaemia-free
survival and cumulative incidence are unable to cope with multiple events in time, e.g. disease remissions or
progressions, and as such are inappropriate for the efficacy assessment of the recent CML treatment.

Methods: Standard nonparametric statistical methods are used for estimating two principal characteristics of the
current CML treatment: the probability of being alive and leukaemia-free in time after CML therapy initiation,
denoted as the current cumulative incidence of leukaemia-free patients; and the probability that a patient is alive
and in any leukaemia-free period in time after achieving the first leukaemia-free period on the CML treatment,
denoted as the current leukaemia-free survival. The validity of the proposed methods is further documented in the
data of the Czech CML patients consecutively recorded between July 2003 and July 2009 as well as in simulated
data.

Results: The results have shown a difference between the estimates of the current cumulative incidence function
and the common cumulative incidence of leukaemia-free patients, as well as between the estimates of the current
leukaemia-free survival and the common leukaemia-free survival. Regarding the currently available follow-up period,
both differences have reached the maximum (12.8% and 20.8%, respectively) at 3 years after the start of follow-up,
i.e. after the CML therapy initiation in the former case and after the first achievement of the disease remission in
the latter.

Conclusions: Two quantities for the evaluation of the efficacy of current CML therapy that may be estimated with
standard nonparametric methods have been proposed in this paper. Both quantities reliably illustrate a patient’s
disease status in time because they account for the proportion of patients in the second and subsequent disease
remissions. Moreover, the model is also applicable in the future, regardless of what the progress in the CML
treatment will be and how many treatment options will be available, respectively.
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Background
Treatment guidelines and recommendations for patients
treated for chronic myeloid leukaemia (CML) have
changed dramatically over the last decade, as a BCR-
ABL tyrosine kinase inhibitor (TKI), imatinib, was intro-
duced in 1998 [1,2]. Since then, imatinib has been
repeatedly shown to provide a higher likelihood of
achieving long-term disease remissions than any other
therapy [3]. Thus, imatinib has become the standard
first-line treatment for chronic phase CML (CP-CML)
patients, and has additionally been proven useful in
more advanced phases of the disease.
However, despite its very good performance in treat-

ing CML, imatinib therapy cannot be regarded as a fully
curative treatment for CML patients. Even in the era of
imatinib, CML remains a chronic disease, requiring life-
long therapy with various consecutive strategies. More-
over, a probability of remaining in complete cytogenetic
remission (CCyR) while still receiving imatinib 5 years
after diagnosis was estimated to be approximately 63%
considering intention-to-treat analysis [4]. Thus, about
one third of patients may need alternative therapeutic
options to imatinib, either due to resistance or intoler-
ance. The subsequent therapeutic strategies include ima-
tinib dose escalation, second-generation TKIs, i.e.
dasatinib and nilotinib, allogeneic stem cell transplanta-
tion, or clinical trials with an investigational agent. Sec-
ond-generation TKIs should be particularly mentioned
due to their potential to achieve or return and maintain
cytogenetic response in approximately 50% of resistant/
intolerant CP-CML patients already treated by imatinib
[5-7]. Therefore, current medicine offers powerful tools
with the potential to improve reachable therapeutic
outcomes.
Such remarkable progress deserves relevant methodol-

ogy quantifying its effect that can be focused either on
the efficacy of one particular treatment option or,
maybe more importantly, on a patient’s health status
over the whole follow-up period. Disregarding the treat-
ment sequence and simplifying the patient’s status to
being in disease remission or not, the course of cur-
rently accessible CML treatment can be seen as a series
of disease remissions and subsequent relapses. This
situation presents a new challenge for attempts to mea-
sure therapeutic results, including survival analysis.
Treatment efficacy in patients with leukaemia is

usually expressed using either leukaemia-free survival or
cumulative incidence. Both approaches are focused on a
probability that a pre-defined event will occur in time, e.
g. relapse in case of the leukaemia-free survival or dis-
ease remission in case of the cumulative incidence. It
has to be noted that these estimates focus only on the
probability associated with a first occurrence of the

event and as such they can be obtained using the well-
known product limit estimator [8] which might need to
be adjusted for competing risk events [9]. However,
since the remission state in CML can currently be
achieved repeatedly using several treatment options,
patients who relapse after achieving the first disease
remission need no longer be considered to have failed
the CML treatment. Similarly, the CML in patients who
achieve disease remission using the initial imatinib ther-
apy can progress again and these patients need no
longer be considered to have remained in CML remis-
sion. This implies that the common ways of survival
assessment mentioned above are not appropriate for the
estimation of the probabilities associated with CML
treatment because these measures do not account for
the proportion of leukaemia-free patients in subsequent
remissions or, conversely, the proportion of patients
who have left the remission state.
A quantity adjusting for the subsequent remissions

called current leukaemia-free survival (CLFS) was pro-
posed in the literature [10]. Moreover, in 2000, Klein
and colleagues [11,12] proposed two new procedures for
the CLFS estimation, the first of which is based on a
multi-state model, whereas the second is based on the
three Kaplan-Meier estimators, and documented its per-
formance on patients transplanted for CML calculating
the probability of being in first and second remission
after stem cell transplant. The second estimator of Klein
et al. is based on an extension of results primarily pub-
lished by Pepe [13]. The estimation of CLFS in the con-
text of the actual progress in CML therapy has been
recently addressed in the work of Al-Kali et al. [14],
where a multi-state Markov model was utilized to esti-
mate CLFS. However, the American study focuses
mainly on the clinical rather than the methodical
aspects of the CLFS estimation.
This work aims to use standard nonparametric statisti-

cal methods to meet the following objectives: (1) to esti-
mate the probability that a patient will be in first or in
any subsequent CCyR at time t after the initiation of
imatinib therapy; and (2) to estimate the probability that
a patient will stay in first or in any subsequent CCyR at
time t after achieving the first CCyR on the imatinib
therapy. Obviously, the first procedure necessarily takes
into account all patients in whom the first-line imatinib
therapy has been initiated, whereas the second one
counts only with patients who achieved at least one
CCyR during the treatment course.

Methods
The model
The course of currently accessible CML treatment can
be described by a model where a patient can be in one
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of four possible states at a given time point (see Figure
1). Initially, each patient appears in state 1, correspond-
ing to the diagnosis and start of the imatinib therapy.
There are two possible transitions from this state: a
patient may die without achieving the CCyR (state 2) or
achieve the CCyR (state 3). After achieving the CCyR,
patients may suffer from disease progression manifested
by loss of the CCyR (state 4) or they may die while in
remission (state 2). Finally, patients in state 4 may move
back to the CCyR (state 3) or they may die (state 2).
Obviously, all living patients can move from the CCyR
(state 3) to the cytogenetic relapse (state 4) and vice
versa repeatedly.
To address the first objective, i.e. to estimate the prob-

ability that a randomly selected patient is in his first or
any subsequent CCyR at time t after the initiation of
imatinib therapy, means to quantify the probability of
being in state 3 over the interval [0, t]. A standard com-
peting risks methodology can be used for this purpose.
More specifically, a set of cumulative incidence func-
tions can be used to estimate the probabilities associated
with the ith achievement of CCyR or the ith loss of
CCyR, respectively.
Let r denote the maximum number of CCyRs achieved

in time by any patient. Let I1(t) be the common cumula-
tive incidence function corresponding to the first
achievement of CCyR (representing, transition: state 1
® state 3) and Ii(t), i = 2,..., r, be the cumulative inci-
dence functions corresponding to the subsequent
achievements of CCyR (representing transitions: state 4
® state 3). Similarly, let I∗i (t), i = 1, . . . , r , be the cumu-
lative incidence functions corresponding to the ith loss
of CCyR (representing transitions: state 3 ® state 4),
and I∗∗

i (t), i = 1, . . . , r , be the cumulative incidence
functions corresponding to death after the ith achieve-
ment of CCyR (representing transitions: state 3 ® state
2) Then, the probability of state being in first or state
any subsequent CCyR at time t after the initiation of
imatinib therapy, denoted here as the current

cumulative incidence of leukaemia-free patients (CCI),
can be written using the common cumulative incidence
functions:

CCI(t) =
r∑
i=1

Ii(t) −
r∑
i=1

I∗i (t) −
r∑
i=1

I∗∗
i (t)

=
r∑
i=1

[Ii(t) − I∗i (t) − I∗∗
i (t)].

(1)

Regarding the second objective of this paper, the esti-
mation of the CLFS function, only patients that have
ever reached state 3 have to be considered for the esti-
mation process, where the starting time point is the
achievement of the first CCyR. Accordingly, we consider
only r -1 CCyRs that can be achieved in time, indexed
with i = 2, ..., r. Then, let S∗

1(t) be the common leukae-
mia-free survival function, where the event of interest is
death in the first CCyR (representing transition: state 3
® state 2) or the first loss of CCyR (representing a first
transition from state 3 to state 4), and S∗

i (t), i = 2, . . . , r ,
be the survival functions corresponding to the subse-
quent losses of CCyR, where the event of interest is
death prior to the ith loss of CCyR (any transition to
state 2 prior to the ith transition: state 3 ® state 4) or
the ith loss of CCyR (ith transition: state 3 ® state 4).
Furthermore, let Si(t), i = 2,..., r, be the survival func-
tions corresponding to the ith achievement of CCyR, i.e.
patients who die before their ith CCyR (any transition
to state 2 prior to the ith transition: state 4 ® state 3)
or who have achieved their ith CCyR (ith transition:
state 4 ® state 3) are treated as events. Then, the prob-
ability of being in first or any subsequent CCyR at time
t after the achievement of the first CCyR, denoted as
CLFS, can be written using the survival functions:

CLFS(t) = S∗
1(t) +

r∑
i=2

[S∗
i (t) − Si(t)]. (2)

Figure 1 Block scheme of sequence of possible events in CP-CML patients treated with first-line imatinib.
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Nonparametric estimation
To estimate the individual CCI(t) components, Ii(t) and
I∗i (t) , respectively, we need to associate each patient
with a pair of vectors denoted as (T1,..., Tr, R1,..., Rr)’
and (T∗

1, . . . ,T
∗
r ,R

∗
1, . . . ,R

∗
r )

′, respectively, where the for-
mer vector represents the CCyR achievements and the
latter represents the CCyR losses. Regarding the first of
the vectors, Ti is the time to the ith event, i.e. the ith
CCyR or death, or Ti is the censoring time, whereas Ri

is the failure cause. When the exact ith failure time is
not observed, i.e. Ti is censored, then Ri = 0; when the
exact failure time is known and the failure cause is the
achievement of CCyR, then = Ri = 1; and when the
exact failure time is known and the failure cause is
death, then Ri = 2. The second vector is organized in
the same manner with the exception that the event of
interest is the loss of CCyR instead of the CCyR
achievement.
Let li(t) and λ∗

i (t) be the cause-specific hazard func-
tions representing the intensity of achieving the ith
CCyR in time and the intensity of losing the ith CCyR
in time, respectively. Similarly, let Si(t) and S∗

i (t) be the
all-cause survival functions considering either the ith
CCyR or death and the loss of the ith CCyR or death,
respectively, as the competing causes of failure. Then,
assuming independent and identically distributed obser-
vations and independent right censoring, the cumulative
incidence functions Ii(t) and I∗i (t) , respectively, can be
expressed in the standard way as

Ii(t) = P(Ti ≤ t,Ri = 1)

=

t∫
0

λi(u)Si(u)du,
(3)

I∗i (t) = P(T∗
i ≤ t,R∗

i = 1)

=
∫ t

0
λ∗
i (u)S

∗
i (u)du.

(4)

The cumulative incidence function corresponding to
death after the ith achievement of CCyR, I∗∗

i (t) , can be
expressed in a similar way treating death after the ith
achievement of CCyR as an event of interest and both
death before the ith achievement of CCyR and the ith
loss of CCyR as competing risks.
Regarding the ith CCyR achievement and loss, respec-

tively, let ti1,..., tij,..., tin and t∗i1, . . . , t
∗
ij , . . . , t

∗
in be the

observed individual times from the imatinib therapy
initiation to the ith CCyR achievement and loss, respec-
tively, ranked in ascending order. The li(t) and λ∗

i (t)
functions can be then estimated using the Nelson-Aalen

estimator [15] which in case of li(t) and a particular

time point tij is of the form λ̂i(tij) = cij/nij , where nij is

the number of patients “at risk” of ith CCyR or death at
time tij, i.e. the number of patients with Ti ≥ tij, and cij
is the number of patients achieving the ith CCyR at
time tij, i.e. the number of patients with Ti = tij, and Ri

= 1. The overall survival functions, Si(t) and S∗
i (t) , can

be estimated using the standard Kaplan-Meier estimator
[8] which for Si(t) at tij has the form

Ŝi(tij) =
∏

k:tik≤tij(1 − dik/nik) , where dik is the number of

patients achieving the ith CCyR or dying at time tik, i.e.
the number of patients with Ti = tik and Ri = 1 or Ri =
2. Incorporating these nonparametric estimates to eq.
(3) and (4), Ii(t) and I∗i (t) functions, respectively, can be
estimated with

Îi(t) =
∑
j:tij≤t

λ̂i(tij)Ŝi(ti(j−1))

=
∑
j:tij≤t

⎡
⎣ cij
nij

∏
k:tik<tij

(
1 − dik

nik

)⎤
⎦,

(5)

and

Î∗i (t) =
∑
j:tij≤t

λ̂∗
i (tij)Ŝ

∗
i (ti(j−1)). (6)

Let λ̂∗∗
i (tij) be the Nelson-Aalen estimator of the

cause-specific hazard function representing the intensity
of dying after the ith CCyR in time. Then the I∗∗

i (t)
function can be estimated with

Î∗∗
i (t) =

∑
j:tij≤t

λ̂∗∗
i (tij)Ŝ∗

i (ti(j−1)), (7)

where Ŝ∗
i (ti(j−1)) is the Kaplan-Meier estimate of the

all-cause survival function considering either the loss of
the ith CCyR or death, respectively, as the competing

causes of failure. Obviously, the Ŝ∗
i (ti(j−1)) estimate in

eq. (7) is the same one as in eq. (6).
The model depicted in Figure 1 represents rather a

clinical background of the process than the computa-
tional aspects. To be able to compare the proposed esti-
mator with that of Klein et al. [11], the model has to be
expressed as a progressive multi-state model with each
achievement of the CCyR, each loss of the CCyR, and
death following either of these possibilities being repre-
sented with one state. For example, regarding only two
possible disease remissions and two subsequent relapses,
the progressive multi-state model has nine states. The
first state (state 0) corresponds to CML diagnosis and

Pavlík et al. BMC Medical Research Methodology 2011, 11:140
http://www.biomedcentral.com/1471-2288/11/140

Page 4 of 12



treatment initiation. Furthermore, a patient may die
(state 1) or achieve the first CCyR (state 2). After
achieving the first CCyR, a patient may lose the CCyR
(state 4) or die (state 3). Once a patient has relapsed, he
may die (state 5) or achieve the second CCyR (state 6).
Finally, being in the second CCyR, a patient may again
relapse (state 8) or die (state 7). Regarding the probabil-
ity that a randomly selected patient is in his first or sec-
ond CCyR at time t after the initiation of imatinib
therapy, our interest is in estimating the probability of
being in state 2 or 6.
Let P0k(t) be the probability that a patient who was in

state 0 at time 0 will be in state k at time t. Then the
cumulative incidences corresponding to the achieve-
ments and the losses of CCyR as well as deaths after the
ith achievement of CCyR can be written as follows:

I1(t) = P02(t) + P03(t) + P04(t) + P05(t)

+P06(t) + P07(t) + P08(t),
(8)

I∗1(t) = P04(t) + P05(t) + P06(t) + P07(t)

+P08(t),
(9)

I∗∗
1 (t) = P03(t), (10)

I2(t) = P06(t) + P07(t) + P08(t), (11)

I∗2(t) = P08(t), (12)

I∗∗
2 (t) = P07(t). (13)

Adding and subtracting terms given by eq. (8) - (13)
according to eq. (1) we get CCI(t) = P02(t) + P06(t),
which is exactly the same expression as we would have
obtained considering the estimation of the probability of
being in state 2 or 6 with the Markov multi-state model
of Klein et al. [11]. The difference between these two
estimators is in a way how the probabilities of interest
are estimated. Regarding the Markov model, the transi-
tion probabilities are estimated directly using the esti-
mates P̂02(t) and P̂06(t) based on the estimated

transition probability matrix, whereas the expression
proposed in this paper suggests estimating the probabil-
ities of interest in an indirect manner using the Aalen-
Johansen estimates of the cumulative incidences. Com-
parison of the Markov model and the current cumula-
tive incidence estimates of the probability that a patient
will be in any CCyR at time t after the initiation of ima-
tinib therapy using the Czech CML data is provided in
the Results section.

To estimate Si(t) and S∗
i (t) in eq. (2), respectively, the

vectors characterizing each patient need to be rewritten
with respect to the fact that the starting time point is
the achievement of the first CCyR. In other words, we
need to adjust all event times for the time T1 represent-
ing the time to the first CCyR. The vectors can be
rewritten as (T2 - T1,..., Tr - T1, R2,..., Rr)’ and
(T∗

1 − T1, . . . ,T∗
r − T1,R∗

1, . . . ,R
∗
r )

′ . Obviously, only
patients with R1 = 1 are used for the estimation of Si(t)
and S∗

i (t) . Both functions can be easily estimated using
the above mentioned Kaplan-Meier estimator regarding
ith achievement of CCyR or death before the ith CCyR
and ith loss of CCyR or death before the ith loss of

CCyR, respectively, as the events of interest. Let Ŝi(t)

and Ŝ∗
i (t) be the Kaplan-Meier estimators of Si(t) and

S∗
i (t) , respectively. Then, the CLFS(t) estimator is given

by

̂CLFS(t) = Ŝ∗
1(t) +

r∑
i=2

[Ŝ∗
i (t) − Ŝi(t)]. (14)

It should be noted that eq. (14) is principally the same
as the nonparametric estimator proposed in Klein et al.
[11]. However, their model considered only two remis-
sion phases, i.e. they considered r = 2. In the context of
the current CML therapy, we anticipate multiple disease
remissions and relapses over time, which means that r
will be dependent mainly on the follow-up of the parti-
cular group of patients.
So far, only point estimates were considered. However,

confidence intervals (CI) are also necessary to fully
cover the variability of the point estimates. Standard
error estimator can be derived using theoretical results
published by Pepe [13] and Lin [16]; however, it is
neither mathematically nor computationally simple.
Bootstrapping represents a feasible alternative for the
estimation of the 100(1 - a)% confidence bands. Given
the observed data, either Efron’s bootstrap procedure I
or II [17] can be used to resample from randomly right-
censored observations. The Efron’s procedure II simply
draws random samples with replacement from the
observed vectors of survival times and corresponding
censoring indicators. On the other hand, the procedure
I considers separate resampling with replacement from
the empirical distribution of survival times and the
empirical distribution of censoring times. The empirical
distributions are estimated from data by the Kaplan-
Meier estimator, and the bootstrap sample observations
are then obtained taking minima and corresponding
indicators. The confidence bands can then be estimated
using the percentile method, where, for example, the 2.5
and the 97.5 percentiles of the estimated bootstrap
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distribution can be used as the limits of the 95% confi-
dence interval.

Results
To demonstrate the usability of the proposed statistical
estimates, we applied them to representative records on
all consecutive CP-CML patients treated by first-line
imatinib in two Czech haematological centres in Prague
and Brno [18]. In total, 152 consecutively recorded CP-
CML patients received the first-line imatinib between
July 2003 and July 2009; all records were registered in
the Czech database called INFINITY (tyrosine kinase
Inhibitors iN FIrst aNd followIng CML Treatment). In
all patients, the treatment response was evaluated
according to the European Leukaemia Net (ELN)
recommendations [19]. The median age of the patients
recorded in the examined data set (N = 152) was 55
years with range 20 - 77 years, 69 (45.4%) were male,
and median follow-up from the start of imatinib therapy
was 35.9 months with range 10.8 - 74.4 months. Regard-
ing treatment response, 128 patients achieved at least
first CCyR and 2 patients died without achieving any
CCyR. Of the 128 first remission patients, 31 lost the
first CCyR and 3 patients died. Furthermore, 18 of the
31 relapsed patients achieved a second CCyR (11 with
imatinib, 6 with dasatinib, and 1 with nilotinib) and 4
patients died in the first relapse. Of the 18 second
remission patients, two lost the second CCyR and the
both patients achieved the third CCyR (1 with dasatinib,
and 1 with nilotinib).
Figure 2 shows the estimates of the common cumula-

tive incidence function, Î1(t), and the current cumula-

tive incidence function, ĈCI(t) , as well as the 95%

point-wise bootstrap confidence intervals. Point

estimates and confidence intervals are further summar-
ized in Table 1; the estimates are given for meaningful
times when responses are assessed according to ELN
criteria [19]. As expected, the common cumulative inci-
dence curve overestimates the probability of being alive
and in remission after the initiation of the imatinib ther-
apy because it doesn’t take into account the fact that
some patients can lose and achieve their remission
repeatedly. The estimated proportion of patients who
have left the first CCyR state after its achievement
reached the maximum of 12.8% at 3 years after the start
of the therapy. Moreover, we can see that the 95%
point-wise bootstrap confidence interval of the current
cumulative incidence curve is wider than the corre-
sponding confidence interval of the common cumulative
incidence curve as time increases. However, this can be
expected as several processes are combined in the cur-
rent cumulative incidence implying that the heterogene-
ity of the cumulative incidences corresponding to the
subsequent achievements and losses of CCyR adds on to
the heterogeneity of the common cumulative incidence.
The estimates of the common leukaemia-free survival

function, Ŝ∗
1(t) , and of the current leukaemia-free survi-

val function, ̂CLFS(t), are compared in Figure 3

together with their 95% point-wise bootstrap confidence
intervals. The estimates are further numerically sum-
marized in Table 2. As in the case of the cumulative
incidence, we can see the discrepancy between the cur-
rent and common leukaemia-free survival curves reflect-
ing the probability of being alive in second and
subsequent remissions that can be achieved using cur-
rently available CML therapy. Regarding the currently
available follow-up period, this discrepancy also takes its
maximum value at 3 years after the first achievement of
the CCyR, where the difference between the two curves
reaches 20.8%.
Figure 4 shows the estimated current cumulative inci-

dence curves calculated by means of the method of
Klein et al. and the proposed estimator on the Czech
CML data. It can be seen that both estimates are almost
identical up to 36 months of follow-up and are very
similar onwards. However, the estimates become more
divergent when less than 10 patients remain under fol-
low-up. For example, at 3 years, the difference between
the two estimates is 0.1%, whereas at 5 years, the differ-
ence between the estimates is 5.3%.
Moreover, a simulation study was employed to assess

the performance of our estimators and the Markov
model estimator of Klein et al. [11]. We considered the
four-state model introduced in Figure 1 with times to
the ith achievement or loss of CCyR generated using a
semi-Markov process with Weibull distribution of the
transition times [20,21]. Shape and scale parameters of

Figure 2 Estimates of current and common cumulative
incidence functions with 95% point-wise bootstrap confidence
intervals (N = 152).
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the Weibull distribution were estimated individually for
each transition using the Czech CML data. Times to
death were also generated from the Weibull distribution
with data-driven parameters. Any transitions that
occurred after the simulated time of death were not
used in the estimation. In total, 10,000 independent
empirical curves calculated using exact transition times
without censoring were used to approximate the true
curve characterising the underlying process. The perfor-
mance of all estimators was assessed using censored
data (uniform distribution regarding the follow-up per-
iod from 0 to 10 years was used to generate censoring
times). In total, 1,000 independent observations from
the process with sample sizes 100 and 1,000 were used
to estimate the cumulative incidence curve. Another
1,000 independent observations were considered for
each sample size in order to estimate the leukaemia-free
survival curve.
The results are given in Tables 3 and 4, summarizing

for all estimators and both sample sizes median absolute
deviations (MAD) between the estimated and the true
curves, as well as proportions of the 95% confidence

intervals that contained the approximated true curve
(denoted as coverage of the 95% CI). According to the
MAD, both tables show good performance of the evalu-
ated estimators in the case of the larger sample size.
Even after ten years from diagnosis, half of the current
cumulative incidence estimates and the corresponding
Markov model estimates based on the larger sample size
are closer to the true value than 2.0% and 1.9%, respec-
tively (Table 3). Regarding the current leukaemia-free
survival estimator and the corresponding Markov model
estimator, half of the estimates based on the larger sam-
ple size are closer to the true value than 2.2% and 2.1%,
respectively (Table 4). As for the smaller sample size,
the variability of the estimates is higher; however, both
current cumulative incidence and current leukaemia-free
survival estimators have comparable performance to the
Markov model estimator. More importantly, Tables 3
and 4 also show that the new estimators and the Mar-
kov model estimator are fully comparable regarding the
coverage of their 95% point-wise confidence intervals;
the only exceptions are the estimates based on the smal-
ler sample size at nine and ten years after diagnosis
where the Markov model confidence interval coverage
reached only about 90%. The nominal coverage of the
95% point-wise bootstrap confidence intervals is similar
for both sample sizes.

Discussion
Recent progress in CML treatment opens a challenging
field for the application and training of statistical meth-
ods. The “perspectives” rest especially in various treat-
ment options and multiple measures of treatment
efficacy that have been introduced recently with TKI
therapy. However, there is no paper addressing the issue
of multiple disease remissions in time besides the work
of Klein et al. [11] that has been further utilized in the
article of Al-Kali et al. [14].
We have presented two quantities for estimating two

principal characteristics of the current CML treatment:
(1) the probability of being alive and in CCyR in time
after CML therapy initiation; and (2) the probability that

Table 1 Comparison of current and common cumulative incidence function estimates in time (N = 152).

Time Common cumulative incidence function estimate:
Î1(t)

Current cumulative incidence function estimate:
ĈCI(t)

Difference

(%) 95% CI (%) 95% CI (%)

3 months 7.2 3.3 - 11.8 7.2 3.3 - 11.8 0.0

6 months 26.3 19.7 - 33.6 25.7 19.1 - 32.2 0.7

12 months 58.6 50.7 - 66.4 55.3 47.4 - 63.1 3.3

18 months 75.9 68.8 - 82.5 71.3 63.9 - 78.5 4.6

24 months 79.8 73.2 - 86.3 74.4 67.0 - 81.4 5.4

36 months 87.3 80.9 - 93.3 74.5 66.0 - 82.8 12.8

48 months 89.6 82.8 - 96.0 77.9 66.2 - 88.9 11.6

Figure 3 Estimates of current and common leukaemia-free
survival functions with 95% point-wise bootstrap confidence
intervals (N = 128).
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a patient is alive and in the first or any subsequent
CCyR in time after achieving the first CCyR on the
CML treatment. Both quantities result from a clinical
model proposed to enable CML patients to move
repeatedly between disease status and disease-free status,
and can be expressed using the well-known statistics,
namely the cumulative incidence functions and the sur-
vival functions, which are familiar and easily interpreta-
ble for both data analysts and clinicians. Moreover, the
probabilities of interest can be estimated using standard
nonparametric statistical methods, which are commonly
used in survival analysis [8], competing risks analysis,
and estimation of the stage occupation probabilities in
multi-state models [20]. More specifically, the estimator
regarding the probability of being alive and in CCyR in
time after CML therapy initiation is expressed as a lin-
ear combination of the Aalen-Johansen estimators,
whereas the procedure regarding the probability that a
patient is alive and in the first or any subsequent CCyR
in time after achieving the first CCyR is expressed as a
linear combination of the Kaplan-Meier estimators. The

later method can thus be seen as a slight adjustment of
the CLFS estimation technique introduced previously by
Klein et al. [11,12].
The two methods represent nonparametric and easy-

to-use estimators of the above mentioned probabilities
with death from any reason being considered as a com-
peting risk. The main advantage of the proposed
approaches is the computational simplicity of the point
estimation where standard software tools that are widely
accessible for data analysts as well as for clinicians can
be used (all computations presented in this paper were
obtained using the R statistical software [22]). On the
other hand, the calculation of the confidence intervals is
not so easy. A standard error estimator can be derived
using the asymptotic theory published by Pepe [13] and
results of Lin [16]; however, it is neither mathematically
nor computationally simple. Moreover, its precision may
be questionable due to underestimation bias with
respect to the true variances as published in [13]. With
respect to these facts, an alternative bootstrapping pro-
cedure with 10,000 bootstrap samples was adopted to
estimate the 95% confidence intervals in this paper.
Another approach to estimate the probabilities of

interest is to use a multi-state Markov model [11,14].
This model also enables the estimation of the probabil-
ity that a patient is in any one of the possible states, as
well as it allows us to quantify the standard error of
such estimates. Moreover, covariate effects can be incor-
porated into the multi-state Markov model using a
regression model for each of the transition rates [23].
The reason why we regard the Markov model poten-
tially inappropriate for the problem presented in this
paper is the necessary assumption of the Markovian nat-
ure of the transition probabilities. This assumption is
dubious, as we suppose that there can be a difference in
the length of the remission period in two patients
achieving their first remission in two different times (e.
g. after 3 and 18 months from the start of imatinib ther-
apy) as we can anticipate different characteristics of the
disease and thus also a different disease behaviour
[4,24]. However, according to a proportional hazards

Table 2 Comparison of current and common leukaemia-free survival function estimates in time (N = 128).

Time Common leukaemia-free survival function estimate:
Ŝ

∗
1(t)

Current leukaemia-free survival function estimate:
̂CLFS(t)

Difference

(%) 95% CI (%) 95% CI (%)

3 months 98.4 96.0 - 100.0 98.4 96.0 - 100.0 0.0

6 months 94.5 90.5 - 97.6 95.3 92.0 - 98.1 -0.8

12 months 85.2 78.9 - 91.0 87.6 83.1 - 94.2 -2.5

18 months 79.1 71.1 - 85.6 87.4 80.3 - 93.3 -8.3

24 months 75.6 67.3 - 84.6 85.1 77.0 - 92.4 -9.5

36 months 68.8 60.0 - 77.2 89.7 81.7 - 97.2 -20.8

48 months 60.7 45.4 - 73.3 75.5 54.6 - 91.2 -14.8

Figure 4 Comparison of the current cumulative incidence
estimates based on the Markov multi-state model and the
proposed method using the Czech CML data.
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Table 3 Simulation results for the current cumulative incidence estimator and the Markov model estimator of Klein et
al.

Sample size 100 Sample size 1,000

CCI estimator Markov model estimator CCI estimator Markov model estimator

Time

MAD*
(%)

Coverage of the 95%
CI** (%)

MAD*
(%)

Coverage of the 95%
CI**(%)

MAD*
(%)

Coverage of the 95%
CI** (%)

MAD*
(%)

Coverage of the 95%
CI** (%)

1 year 3.7 93.8 3.7 92.8 1.1 95.4 1.1 95.2

2
years

3.2 94.7 3.2 94.4 1.0 94.4 1.0 94.5

3
years

3.1 94.3 3.1 94.2 1.0 95.2 1.0 95.2

4
years

3.2 95.0 3.2 94.3 1.0 95.4 1.0 95.1

5
years

3.6 95.4 3.6 94.7 1.0 93.7 1.0 94.7

6
years

3.6 95.7 3.6 94.5 1.2 92.9 1.2 94.2

7
years

4.2 94.6 4.0 94.0 1.2 95.9 1.2 96.2

8
years

4.8 95.5 4.7 93.4 1.5 94.9 1.4 94.8

9
years

5.7 92.9 5.7 90.4 1.6 95.3 1.6 95.6

10
years

6.4 92.3 6.4 87.3 2.0 94.1 1.9 94.9

* Median absolute deviation between the estimated and true curve.

** The proportion of 95% point-wise confidence intervals that contained the approximated true curve.

Table 4 Simulation results for the current leukaemia-free survival estimator and the Markov model estimator of Klein
et al.

Sample size 100 Sample size 1,000

CLFS estimator Markov model estimator CLFS estimator Markov model estimator

Time

MAD*
(%)

Coverage of the 95%
CI** (%)

MAD*
(%)

Coverage of the 95%
CI** (%)

MAD*
(%)

Coverage of the 95%
CI** (%)

MAD*
(%)

Coverage of the 95%
CI** (%)

1 year 2.3 92.7 2.3 92.7 0.7 93.5 0.7 94.2

2
years

2.7 94.5 2.7 94.3 0.8 94.3 0.9 94.6

3
years

3.0 94.3 3.0 93.2 1.0 95.2 1.0 95.2

4
years

3.4 94.2 3.4 94.1 1.0 94.9 1.0 95.9

5
years

3.5 93.6 3.8 93.3 1.2 93.1 1.2 94.7

6
years

4.1 93.9 4.0 93.2 1.2 95.2 1.3 95.2

7
years

4.2 93.6 4.1 92.5 1.5 95.0 1.4 93.9

8
years

5.0 95.2 4.7 93.2 1.6 94.0 1.5 93.8

9
years

5.8 94.3 5.6 90.1 1.9 93.3 1.8 94.0

10
years

6.7 94.2 6.3 88.1 2.2 95.1 2.1 92.3

* Median absolute deviation between the estimated and true curve.

** The proportion of 95% point-wise confidence intervals that contained the approximated true curve.
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model which included the time spent in a particular
state as a covariate, we found no evidence of a departure
from the Markov assumption in our data. This result
may suggest validity of the Markov assumption in such
a data but it should be noted that the considered data
set is relatively small (N = 152) and the number of pos-
sible disease remissions that can be achieved in time is
limited. On the other hand, regarding the good perfor-
mance of the Markov model estimator of Klein and col-
leagues on the simulated data coming from a semi-
Markov process we can suppose that this estimator per-
forms relatively well also for non-Markov structures. In
general, we can conclude that alternative methods such
as semi-Markov models or fully nonparametric methods
can be used for the estimation when the Markov
assumption does not hold [25].
Even if the explicit form of the Aalen-Johansen esti-

mator of the cumulative incidence in competing risks
assumes the Markovian nature of the transition prob-
abilities, the usability of this estimator is not restricted
only on Markov models, because Datta and Satten [21]
showed that the Aalen-Johansen estimator is consistent
also for non-Markov models provided that the censoring
times are independent of the states occupied by the
individuals and the transition times between the states.
On the other hand, this implies a necessary assumption
that the censoring is independent of the states occupied
and the transition times between the states, which one
should be aware of prior to data analysis. When this
assumption is violated, the estimator may be modified
using the so-called inverse probability of censoring
weighting that was originally proposed by Datta and Sat-
ten [26].
An issue that should also be considered when regard-

ing the proposed methods is the clinical relevance of the
underlying model. The proposed model is compatible
with the current CML therapy in two essential points.
First, it respects the course of currently accessible CML
treatment as a series of disease remissions and subse-
quent relapses, i.e. it can adequately reflect the dynamics
in CML patient health status. Second, the model focuses
on the whole treatment process rather than on the indi-
vidual treatment option represented by single drugs.
From this point of view, the model as well as the pro-
posed methodology is also applicable in the future,
regardless of what the progress in the CML treatment
will be and how many treatment options will be avail-
able, respectively.
Another important issue is the practical value of the

current cumulative incidence of the leukaemia-free
patients and the current leukaemia-free survival as sur-
vival measures. As already mentioned, both quantities
outperform the commonly used measures like leukae-
mia-free survival and cumulative incidence of the

disease-free patients when describing the CML patient
health status. Comparing the interpretation value of
these two quantities to the overall survival (OS), both
advantages and disadvantages can be seen. Obviously,
the OS remains the gold standard for efficacy evaluation
as it can be with no doubt assessed easily and accu-
rately, and, what is even more important, statistically
significant improvement in OS also implies almost in
every case a result of practical significance [27]. This is
in contrast with the assessment of the treatment
response where several biases can occur, e.g. measure-
ment bias or evaluation time bias [28]. On the other
hand, the OS of CML patients has improved dramati-
cally due to recent developments in CML therapy, and
its reliable evaluation now requires a sufficiently long
follow-up. Furthermore, high OS rates are also asso-
ciated with an increasing number of patients needed for
the proper estimation, which is often unfeasible for epi-
demiological reasons. These practical problems justify
the use of the current cumulative incidence of the dis-
ease-free patients and the current leukaemia-free survi-
val as the primary measures for assessment of the CML
treatment.
A future challenge is associated with the methods of

statistical inference for the nonparametric estimation
procedures presented here; especially a test for compari-
son of the two estimated curves and a confidence inter-
val for the difference of two estimated curves would be
of interest. Results of Liu et al. [29] and Lin [16] may be
useful for this research.

Conclusions
Two quantities for the evaluation of the efficacy of cur-
rent CML therapy that may be estimated with standard
nonparametric methods have been proposed in this
paper. Both quantities reliably illustrate a patient’s dis-
ease status in time because they account for the propor-
tion of patients who have left the first disease remission,
as well as for the proportion of leukaemia-free patients
being in second and subsequent disease remissions.
Their usability was demonstrated in the data of 152
consecutive CP-CML patients treated in the two largest
haematological centres in the Czech Republic. More-
over, the model is also applicable in the future, regard-
less of what the progress in the CML treatment will be
and how many treatment options will be available,
respectively. The overall novelty of this paper can be
seen mainly in the clinical model and the easiness of the
way how the well-known statistical estimators can be
combined to estimate the probabilities of interest.
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