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Abstract

Background: Hospital length of stay (LOS) and time for a patient to reach clinical stability (TCS) have increasingly
become important outcomes when investigating ways in which to combat Community Acquired Pneumonia
(CAP). Difficulties arise when deciding how to handle in-hospital mortality. Ad-hoc approaches that are commonly
used to handle time to event outcomes with mortality can give disparate results and provide conflicting
conclusions based on the same data. To ensure compatibility among studies investigating these outcomes, this
type of data should be handled in a consistent and appropriate fashion.

Methods: Using both simulated data and data from the international Community Acquired Pneumonia Organization
(CAPO) database, we evaluate two ad-hoc approaches for handling mortality when estimating the probability of
hospital discharge and clinical stability: 1) restricting analysis to those patients who lived, and 2) assigning individuals
who die the “worst” outcome (right-censoring them at the longest recorded LOS or TCS). Estimated probability
distributions based on these approaches are compared with right-censoring the individuals who died at time of death
(the complement of the Kaplan-Meier (KM) estimator), and treating death as a competing risk (the cumulative incidence
estimator). Tests for differences in probability distributions based on the four methods are also contrasted.

Results: The two ad-hoc approaches give different estimates of the probability of discharge and clinical stability. Analysis
restricted to patients who survived is conceptually problematic, as estimation is conditioned on events that happen at a
future time. Estimation based on assigning those patients who died the worst outcome (longest LOS and TCS) coincides
with the complement of the KM estimator based on the subdistribution hazard, which has been previously shown to be
equivalent to the cumulative incidence estimator. However, in either case the time to in-hospital mortality is ignored,
preventing simultaneous assessment of patient mortality in addition to LOS and/or TCS. The power to detect differences
in underlying hazards of discharge between patient populations differs for test statistics based on the four approaches,
and depends on the underlying hazard ratio of mortality between the patient groups.

Conclusions: Treating death as a competing risk gives estimators which address the clinical questions of interest,
and allows for simultaneous modelling of both in-hospital mortality and TCS / LOS. This article advocates treating
mortality as a competing risk when investigating other time related outcomes.

management, quality of care, and hospital costs [1-3].
Since these outcomes are time-to-event outcomes, inter-

Background
Traditionally, mortality or survival has been the outcome

of clinical interest in evaluating new ways to combat
community acquired pneumonia (CAP). More recently,
outcomes such as a patient’s length of hospital stay
(LOS) and their time to reach clinical stability (TCS)
have increasingly become outcomes of interest in patients
with CAP, as these are directly relevant to patient
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est lies in estimating the probability that a patient will
have reached clinical stability or have been discharged
from the hospital by a given day. The standard estimator
for time-to-event distributions is the Kaplan-Meier esti-
mator, and a key element of this method is the ability to
handle data that are censored. For TCS and LOS, this
can occur if follow-up information on a patient is una-
vailable after a certain point, denoted right censoring
since it is only known that the event did not occur by the
end of the follow-up period and it is assumed that the
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event of interest would have occurred at some point after
this time. Another possibility is that the event of interest
did not occur prior to a pre-specified time, for example
when information regarding time to clinical stability is
only maintained for the first week after a patient is
admitted to the hospital.

A key assumption with the Kaplan-Meier estimator is
that the event of interest will eventually occur for all
patients in the population. For individuals who die prior to
reaching clinical stability or being discharged from the
hospital, clearly the assumption of future event occurrence
in the Kaplan-Meier estimator is violated. Since an event
(death) occurred to those individuals which prevents
further follow-up, analysts must decide how to handle
LOS and TCS data for these individuals. In the CAP litera-
ture, several ad-hoc methods for dealing with such data
have surfaced: 1) disregard LOS and TCS data from indivi-
duals who die [4-6] or 2) assign the ‘worst outcome’ for
individuals who die (i.e., right-censor them at the largest
LOS or TCS value) [2,7,8]. However, it is not clear what
quantity each of these ad-hoc methods is estimating, and
their use can lead to differing conclusions. In addition,
neither technique addresses how to estimate mortality
along with LOS and TCS.

An alternative approach to handling mortality is to treat
this event as a competing risk, which precludes the occur-
rence of the other events of interest (see [9], Chapter 8;
see also [10,11]). Though these methods have been estab-
lished for over thirty years, applications to outcomes in
hospital epidemiology are still developing [1,12]. In the
current context, when a patient dies in the hospital they
can no longer reach clinical stability or be discharged from
the hospital. With competing risks, probabilities of interest
are the cumulative incidence functions for each event
type. These functions estimate the probability of experien-
cing a specific event by a given time, while allowing for
the possibility of other events to occur.

The goal of this article is to evaluate what the two ad-
hoc approaches to handling mortality are estimating,
and demonstrate the potential disparity in results which
can occur from naive use of these approaches. Results
from the ad-hoc estimators are further compared with
the advocated way of handling mortality as a competing
risk. Differences between the estimators are illustrated
using data from the international Community Acquired
Pneumonia Organization (CAPO) database [3], as well
as simulated data. Supplemental material is also pro-
vided which gives illustrative statistical code for investi-
gators to use in their own studies.

Methods

Notation and Definitions

In this section, we define the functions to be estimated.
The presentation given here follows in spirit to that
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given in Allignol et al. [10,13], see also [14] for a nice
tutorial. Note that while we restrict attention to two
competing event types, the methods extend generally to
any finite number of competing events. Let (X;);»o repre-
sent the state that an individial is in for every time
point, X; € {0, 1, 2}. The initial state X, = 0 is the start-
ing state at time O (hospital admission), X, = 1 repre-
sents hospital discharge or clinical stability, and X; = 2
indicates in-hospital mortality. For simplicity of presen-
tation, we will restrict attention to hospital discharge,
since the modeling of clinical stability is analogous (but
see comments in Discussion). The two states discharge
and in-hospital mortality represent competing events,
since a transition into either of the two states precludes
a transition into the other. In the terminology of general
multi-state models, they are referred to as terminal or
absorbing states. The possible transitions from hospital
admission into each of them are considered competing
risks, and the state space and possible transitions are
represented schematically in Figure 1. The stochastic
system is fully characterized by the two cause-specific
hazards 01(t) and 0(t), which give the instantaneous
rates of making making a 0 —> 1 or 0 — 2 transition at
time ¢, respectively. The cause-specific hazards can be
thought of more intuitively using the following approxi-
mate relationship (see [10]),

aoj(t)dt ~ P(T e dt, Xr =jIT > t), j=1,2. (1)

The quantity opj(t)dt then represents the probability
of making a 0 — j transition within the infinitesimal
interval dt = [t, t + dt), where dt is used to represent

1: Hospital
0{01 (t) Discharge
0: Hospital
Admission
2: In-Hospital
Death
Uy (1)
Figure 1 Competing risks framework for discharge and in-
hospital mortality. Diagram illustrating the competing risks
framework, with discharge and in-hospital mortality as the two
competing events with transition hazards o, (t) and (1),
respectively.




Brock et al. BMIC Medical Research Methodology 2011, 11:144
http://www.biomedcentral.com/1471-2288/11/144

both the interval and its length. The random variable T’
represents the transition time.

The cause-specific hazards sum to give the all-cause
hazard, o.(t)dt ~ P(T € dt|T > t), where the *" indicates
summation over the subscript. A key quantity for statis-
tical inference is the cumulative cause-specific hazard
Aj(t) = [ ctoj(u)duo, which represents the total accu-
mulated hazard for making a 0 — j transition by time ¢.
Using the cumulative all-cause hazard Ag. (¢), the survi-
val function for T is then a function of both cause-speci-
fic hazard functions, S(£) = P(T > t) = exp{-Ao.(t)} [13].

When competing risks are present, probabilities are
described in terms of the cause-specific cumulative inci-
dence functions,

Cli(t)=P(T < t,Xr =) = /LP(T > u—)oj(u)du,j=1,2. (2)

The integrand on the right-hand side of the equation
represents the joint probability of having survived (i.e.,
made neither transition) to time just prior to u (denoted
u-) and subsequently making a 0 — j transition at time u.
Like the cause-specific hazard functions, the two cumula-
tive incidence functions can be summed, resulting in the
all-cause distribution function P(T < ) = CI(f) + CLy(¢).

In addition to the cause-specific hazards, another
hazard function which has been developed in the com-
peting risks literature is the subdistribution hazard
[15,16]. This hazard function is obtained from the
cumulative incidence function,

dCr(0/di  —dlogl1 — CIy(0)} .
1-Cl() dt =

The quantity A(t)dt ~ P{T e dt, X; =j|T2tU (T <t
X7 2 j)} is then interpreted as the probability of experien-
cing a 0 — j transition at time ¢, among those who are
either alive at time ¢ or who have experienced an event
other than j at or prior to time t [17]. As noted in [16] and
pointed out in [17], this interpretation is problematic since
it corresponds to a hazard for an improper random vari-
able, as those individuals who experience an event other
than j will have a 0 — j transition time of o. Further, it
conditions on having reached one of the competing term-
inal states, which violates the intuitive notion that indivi-
duals who have reached a terminal state should not be
considered for further follow-up (see [17], Principle 2).
However, as the regression model developed by Fine and
Gray in [16] provides a direct link between the cumulative
incidence function and a set of covariates, in practice
models based on the subdistribution hazard have proven
useful [18,19].

A1) = L2, (3)

Estimators
For competing risks, the basic ingredients for estimation
are the number of individuals who make a transition,
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and the number of individuals who are still at risk of
making a transition, at each time point. Let t; < £, < ...
<t; be the k distinct times where events occur in the
data. Using standard counting process notation, let
Noj(t) count the number of observed 0 — j transitions
by time ¢, and Yy(¢) indicate the number of individuals
still in state O just prior to time ¢. The latter is called
the number of individuals at-risk for transitions out of
state 0 at time ¢, and naturally acounts for subjects that
are right-censored by removing them from the risk set
at their censoring time (it also accounts for left-trunca-
tion, where individuals do not enter the risk-set unless
their event time occurs after a certain time). The total
number of transitions by time ¢ is given by Ny. (£).
Lastly, the number of 0 — j transitions at a given time ¢
is given by ANy;(t).

The starting point for estimation are the Nelson-Aalen
(N-A) estimators of the cause-specific cumulative hazard
functions (see [20], Chapter 4.2)

. ANg(t:)
Ag() =) YO(E]S),FLZ ()

<t

The N-A estimator of the all-cause hazard function is
/A\O.(t) = AOl(t) +A02(t), and the increments of the N-A
estimator are denoted AA;(t) = Agj(t) — Aoj(t—) = ANg;(£)/Yo(1)-
Kaplan-Meier Estimator
The standard Kaplan-Meier (KM) estimator [21] of the
overall survivor function is then

S =] (1 - AAo.(ti))~ ®)

i<t

This estimator is a decreasing step function with
“drops” at the observed transition times. The KM esti-
mator estimates the probability that an event will even-
tually occur for all patients. For competing risks data,
(1) is then a valid estimate of the overall probability
that an individual has not experienced any of the com-
peting events by a given time.

By substituting Aoj(t) for Ao.(¢) in (5), an estimate of
the net survival function Sj(t) = exp{—Ag;j(t)} for event
type j is obtained (see [20], Chapter 2.7). The comple-
ment 1 — S,-(t) estimates the net probability to experi-
ence event j by a particular time. However, this net
probability is only valid in the hypothetical setting
where the competing events do not occur (reference
[20], page 52). In the schematic represented by Figure 1,
the quantity 1 — §, (t) estimates the probability of hospi-
tal discharge by time ¢, in an ideal world where in-hos-
pital mortality cannot occur. In this case, individuals
who experience one of the competing events are cen-
sored at their event times. The KM estimate for the
probability of clinical stability and hospital discharge by



Brock et al. BMIC Medical Research Methodology 2011, 11:144
http://www.biomedcentral.com/1471-2288/11/144

time ¢ will be denoted as 1 — §,(t) and 1 — Sy;(t)
respectively. The variability of the KM estimator is given
by the Greenwood estimator, which for the overall survi-
val function has the form

ANp.(t)

Var(S(1)} = $2(1) D Yo(t)(Yo(t) — ANo. (1)) ©

i<t

(see [20], Chapter 4.2).
Cumulative Incidence Estimator
The Aalen-Johansen estimates of the cumulative inci-
dence functions [22] are obtained by plugging in S(u—)
for P(T > u-) and AAOj(u) for aoj(u)du in (2), and sum-
ming over all observed transition times ¢; < ¢,

Cli(t) = Y 8(ti-1) Adg(t),j = 1, 2. @)

iit;<t

This estimator can be derived in a straightforward
fashion starting from the KM estimator of the overall
survivor function [13]. The increments of the KM esti-
mator (5) are P(T = t;) = S(ti.1) — S(t;) = S(ti-1) AA;(t;). Since
the cause-specific cumulative incidence functions sum
to the all-cause distribution function, decomposing the
KM increments into components corresponding to each
hazard and summing over ¢; < t, gives the desired result.
The estimate of the cumulative incidence function for
clinical stability, hospital discharge, and in-hospital mor-
tality by time ¢ will be denoted as ﬁcs(t), ﬁdis(t)’ and

amor(t)’ respectively.

The variability of the cumulative incidence estimator
has received considerable attention in the recent litera-
ture [13,23]. Braun and Yuan [23] compared six differ-
ent estimators of the variance, and Allignol et al. [13]
demonstrated that the Greenwood-type estimator of the
variance (Equation (6) in [13]) is algebraically equivalent
to the top performing estimators in [23]. Of note, the
variance estimator given by Gray [15], available in the R
package cmprsk [24], performed the poorest for small
(N < 50) sample sizes.

Restricted Estimator

The first ad-hoc approach evaluated in this study was to
exclude individuals who died from the analysis
(restricted analysis). With this approach, individuals who
die are excluded entirely from the analysis, and their
LOS data are essentially treated as being censored at
day zero. Of significant note is that the restricted esti-
mator suffers from a serious conceptual flaw, in that
estimation at any time ¢ requires conditioning on the
occurrence of future events after time ¢ (see [17], Princi-
ple 1). Nevertheless, the complements of the KM esti-
mates based on these data were used to estimate the
probability of clinical stability and hospital discharge,
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denoted 1 — §§S(t) and 1 — Sgis(t), respectively. The var-
iance of this estimator is calculated using the Green-
wood estimator on this restricted sample.

Worst Outcome Estimator

The second ad-hoc approach was to assign individuals
who died the “worst” outcome (worst outcome analysis).
In this approach, individuals who die are right-censored
at the longest possible follow-up time. This is essentially
equivalent to assigning a discharge or clinically stable
time of e to the individuals who die in the hospital, and
so coincides with the random variable which forms the
basis of the subdistribution hazard in Equation (3). The
complement of the KM estimator based on these cen-
sored subdistribution times has been previously shown to
be equivalent to the cumulative incidence estimator (see
[25] and [26] for proofs, also noted in [15]). In the
Appendix, we give a simplified algebraic proof of this
equality for the special case of our situation, administra-
tively right-censored data, and a heuristic argument is
given in the ‘CAPO Data’ subsection of the Results. Esti-
mates of the ‘worst outcome’ analysis for the probability
of clinical stability and hospital discharge will be denoted
1-8%(¢)and 1
the variability is again based on Greenwood’s estimate.

- S[‘;‘{s(t)’ respectively. The estimate of

Confidence Intervals and Testing
Pointwise 95% confidence intervals for each estimator at
time ¢ can be based on the general formula

Estimate(t)i1.96\/@{Estimate(t)}. For the KM,

restricted, and worst outcome analysis, testing for differ-
ences in probability distributions between patient groups
for LOS and TCS were done using the log-rank test
[27], and denoted xZ,, » x,%dis, and szvdi; For the compet-
ing risks approach, the test statistics presented in [15]
were used for testing differences between cumulative
incidence functions (denoted xé,di‘). It should be noted
that for the two ad-hoc approaches, the test statistics
are used primarily for illustrative purposes, to demon-
strate the potential differences in conclusions drawn
based on the two approaches.

CAPO Data

To illustrate the differences between the four estimation
methods from an established database, analyses were
performed on data from the international CAPO dataset
(see [3,28] for details). We consider the subset of 1,635
patients aged 65 years or greater, who were admitted to
the hospital with CAP between June 1, 2001 and January
1, 2007. The data set includes patients from 40 hospitals
located in 10 countries on 4 continents, for a detailed
listing of all participating hospitals see Additional File 1.
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CAP was defined as a new pulmonary infiltrate (within
24 hours of admission), and associated with at least one
of the following factors: a new or increased cough, an
abnormal temperature (<35.8°C or >37.8°C), or an
abnormal leukocyte count (leukocytosis, leucopenia or
the absence of immature neutrophils). Pneumonia was
considered as community-acquired if a patient had no
history of hospitalization during the two weeks prior to
admission.

Time to clinical stability was defined using the Ameri-
can Thoracic Society criteria for switch therapy from
intravenous to oral antibiotic therapy: 1) improvement
in cough and shortness of breath; 2) afebrile status for >
8 hours (<37.8°C); 3) normalizing leukocyte count by at
least 10% from the previous day; and 4) adequate oral
intake [29]. Time to clinical stability was calculated in
days as the time from admission to the hospital to the
time the above four criteria were met. Length of hospital
stay (LOS) was defined as the time from admission to
the hospital to discharge from the hospital. LOS was
right censored at 30 days, since hospital stays longer
than 30 days are considered unrelated to CAP and are
not of primary interest [28]. Classification of patients
into risk classes was done using the Pneumonia Severity
Index (PSI) [30]. There are five possible rankings for the
PSI, labeled Risk Class (RC) I to V, from least to most
severe.

The study was approved by the Human Subject Protec-
tion Program Institutional Review Board at the University
of Louisville. Additional approval was obtained from the
local internal review board for each participating hospital.
Patient consent was waived due to the retrospective and
observational study design.

Simulated Data

Competing risks data were simulated following the
methodology outlined in Beyersmann et al. [31]. A dis-
crete time scale was used for ¢, in units of days. Two
non-parametric hazard functions were constructed that
approximated the observed discharge distributions in
the CAPO data for Risk Class V patients:

(X()]([) = P(T =t,Xr=1|T > t) = 0.32/(t+ 1)

0.06/(t+1)
0.0003 + 0.001¢

woa(t) = P(T = 1, Xy = 2T > 1) = { s

Conditional on an event happening at time ¢, a bino-
mial probability

P(X7 = i|T = t) = 0p:(t){0to1(2) + tg>(2)} was used to
determine the event type, discharge (i = 1) or death (i = 2).

Events were simulated for ¢ = 1,...,, 30, and all indivi-
duals who had not experienced an event by day 30 were
right-censored at that point. For each simulation, we
obtained four estimates of the probability of discharge
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by day ¢, including the cumulative incidence estimator
CI ais() the complement of the Kaplan-Meier estimator
1— Sdis(t), and the two ad-hoc estimators corresponding
to the restricted analysis (all patients who died were
removed, 1 — Sgis(t)) and the ‘worst outcome’ analysis
(all patients who died were right-censored at the longest
allowed length of stay of 30, 1 — Sz's(t)). A listing of all
four estimators is given in Table 1. To evaluate point
estimates for each of the etimators, a total of 1,000
Monte Carlo simulations were run with a patient sample
size of 1,500 for each simulation. These estimates were
compared with the true cumulative incidence function
CIdis(t)'

We additionally compared the coverage of 95% linear
confidence intervals for CI,(f) based on
adis(t) + 1-96\/@{61&5(0}’ using both Gray’s estimate
[15] and the Greenwood-type estimate of the variance
(Equation (6) of [13]). An additional 1,000 simulations
were generated with sample sizes of 25, 50, 100, 200,
and 750 to compare the coverage rates of the two
estimators.

The probability of rejecting the null hypothesis of no
differences in hospital discharge probability distributions
between two patient groups was evaluated under several
scenarios. First, simulations were conducted under the
null hypothesis, with both the mortality and discharge
hazard functions being equal between the two patient
groups. Additionally, we ran simulations with the hazard
ratio for mortality (HR,,,,) equal to 1.15 and 1.5, to
investigate the dependence of each test statistic on the
hazard ratio of the competing event. Five different sets
of simulations were conducted under the alternative
hypothesis, that discharge hazard functions differed
between the two patient populations. In each case, a
hazard ratio for hospital discharge HR;;; of 1.15 was
used. The five scenarios were a) the mortality hazard
rates were equal for the two groups, b) the patient
group with a higher discharge rate also had a slightly
lower mortality rate (HR,,,, = 1/1.15 = 0.87), c) the
patient group with a higher discharge rate also had a
significantly lower mortality rate (HR,,,, = 1/1.5 = 0.67),
d) the patient group with a higher discharge rate also
had a slightly higher mortality rate (hazard ratio for
mortality HR,,,, = 1.15), and e) the patient group with a
higher discharge rate also had a significantly higher
mortality rate (HR,,,, = 1.5). The latter two situations,
though somewhat counterintuitive, may correspond to a
therapy which reduces LOS but has a deleterious side
effect in some patients which increases mortality. One
thousand Monte Carlo replicates were used in each
case, with a sample size of 750 patients for each group.
An o = 0.05 cutoff was used for each test.
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Table 1 Description of methods evaluated using simulated data

Estimator  Description

1— Sdis(t) Complement of the Kaplan-Meier estimator of hospital discharge, obtained by censoring those patients who died at their time of

death

adis (t)

Estimate of cumulative incidence function of hospital discharge, obtained by treating in-hospital mortality as a competing risk

1-— égis(t) Complement of the KM estimator of hospital discharge, obtained by removing those patients who died

1-— S(‘i"{s(t) Complement of the KM estimator of hospital discharge, obtained by censoring those patients who died at the longest recorded LOS

(30 days)

Software

All the analyses presented in this paper were performed
using R version 2.12.2 [32], which is a freely available,
open-source statistical programming language. The
functions for competing risks analysis are included in
the R add-on package cmprsk [24], which also includes
functions for fitting proportional-hazards regression
models for the subdistribution function of a competing
risk [16]. A nice tutorial on using the cmprsk package is
given in [33]. Limitations of the cmprsk package are that
it can only handle right-censored data and that it uses
an estimate of the variance which has been shown to be
suboptimal [23]. Alternative R packages which can han-
dle left-truncated data and use the Greenwood-type esti-
mate of the variance include etm [34], msSurv [35], and
mstate [36). These are specialized packages for multi-
state models, of which competing risks is a special case.
However, only the cmprsk package includes test statsi-
tics [15] for comparing cumulative incidence curves.
The interested reader is directed to the CRAN task view
on survival [37] for a detailed listing of available R-
packages for survival analysis. Additional Files 2, 3, and
4 for this manuscript contain documented R code and
data illustrating how to carry out all the competing risks
analysis performed in this paper.

Results

An lllustrative Example

To illustrate the differences between the five estimators,
consider the following artificial example of ten patients
who are admitted to the hospital with CAP. Suppose that
two of the patients die at days 3 and 5, five of the patients
reach clinical stability on days 2, 2, 4, 5, and 7, and three
patients do not reach clinical stability by day 7. After day
7, information regarding clinical stability is no longer col-
lected, so that the three patients who did not reach clini-
cal stability by day 7 are censored at day 7. The data are
displayed in Tables 2, 3, where each row indicates a
unique event time. Here ¢; indicates the event time in
days (either death or reaching clinical stability), s; indi-
cates the number of patients who reached clinical stabi-
lity at time ¢; d; indicates the number of patients who
died at time t;, and y; indicates the number of patients

who are eligible to either die or reach clinical stability at
time ¢;. Table 2 gives the estimates based on the comple-
ment of the Kaplan-Meier estimator and the cumulative
incidence function, while Table 3 provides estimates
based on the ad-hoc estimators. The complement of the
KM estimator 1 — §,(¢) is uniformly higher than the
cumulative incidence estimator C‘Ics(t), and the clinical
interpretation of this estimate is unclear since it corre-
sponds to an “alternative” world where patients cannot
die in the hospital (see [17], Principle 3). Since the com-
plement of the KM estimator assumes that all patients
who are censored are still eligible to experience the event
at some point in the future, it will overestimate the prob-
ability of experiencing the event of interest (reaching
clinical stability) when competing risks are present
(mortality).

The estimate of clinical stability restricted to only
patients who lived, 1 — st(t), is higher than any of the
other estimates. Since this estimate conditions on
patients who die in the hospital at some future time, it is
difficult to imagine how such an estimator would be use-
ful in practice. The admitting physician would need to
“know” which patients would ultimately die and which
would live at the time of admission. In the strictly
hypothetical situation that this knoweldge could be pos-
sessed, it would seem equally likely that the physician
would know the exact day that clinical stability would be
reached, precluding the need for this type of analysis.

The ‘worst outcome’ estimator 1 — Sg’s"(t) coincides with
the cumulative incidence estimator CJ(¢). A heuristic for
understanding the equivalence between the two algo-
rithms involves Efron’s ‘redistribution to the right’ algo-
rithm [38]. Efron demonstrated that the Kaplan-Meier
estimator can be derived using an algorithm which uni-
formly redistributes the probability mass associated with
each right censored observation to all times to its right.
When patients who die are not censored at the point of
death but are instead censored at the end of the follow-up
time (7 days), their probability weight is not re-distributed
to the other patients who are still alive and have not been
discharged. Hence, the jump sizes for the cumulative inci-
dence estimator and ‘worst outcome’ estimator are
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Table 2 Kaplan-Meier and cumulative incidence estimators of probability of clinical stability for artificial data

Kaplan-Meier

Cumulative Incidence

t; Yi Si di Scs (ti) 1- Scs(ti] SE S(ti) é\ICS(ti) SE
2 10 2 0 1-2/10 = 0.80 0.20 0.126 1-2/10 = 0.8 2/10 = 0.2 0.133
3 8 0 1 0.80 0.20 0.126 0.8%(1-1/8) = 0.7 0.2+0/8%(0.8) = 0.133
4 7 1 0 0.8%(1-1/7) = 0.69 0.31 0.151 0.7*(1-1/7) = 0.6 0.2+1/7%0.7) = 0.3 0.154
5 6 1 1 0.69%(1-1/6) = 0.57 043 0.164 0.6%(1-2/6) = 04 0.3+1/6%(0.6) = 0.167
7 4 1 0 0.57*(1-1/4) = 043 0.57 0.174 04*(1-1/4) = 03 04+0/4%(04) = 0.5 0.172
>7 3 043 0.57 03 0.5

= jth time point; y; = number at risk at time t; s; = number clinically stable at time t; d; = number who died at time t;
S(ti) = event free survival at time t; = event free survival at time t;; SE = standard error

equivalent, whereas the jump sizes of the complement of
the KM estimator are augmented by the redistributed
weight of past censored observations.

The standard error of the cumulative incidence func-
tion is Gray’s estimate [15] reported by the cmprsk
package, and is notably larger than the standard error
for the ‘worst outcome’ estimator. The latter is based on
Greenwood’s estimate, which we empirically verified is
equivalent to the Greenwood-type estimate of the var-
iance for competing risks (Equation (6) in [13]). Differ-
ences between these two estimates of the variance, in
terms of coverage rates for confidence intervals of point
estimates, are investigated further in the Simulated Data
section.

CAPO Data

Our analysis of the CAPO data focuses on length of
hospital stay. We initially restrict our presentation to
the subset of patients in the highest risk class calculated
from the pneumonia severity index (PSI), Risk Class V
(n = 410 patients). Figure 2 presents the four estimates
for the probability of being discharged by a given day
after hospital admittance. Since the in-hospital mortality
is relatively high in this patient subset (20% by day 14),
the complement of the Kaplan-Meier estimate is consid-
erably higher than the cumulative incidence estimate.
The estimator restricted to the subset of patients who
survived (restricted analysis) gives an overly-optimistic
picture of the probability of being discharged, and as
noted previously the practical use of this estimator is

highly questionable. The ‘worst outcome’ estimator
again coincides with the cumulative incidence estimator.

The test-statistic for hospital discharge based on the
cumulative incidence function has a p-value of 5 x 10
7. Log-rank tests based on the ad-hoc estimators,
restricted and worst outcome, give p-values of 8 x 10™*
and 3 x 1078 respectively, which are several orders of
magnitude different. The log-rank test based on the
Kaplan-Meier estimator gives a p-value = 8 x 10, but
it is unclear what is the clinical interpretation of this
test.

The competing risks analysis allows simultaneous
comparison of both LOS and mortality incidence. In
contrast, right censoring or removing patients who die
prevents mortality information from being incorporated.
Treating mortality as a competing risk provides a
mechanism to view the incidence curves of both out-
comes, so that multiple outcomes can be compared
between patient groups. To illustrate, we view both the
discharge and mortality incidence for patients in RC V
(410 patients) versus RC IV (822 patients) in Figure 3.
The patients in RC IV have the higher discharge inci-
dence curve, indicating that there is a higher probability
of being discharged on any given day relative to patients
in RC V. Conversely, patients in RC V have the higher
in-hospital mortality incidence curve.

Simulated Data
To more comprehensively evaluate the differences
between the four methods, we simulated competing

Table 3 Ad-hoc estimators of probability of clinical stability for artificial data

Restricted Analysis

Assign Worst Outcome

A d 8i(t) Su(t)  SE Su()  1-84(w) SF
2 10 2 0 1-2/8 = 0.75 0.25 0.153 1-2/10 = 0.8 0.2 0.126
3 8 0 1 0.75 0.25 0.153 0.8 0.2 0.126
4 7 1 0 0.75*(1-1/6) = 0.63 037 0.171 0.8%(1-1/8) = 0.7 03 0.145
5 6 1 1 0.63*(1-1/5) = 0.50 0.5 0177 0.7*(1-1/7) = 06 04 0.155
7 4 1 0 0.5*%(1-1/4) = 038 0.62 0.171 0.6*(1-1/6) = 0.5 0.5 0.158
> 7 3 0.38 062 0.5 0.5

t; = ith time point; y; = number at risk at time t; s; = number clinically stable at time t; d; = number who died at time t; SE = standard error
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Figure 2 Estimates for probability of hospital discharge. Four
different estimators for the probability of hospital discharge, for
elderly patients hospitalized with CAP with PSI Risk Class V. The four
approaches outlined in the text were used: cumulative incidence
estimator and complement of the Kaplan-Meier estimator when
patients who died were censored at the longest LOS value of 30
days (ﬁdis(t) and 1 — S;‘;G) purple line), complement of the
Kaplan-Meier estimator (] — Sdis(t)’ green line), and complement
of the Kaplam!\i\eier estimator restricted to only patients who
survived (1 — Ssis(t)’ orange line).
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Figure 3 Cumulative incidence curves for discharge and in-
hospital mortality. Estimated cumulative incidence curves for
hospital discharge and in-hospital mortality, for elderly patients
hospitalized with CAP with PSI Risk Class of IV or V.
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risks data using the methods in Beyersmann et al. [31].
The hazard functions for discharge and in-hospital mor-
tality were selected to roughly match the observed
hazards in our data for Risk Class V patients (see Meth-
ods). Figure 4 presents the median values and 2.5% and
97.5% percentiles for each point estimate based on the
1,000 simulations for each estimation method, using a
sample size of 1,500 for each simulation. The true
cumulative incidence curve is shown in a solid black
line for each plot. As expected, the median of the cumu-
lative incidence estimates and the worst outcome esti-
mates coincide exactly with the underlying cumulative
incidence function. The median estimates for the
restricted estimator and complement of the Kaplan-
Meier estimator are also shown, and display a similar
pattern to that observed in the real data.

As noted in the Methods, their are several estimators of
the variance of cumulative incidence estimator that have
been proposed in the literature. Previous research [23]
has demonstrated that the Greenwood-type estimator
has better performance for small sample sizes, in particu-
lar relative to the estimator proposed by Gray [15]. We
evaluated the coverage rates of 95% confidence intervals
for the true cumulative incidence at selected time points,
for both the Greenwood estimator of the variance and
the Gray estimator. Results are displayed in Table 4 and
show that the coverage rates for both intervals are in very
good agreement with each other and close to the nominal
95% level for the range of sample sizes evaluated. Thus,
though Gray’s estimate of the variance is higher for smal-
ler sample sizes, this difference did not translate into a
difference in coverage rates for our simulations.

Lastly, we evaluated the power for the four methods
to reject the null hypothesis of no differences in dis-
charge probability distributions between patient groups,
under various scenarios. A sample size of 750 patients
was used for each of the two patient groups, for each
simulation. It should be noted that each method is test-
ing a different null hypothesis, e.g. the test based on the
cumulative incidence estimator is testing for differences
between the cumulative incidence functions CI(%), j = 1,
2, while the test based on the Kaplan-Meier estimator is
testing for differences between Si(t), j = 1, 2. Hence the
results based on the tests are not directly comparable
with each other. However, the simulations are still use-
ful for illustrating how tests based on the estimators
perform under different situations.

The first row of Table 5 displays the rejection propor-
tions for the four methods when the hazards of both
mortality and discharge are equal between the two
patient groups (i.e., the null hypothesis is true), using an
o level of 0.05. The methods all have a rejection rate
close to the nominal level of 0.05. The next two rows
display the rejection proportions when the hazard of
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Figure 4 Probability of hospital discharge from simulated data. Median values of each estimation method for the probability of hospital
discharge, based on 1,000 simulations, as detailed in the ‘Simulated Data’ section of the Methods. The underlying cumulative incidence curves
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© _|
© | B. Kaplan-Meier
0] ©
o) . —
E o
<
[$]
R
o <
% L
b o
E
®
o]
e N _|
o o
o
S -
T T T T T T
0 5 10 15 20 25 30
Day
[e0]
g
D. Worst Outcome
<) ©
c‘) . —
a o
N
[$]
2
a <
5 T
_.é‘ o
E
@®
Q
e o |
o o
o
S -
I I I I I I
0 5 10 15 20 25 30
Day

discharge is the same, but the mortality hazard differs
between the two groups. As the hazard of the compet-
ing event will have an influence on the incidence of the
event of interest, all of the test statistics (except the
KM-based test statistic XI%MMS) increase as the HR for
mortality deviates further from one. The KM-based test

statistic is not influenced by the HR for mortality since
it treats mortality events as independent right-censoring
events (i.e., it assumes mortality and discharge are
independent).

The next five rows of Table 5 display the rejection
proportions when the hazard of discharge is different
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Table 4 Coverage probabilities for 95% confidence
intervals for CI(t), based on the cumulative incidence
estimator (ﬁdis(t)) using either Gray’s estimate or the
Greenwood-type estimate of the variance

Time (days)
Sample Size  Estimator 5 10 15 20 25
1500 Gray 0945 0952 0951 0956 0954
Greenwood 0945 0954 0951 0957 0954
750 Gray 0953 0958 0962 0965 0961
Greenwood 0960 0963 0962 0965 0961
200 Gray 0935 0938 0943 0942 0944
Greenwood 0935 0938 0953 0942 0944
100 Gray 0961 0949 0952 0955 0950
Greenwood 0961 0949 0949 0955 0943
50 Gray 0938 0950 0926 0931 0938
Greenwood 0938 0950 0926 0931 0938
25 Gray 0950 0941 0936 0955 0936
Greenwood 0950 0941 0936 0955 0936

between the two groups, for varying hazard ratios of
mortality. When the hazard of mortality is the same
between the two patient populations, the power of the
methods to reject the null hypothesis of differences in
discharge probability distributions are fairly close to
each other. When the hazard ratio for mortality is var-
ied, an interesting pattern emerges. When the hazard
ratio is below one, the patient group with the higher
discharge rate also has a decreased mortality rate, lead-
ing to more patients being discharged in that group and
fewer patients dying. Hence, the difference in cumulative
incidence curves for discharge is increased between the
two patient groups, and the power subsequently
increases as well. Conversely, when the hazard ratio for
mortality is above one, the patient group with the higher
discharge rate also has an increased mortality rate. Thus,
patients in this group have an overall higher rate of

Table 5 Proportion of times that the null hypothesis of
no difference in discharge probabilities is rejected, using
an o = 0.05 significance level

Test
HRais HRmor X %31 dis X %Vdis X %(M.m X Izzdis
1.0 10 0.048 0.047 0.049 0.054
1.15 0.064 0.061 0.055 0.062
1.5 0.128 0.120 0.048 0.362
1.15 10 0.553 0.544 0.583 0.505
067 0.772 0.772 0.601 0.137
0.87 0.652 0.644 0.603 0.339
1.15 0470 0462 0577 0.681
1.5 0.256 0.248 0577 0.946

HRy;s = hazard ratio of discharge; HR,,,, = hazard ratio of mortality
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either event, and since more patients are dying in this
group as well the difference in the cumulative incidence
of discharge is decreased relative to the second group.
This is particularly true when the HR,,,, >HR;, since
in this case the ratio of discharge hazard (¢t ;) to mor-
tality hazard (0y,) for this group is lower relative to the
ratio of these two hazards for the second group.

The trend for X}%.m’ the test based on the restricted
analysis estimator, is the exact opposite. When the HR
for mortality is above one, the group with the higher
discharge rate will have more patients removed from the
study due to mortality. Hence the cumulative incidence
of discharge calculated on this restricted sample will be
exaggerated, leading to a greater difference in discharge
cumulative incidence between the two patient groups.
Conversely, when the HR for mortality is below one,
fewer patients will be removed from the study for the
group with the higher discharge rate, and the cumulative
incidence of discharge will be dampened on this
restricted sample, leading to a decrease in differences in
discharge cumulative incidences between the two
groups. The log-rank test based on the KM estimator is
again unaffected by the changes in mortality hazard
between the two patient groups.

Discussion

The way in which mortality is handled while investigating
other time-related outcomes can have an impact on the
results obtained and the interpretations conjectured. In
the CAP literature, there is no consensus for how to
properly handle mortality when evaluating TCS and LOS.
Therefore, direct comparisons are difficult and conflict-
ing conclusions can be reached depending on the
approach that is used. Two ad-hoc approaches for hand-
ling mortality were investigated in this paper, analysis
restricted to the subset of patients who survived and
assigning patients who died the worst possible outcome.
The two methods give different results for the same data
and could lead to conflicting conclusions, unless investi-
gators are aware of the differences between the estima-
tors. The first approach conditions on the occurrence of
future events, and the practical use of this estimator is
questionable. The second approach coincides with the
Kaplan-Meier estimator based on the subdistribution
hazard, which has been proven to be equivalent to the
cumulative incidence estimator [25]. In both cases the
information concerning time to in-hospital mortality is
ignored, preventing dual-assessment of both time to clin-
ical stability or discharge and patient mortality.

It should be mentioned that although we considered
the ‘worst outcome’ approach to be ad-hoc, the equiva-
lence of this method to the random variables defined for
the subdistribution function in [15] does not mean that
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we consider that latter to be ad-hoc as well. Indeed, the
characterization of the subdistribution hazard function
by Gray had a clearly defined purpose and context. In
addition to showing equivalence between the KM esti-
mator based on the subdistribution hazard and the
cumulative incidence estimator, Geskus [25] showed
that the latter could be characterized as a weighted
empirical cumulative distribution function. In both
cases, the weights depend on the censoring and trunca-
tion distributions of the data. A third characterization of
the cumulative incidence function is as a KM estimator
with a ‘fractional risk set’ [39], where censored indivi-
duals contribute a fractional mass to the risk set speci-
fied by an estimate of the probability that the individual
would have experienced a particular event type. Applica-
tions of these alternative characterizations include
regression modeling based on the subdistribution hazard
[25], and non-parametric estimation for multi-state
models [40,41].

The complement of the Kaplan-Meier estimator, which
censors patients who die at their time of death, provides
an estimate that is between the cumulative incidence func-
tion and restricted analysis estimator. As past authors have
pointed out [17,20,42], this curve lacks a reasonable clini-
cal interpretation in the presence of competing risks, since
patients who die are still considered eligible to reach clini-
cal stability and be discharged from the hospital. Propo-
nents of the KM estimator favor the fact that it focuses on
a single event type, and argue that the cumulative inci-
dence function is difficult to interpret on its own due to
its dependence upon the incidence of the competing
events [43]. In response to this, Pepe and Mori [42] pro-
posed the conditional probability estimator, which esti-
mates the probability of an event conditional on the other
events having not occurred by a given time. However, this
estimator has been criticized on a conceptual basis [17], in
that conditioning on the non-occurrence of the other
event types either conditions on the future (when consid-
ered from the origin time) or on having reached / not
reached a terminal event (when considered at the current
time t). As a result, we did not consider the conditional
probability estimator in this manuscript.

In contrast to the ad-hoc estimators and Kaplan-Meier
estimator, the estimators based on treating in-hospital
mortality as a competing risk have clearly defined inter-
pretations. Recent applications of these approaches (and
more general multi-state models) to the study of nosoco-
mial (hospital-acquired) pneumonia infections have been
conducted by Beyersmann et al. [1,12,44] and Wolkewitz
et al. [45]. However, there is still clear evidence that
these methods are not commonly used in situations
where they are warranted. Competing risks models are
intuitively attractive because they disallow patients who
die to subsequently be considered eligible for discharge
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or clinical stability (see [17], Principle 2). Further, the
estimator also estimates the probability of in-hospital
death, so that an investigator can simultaneously evaluate
the probability of reaching clinical stability or hospital
discharge versus death by any given time.

Simulations revealed that the power of each method to
detect differences in underlying discharge rates between
patient groups depended on the rate of the competing
event (mortality). When the hazard ratios were in opposite
directions, so that the patient group with the higher dis-
charge rate also had a lower mortality rate, differences in
the cumulative incidence of discharge were increased and
the power based on Gray’s test [15] for the differences in
cumulative incidence curves also increased. However,
when the patient group with the higher discharge rate also
had a higher mortality rate, the difference between cumu-
lative incidence curves for discharge decreased with a cor-
responding decrease in power based on Gray’s test. This
phenomenon was explored in greater detail in Allignol et
al. [10], who stressed the importance of the baseline
hazard rate of each event type in addition to the hazard
ratios. This importance was exemplified by Beyersmann et
al. ([12], pgs. 336-337), who demonstrated that conflicting
results between the incidence rate and the incidence pro-
portion (cumulative incidence) can occur when the hazard
rate for the competing event dominates the hazard for the
event of interest, and the differences in hazards for the
event of interest are minor in magnitude. In our case, if
we consider mortality to be the event of interest, such a
case could arise if the hazard for mortality was minor in
magnitude relative to the hazard for discharge / clinical
stability. Then, if a subset of patients had a reduced mor-
tality rate but also a reduced discharge rate, then patients
in this group will on average have longer times in the hos-
pital and, eventually, the cumulative incidence of mortality
will be higher for these patients. Such a situation can be
readily resolved by plotting the Nelson-Aalen estimators
of the cumulative hazards, c.f. Figure 2 in [12] and [10].
Fortunately, in most real-world situations the patient
group with the higher discharge rate will also have a
reduced mortality rate, so that interpretation of results in
most cases will be easier.

In contrast to the tests based on the cumulative inci-
dence function, tests based on restricting the patient sam-
ple to those who survived had increased “power” when the
group with the higher discharge rate also had a higher
mortality rate. However, by removing patients who died
from the study, the differences in mortality rates between
the two patient populations results in a biased comparison
between the two patient groups. The motivation for
restricting analysis to the subset of patients who survived
results from the desire of investigators to compare out-
comes (LOS and TCS) seperately among this patient
population. But when mortality differs between patient
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groups (e.g., as determined by treatment assignment),
comparisons restricted to patients who survived will not
result in a compatible set of patients being compared
between the two groups. An intriguing alternative to the
methods evaluated in this article which addresses this
issue is the “survivor average causal effect” (SACE) [46,47].
This method was designed to estimate a treatment effect
on an outcome variable (e.g., LOS), when some of the
patients die during the course of evaluation. Mortality is
handled via stratification, but not on the observed out-
come, which can be affected by treatment assignment.
Rather, stratification is on the dual outcome of survival
and treatment assignment. The primary focus is to esti-
mate the treatment effect for the principal stratum, that is,
those who would have survived irrespective of treatment
assignment. Since for each individual survival is only
observed for the actual treatment assigned, estimation of
‘potential outcomes’, or outcomes for each patient if they
were given the opposite of their assigned treatment, is
needed [48,49]. Comparisons between SACE and the com-
peting risks methods discussed in this article would be an
interesting area of future research.

In our modeling of TCS, we focused solely on the
time from hospital admission to clinical stability and
included in-hospital mortality as a competing risk. Hos-
pital discharge was not included as an additional com-
peting risk, which is reasonable given the definition of
time of clinical stability as the time the criteria for
switching from intravenous to oral antibiotic therapy
was met. In the competing risks model, each outcome is
treated as an absorbing state, so that transitions do not
occur after reaching these outcomes. In interest is solely
in the time that clinical stability is reached, then this
model is reasonable. However, an extended modeling
for clinical stability and subsequent discharge and/or in-
hospital mortality can be constructed, using a multi-
state model which allows transitions from the clinically
stable state to these other two outcomes. The model
would be similar to that used for modeling nosocomial
infections in Beyersmann et al. [12], c.f. Figure 1 in that
reference. In such a model, the incidence rate, the inci-
dence proportion, and the prevalence of patients who
are clinically stable at/by a given time can all be
addressed. However, when competing risks are present,
care must be taken in intrepreting the results, as the
rate of the competing event (mortality) can result in
apparently conflicting results between the incidence rate
and proportion of clinically stable patients (see [12],
Section 3.2, for a detailed discussion and analysis).

Lastly, in our evaluation of methods for handling mor-
tality we did not discuss the issue of incorporating addi-
tional risk factors, which can be done using a regression
model. When competing risks are present, regression
modeling focuses on either Cox models [50] for the
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cause-specific hazards, or modeling the effect of covari-
ates on the cumulative incidence function [16,51]. How-
ever, modeling based on cause-specific hazards are
difficult to interpret in terms of the effect on the cumu-
lative incidence function, as all cause-specific hazards
models must be considered simultaneously. In contrast,
proportional cause-specific hazards does not imply pro-
portional subdistribution hazards, and when the former
holds models based on the latter criterion will be mis-
specified [52]. Extensive comparisons between the two
methods have been conducted by several authors
[52,53], and Grambauer et al. [52] offers a robust
approach for interpreting subdistribution models based
on a time-averaged effect of the subdistribution hazard
ratio (the least false parameter).

Conclusions

This paper investigates mechanisms for handling in-hos-
pital mortality when analyzing length of hospital stay
(LOS) or time to clinical stability (TCS), using data
from patients admitted to the hospital with community-
acquired pneumonia. Two currently used ad-hoc
approaches, restricting analysis to those patients who
lived and assigning individuals who die the worst out-
come (longest LOS or TCS), gave disparate results when
applied to the same data set and are discouraged from
use. In contrast, estimators based on treating mortality
as a competing risk have clinically relevant interpreta-
tions. Additionally, the incidence of mortality can be
compared simultaneously with that of discharge / clini-
cal stability, for more comprehensive comparisons
between patient populations. These estimators have
been readily available in the literature for over thirty
years, yet still are frequently overlooked when analyzing
time-to-event outcomes in the presence of competing
risks. With the ready availability of software for these
estimators and their straightforward interpretation, there
is no reason to eschew them in favor of other ad-hoc
estimators that may be considered. We provide illustra-
tive statistical code as supplemental material for investi-
gators to use in their own studies, to promote use of
these estimators in practice and improve compatibility
between studies that are investigating these time-to-
event outcomes. Interested readers are also referred to
the many excellent articles in the literature [1,10,12,14]
for follow-up on this topic.

Appendix

Equivalence of ‘worst outcome’ and cumulative incidence
estimators

The complement of the KM estimator based on the sub-
distribution hazard has been previously shown to be
equivalent to the cumulative incidence estimator [25,26],
accounting for both general right-censoring and left-
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truncation. Here, we give a simplified proof of this
equality for the special case of administratively right-
censored data (that is, the data are fully observed until
the end of the follow-up period). It is evident that the
two estimators ﬁl(t) and 1 — §§“’(t) have jumps at the
same event times, therefore it is sufficient to prove
equality of the jump sizes to prove equality of the two
estimators. That is, we need to show that

A ANy (l‘i) AW AN (ti)
S(ti =87 (ti-
(l 1) Yo(ti) 1 (l 1) Y(’)k(ti) (8)
for all times i = 1,.., k, where

Y5 (6) = Yo(t:) + Noz2(ti-1).

The proof goes by induction. Consider the first jump (i.
e., the first 0 — 1 transition), at time ¢ If the first overall
event is a 0 — 1 transition, then the two jump sizes are tri-
vially equal since §(tz—)=8W(»—)=1 and
Yo(ti) = Y§(t:) = N, the initial sample size. If instead the
first observed transition is 0 — 2, then the right-hand side
(RHS) of (8) is {Yo(t)/NHANo(ti+)/Yo(ti+)} = ANoi (ti-)/N,
equivalent to the LHS. Assuming equality of the jumps
holds for time ¢; then for time ¢;,; we have for the RHS of
(8):

o ANoi(tis1)  « ANo.(t:)\ ANox(ti1)

S(6) Yo(tis1) =S(IH)<1 © Yo(n) ) Yo(tin1)
- §Y (ti1)Yo(t) (1 - ANO~(ti)) ANoi (ti1)

Yz (t:) Yo(t:) / Yo(tin1)
_ SVt ANo(tin) oy ,
T V() Yo(tin) (Fo(6) = AN ()
_ S‘l/v(tifﬂANOl (ti+1)
Y5 (t)

Cawy, _ ANol(ti) ANOl(tHl)
—Sl (tl—l) (1 Yg(tl) ) Yg(tﬂl)
~owy, AN (t)
—S‘l/\/(tl—l) Yg(tl) 4

which completes the proof.
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