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Abstract

Background: Small area analysis is the most prevalent methodological approach in the study of unwarranted and
systematic variation in medical practice at geographical level. Several of its limitations drive researchers to use
disease mapping methods -deemed as a valuable alternative. This work aims at exploring these techniques using -
as a case of study- the gender differences in rates of hospitalization in elderly patients with chronic diseases.

Methods: Design and study setting: An empirical study of 538,358 hospitalizations affecting individuals aged over
75, who were admitted due to a chronic condition in 2006, were used to compare Small Area Analysis (SAVA), the
Besag-York-Mollie (BYM) modelling and the Shared Component Modelling (SCM). Main endpoint: Gender spatial
variation was measured, as follows: SAVA estimated gender-specific utilization ratio; BYM estimated the fraction of
variance attributable to spatial correlation in each gender; and, SCM estimated the fraction of variance shared by
the two genders, and those specific for each one.

Results: Hospitalization rates due to chronic diseases in the elderly were higher in men (median per area 21.4 per
100 inhabitants, interquartile range: 17.6 to 25.0) than in women (median per area 13.7 per 100, interquartile range:
10.8 to 16.6). Whereas Utilization Ratios showed a similar geographical pattern of variation in both genders, BYM
found a high fraction of variation attributable to spatial correlation in both men (71%, CI95%: 50 to 94) and
women (62%, CI95%: 45 to 77). In turn, SCM showed that the geographical admission pattern was mainly shared,
with just 6% (CI95%: 4 to 8) of variation specific to the women component.

Conclusions: Whereas SAVA and BYM focused on the magnitude of variation and on allocating where variability
cannot be due to chance, SCM signalled discrepant areas where latent factors would differently affect men and
women.

Background
Geographical variability in healthcare utilization has
become an important field within health services
research in the last decades. Variation in medical prac-
tice studies aim to elicit systematic and unwarranted
variability. As for the first goal, the efforts focus on rul-
ing out randomness and on determining whether rates
are consistent within a region and over time. In turn,

drawing out unwarranted variability, differences in epi-
demiology (i.e., population’s need) must be discarded.
With regard to the analytical approach, classically

referred as Small Area Variation Analysis (SAVA) [1,2],
it is based on the calculus of age and sex standardized
utilization rates at population level derived from counts
(procedures, hospital admissions), the estimation of sev-
eral statistics of variation [3-7] and the representation of
standardized utilization ratios on maps, describing pat-
terns of “risk of utilization”.
Studies based on SAVA have documented dramatic

variations in the use of medical and surgical procedures
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across areas, but this analytical approach has some lim-
itations in the estimation of systematic variation and,
above all, the assessment of the underlying factors of
such unwarranted variation. Among the most important
ones we may highlight that age and gender are not
always good surrogates of population’s need [8], age
groups or genders might have a differential behavior
with regard to the endpoint of interest across regions
[9], latent factors may not affect homogeneously to a
given subgroup of population within and across regions
[10], and finally, low rates or small populations might
drive to imprecise results [6,11].
Some of these hindrances have been considered as a

subject of study in the “disease mapping” framework, an
epidemiological methodological approach used to
describe and model geographical variation in disease
risk and/or health outcomes, particularly the so called
Shared Component Modelling (SCM), an extension of
the most frequently used Besag, York and Mollié model
(BYM) [12].
SCM is based on the idea that many diseases share

common risk factors (i.e. latent factors); as a conse-
quence, if similar patterns of geographical variation of
related diseases can be identified, the evidence of real
clustering could be more convincing. Later on, it was
extended to more than two diseases [13], and showed to
be more accurate than the use of independent disease-
specific modelling. Subsequent works, that have com-
pared the SCM with others, such as ecological regres-
sion or other multivariate conditional autoregressive
models showed that its properties regarding precision
estimates and goodness of fit, evidence it is a valuable
extension of individual analysis [14-16]. Furthermore, it
can be applied not only to related diseases [17], but also
when analyzing deprivation domains [18], gender differ-
ences [16] or even comparing the evolution of the geo-
graphical gender differences over time [10]. The main
idea of SCM is to borrow information from related dis-
eases and health outcomes to strengthen inference,
allowing to identify specific and shared (common to
both) spatially-varying risk factors for each disease. In
that way, it is possible to quantify the expected variabil-
ity related to shared-risk factors and to tease out from
the residual variations-specific patterns associated with
each of the diseases under research.
The potential use of these shared component models

in health services research is still unexplored. Our gen-
eral aim is to take advantage of the methodological
advances carried out in disease mapping, and transfer-
ring them into the health service research framework, to
be able to derive findings that would have gone unno-
ticed otherwise. For this purpose, we applied shared
component analysis to model hospital admission rates

by chronic-disease in elderly male and female, compar-
ing results with classical SAVA and BYM.
Our hypothesis postulates that, regardless of the actual

differences in global rates between genders, a common
pattern of variation is expected to explain most of the
spatial variability; this hypothesis would entail that dif-
ferences in the pattern of utilization by gender are con-
stant across areas. Otherwise, discrepant patterns will
allow us to identify those geographical areas in which
latent factors like morbidity, socioeconomic status or
health care policies have a differential behavior in men
and women. These discrepant areas would deserve
further analysis, under the assumption that those latent
factors could explain part of the observed differences in
hospitalization patterns.

Methods
Database, small geographic areas and procedures under
study
We used data from the Atlas of Variations in Medical
Practice in the Spanish National Health System (NHS)
[19], a research project designed to inform Spanish deci-
sion-makers on differences in such parameters as hospi-
tal admissions or surgery for specific conditions across
geographic areas (see: http://www.atlasvpm.org). The
Spanish Atlas emulates the Dartmouth Atlas of Health
Care Project [20]. Hospital Discharge Administrative
Databases in 2006 (calendar year), with additional data
from day-case surgery registries, were used to build the
numerator of the rates. These administrative databases
produced by every acute care hospital in the Spanish
NHS, provide the following information from every sin-
gle admission: age, gender, admission and discharge
dates, postal codes identifying the patient’s area of resi-
dence, and diagnosis and procedure codes [International
Classification of Diseases 9th revision Clinical Modifica-
tion codes (ICD9CM)]. The postal code was used to
assign every admission to the Healthcare Area where
the patient lives.
Chronic disease was identified by means of the

Chronic Condition Indicator (CCI) developed by the
Healthcare Cost and Utilization Project (HCUP), a coop-
erative project sponsored by the United States Agency
for Healthcare Research and Quality (AHRQ) [21]. A
chronic condition is defined as a condition which lasts
12 months or longer and meets one or both of the fol-
lowing criteria: it places limitations on self-care, inde-
pendent living, and social interactions, and/or it results
in the need for ongoing intervention with medical pro-
ducts, services, and special equipment [22]. The identifi-
cation of chronic conditions is based on all 5-digit ICD-
9-CM codes, and assigns each case to one of the 18
categories that define the body system indicator (BSI).
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In this work, all 2006 hospital admissions corresponding
to people aged 75 years and over with a main diagnosis
of chronic disease, were considered.
Denominators to calculate population rates came from

the 2006 Spanish National Institute of Statistics’ Munici-
pal Register of Inhabitants. The small geographic areas
corresponded to the Healthcare Areas defined by the
Health Departments of 16 out of the 17 Autonomous
Regions participating in the Atlas Project -up to 180
geographical healthcare units. The expected number of
cases per health unit, namely ei for the i-th area, was
estimated separately by gender, using the rate for the
whole region and the population at risk within the
healthcare unit. It represents the number of admissions
that would have been observed in the health unit under
the hypothesis of constant rate across the whole region.

Statistical Analysis
Statistics of variation (and their confidence intervals)
such as the Extremal Quotient (EQ), the regular and
weighted Coefficients of Variation (CV and CVw) [2],
the Systematic Component of Variation (SCV) [3], and
the Empirical Bayes statistic (EB)[7] were used to quan-
tify variability. A previous work provided details on the
properties of these statistics [7].
Three different approaches were used to model geo-

graphical variation of admissions for chronic diseases in
men and women; the classical approach in SAVA stu-
dies, which estimates the utilization ratio for each gen-
der; BYM which accounts for spatial autocorrelation and
it was also applied separately to both genders; and, SCM
which analyzes jointly both.
Classical small area analysis
This method compares the observed to the expected
number of admissions per area assuming independence
among areas, only using information referred to a parti-
cular area. The quotient of the observed (oi) to the
expected (ei) number of cases, named Indirect Utiliza-
tion Ratio (IURi = oi/ei for the i-th Healthcare Area), is
usually used to estimate and graph variation. This is
equivalent assuming that the number of cases oi follows
a Poisson distribution with mean eiri, where ri denotes
the underling risk parameter for the i-th area, and its
estimate is derived using maximum likelihood for the
saturated model. Significance for these estimates is
derived using the exact method.
BYM modelling
The spatial model proposed by Besag, York, and Mollié
[12] -which uses the so-called “local smoothing” due to
“borrowing-strength” of neighboring areas - takes advan-
tage of the knowledge of the spatial structure of the
data, producing more stable estimates [23-25].
In the first level of the hierarchy, it assumes the same

Poisson distribution as the SAVA model, oi ~Poisson

(eiri), whereas in the second level of the hierarchy,
instead of considering ri as a parameter to be estimated,
it considers ri as a random variable whose logarithm is
the sum of a constant terma a plus two random vari-
ables: the first one (ui) with a conditional autoregressive
Gaussian structure (CAR normal distribution), and the
second one (vi) with an exchangeable model.

That is, ui ~CARNormal(W, τu = 1
/
σ2u ), with W the

matrix representing the neighborhood structure (here
two areas are assumed as neighbors if they share a com-

mon boundary) and τu and σ2u representing the preci-
sion and the conditional spatial variability respectively.

Likewise, vi ~N(0,τv = 1
/
σ2v ), with σ2v representing the

unstructured variability. From this model, the percen-
tage of variability attributable to the spatial dependence

can be derived from the quotient s2um
/(

s2um + σ2v
)
, where

s2um is the marginal spatial variance,

s2um =
∑

i
(ui − ū)2

/
(n − 1) , being n the number of

areas. To estimate the parameters of the model, two
approaches can be conducted: the Empirical Bayes
approach [26,27] via PQL methods[28] or the Full Bayes
approach [24], which allows us to obtain the posterior
distribution of the random variables, and the posterior
probability maps - used as significance maps- represent-
ing Pr(ri > 1| data). Details on the model specification
and its interpretation are provided in Additional file 1.
Shared component modelling (SCM)
In this work, SCM adopts some of the base specifica-
tions given in Knorr-Held and Best [29] and those
implemented in Richardson [10]. It assumes that the
area-specific hospital admission relative risks depend on
a shared latent component common to men and
women, plus additional latent components specific to
each gender. These latent components act as surrogates
for unmeasured hospital admissions risk factors that
affect both or only one of the genders, respectively.
This model considers the same first level for each

dataset as previous models

o1i ∼ Poisson(m1i = e1iρ1i); o2i ∼ Poisson(m2i = e2iρ2i)

log (m1i) = log (e1i) + α1 + μ1i; log (m2i) = log (e2i) + α2 + μ2i

where o1i, o2i are the observed number of admissions
by chronic diseases for men and women respectively, e1i,
e2i i = 1,...,n the expected number of cases for both data-
sets and a, the intercept. In this model the spatial struc-
ture is introduced in a log scale by the joint structure of
μ1i and μ2i

μ1i = λiδ + ϕ1i; μ2i = (λi/δ) + βi + ϕ2i
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where li represents the shared spatial pattern com-
mon for both datasets and bi represents the differential
spatial pattern of women with respect to men. �1i and
�2i are the residual terms to account for heterogeneity
that may be left in the risk distribution after including
the other terms in the model, and δ as the scaling
parameter.
This Bayesian approach assumes that all parameters

and random effects are unknown quantities that
required the specification of the prior distribution. For
this purpose we followed Wakefield, Best, and Waller
recommendations [23], with only small variations to
cope with this specific case. Regarding the random vec-
tors l, b, �1 and �2, the specifications are as follows.
For the common spatial pattern given by l, as well as
for the discrepant component, a spatially structured dis-
tribution was adopted, l~CARNormal(W, τl); b~CAR-
Normal(W, τb). For �1 and �2 multivariate normal
distributions N(0, τj1I) and N(0, τj2) where assumed
with τj1and τj2as the precision parameters. Finally, the
hyperprior specifications for the parameters were a’s ~
dflats(), log(δ)~ N(0, 0.2), and τ’s ~ Gamma(0.5, 0.0005).
For this model, and equivalently to the BYM, the pro-
portion of variability explained by each component for
both datasets was derived from the empirical variances.
Details on the model specifications are provided in
Additional file 1.
Bayesian models’ inference was made by using Markov

Chain Monte Carlo (MCMC) simulations on the soft-
ware R, version 2.9.2 via the library R2WinBUGS [30],
which connects with the software WinBUGS [31]. To
achieve convergence, 100,000 iterations keeping every
10th were used after a burn-in period of 50,000. The
classical diagnostic methods -Brooks and Gelman statis-
tic [32], and sequential and autocorrelation graphs- were
used to assess convergence. The Deviance Information
Criterion (DIC) proposed by Spiegelhalter was used to
compare models [33].

A Bayesian sensitivity analysis with various prior and
hyperprior specifications, and the most frequently used
distributions [34], was carried out. For prior distribu-
tions on l and b, we compared exchangeable (normal
independent) distributions with the assumed CARNor-
mal. For hyperprior specification on the variances

( σ21 = 1
/
τi i, with τi as the precision parameters above

described), we compared the assumed inverse-gamma
(0.5, 0.0005) with other three specifications, each one
from a different family: a uniform on a wide range (U
(0,100)) for si, an inverse-gamma (0.01, 0.01) for si

2,
and a half-normal prior density for si (Normal(0, τ =
0.01) I(0, ∞)) Finally, for the delta parameter, the assumed
N(0, 5.5) on the log-scale was compared with the uni-
form assumption (U(0.5,2)) already used in other works
[16]. Details of the sensitivity analysis and its results are
given in Additional file 2.

Results
The study setting, consisting of 180 healthcare units
which account for 86% of the 2006 Spanish population,
includes a total of 3,195,253 inhabitants aged 75 and
over, among whom 62% are women. Table 1 shows a
description of the population at risk, the admission rates
by chronic diseases and the statistics of variation by
gender. Men were more hospitalized than women, with
a median rate of 21.4 per 100 inhabitants (interquartile
range: 17.6 to 25.0) as compared to 13.7 per 100 (inter-
quartile range: 10.8 to 16.6) in women. The relative
variability among areas was very similar in both genders,
with a ratio of 2.5 between the 95-th and the 5-th quan-
tiles. Compared to the variability reported for hip frac-
ture admission rates, frequently used as a standard of
low variation, the CV, SCV and EB showed low to mod-
erate geographical variability.
The geographical representation of the Indirect Utili-

zation Ratio derived using the classical method (quotient
of observed to the expected cases according to

Table 1 Chronic disease admission rates and statistics of variation, by gender

Men Women

Total Median per area (IQ) Total Median per area (IQ)

Counts 263,147 1125 (663 to 1976) 275,211 1108 (642 to 2021)

Population 1,227,278 5541 (3208 to 8940) 1,967,975 8733 (4995 to 14393)

Rate 21.44% 21.43 (17.56 to 25.01) 13.98% 13.70 (10.80 to 16.55)

Variation Statistics

EQ5-95 = 2.52 (2.32 to 2.92) EQ5-95 = 2.55 (2.23 to 3.24)

CV = 0.27 (0.25 to 0.31) CV = 0.30 (0.27 to 0.33)

CVw = 0.26 (0.24 to 0.31) CVw = 0.29 (0.25 to 0.32)

SCV = 0.07 (0.06 to 0.10) SCV = 0.09 (0.07 to 0.12)

EB = 0.07 (0.06 to 0.10) EB = 0.10 (0.07 to 0.12)

IQ: Interquartile Interval; EQ: Extremal Quotient; CV: Coefficient of Variation; CVw: Weighted Coefficient of Variation; SCV: Systematic Component of Variation; EB:
Empirical Bayes statistic.
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population at risk) is given at the top of Figure 1, which
shows that there are regions at the north and the east
part of the map which systematically have higher admis-
sion ratios, both in men and women, whereas the oppo-
site occurs in some north and central east regions.
In turn, BYM provided practically the same point esti-

mates for the risk of admission by area than the classical
method, being the Pearson correlation between both
methods of 0.99 for both genders, as expected given the
large population size and frequency of the phenomenon

studied. Model results are presented in Table 2, showing
a fraction of variability attributable to spatial correlation
of 71% for men and 62% for women, indicating the pre-
sence of a strong spatial pattern in both cases. From the
variance component estimates it can be said that the
global variability for men and women is quite similar,
slightly higher in women though, in agreement with the
statistics of variation. As for the whole density distribu-
tion provided by BYM, Figure 1 summarizes the prob-
ability of a risk of hospitalization being above 1. The

1   

≤ 0.67
> 0.67 - ≤ 0.77
> 0.77 - ≤ 0.91
> 0.91 - ≤ 1.00
> 1.00 - ≤ 1.10
> 1.10 - ≤ 1.30
> 1.30 - ≤ 1.50
> 1.50

Men(IUR)

 

≤ 0.67
> 0.67 - ≤ 0.77
> 0.77 - ≤ 0.91
> 0.91 - ≤ 1.00
> 1.00 - ≤ 1.10
> 1.10 - ≤ 1.30
> 1.30 - ≤ 1.50
> 1.50

Women(IUR)

≤ 0.05
> 0.05 - ≤ 0.95
> 0.95

Pr(RRMen−BYM > 1)
≤ 0.05
> 0.05 - ≤ 0.95
> 0.95

Pr(RRWomen−BYM > 1)

Figure 1 Gender differences in the risk of admission. Maps at the top show the utilization ratios estimated by using the classical model.
Maps at the bottom show the estimation by using BYM posterior probability of a risk being above 1. Dark brown color in the posterior
probability maps represents areas where the probability of having a relative risk of admission higher than 1 is above 0.95.
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figure shows a similar pattern for men and women, with
higher risk of admission in the north and east and lower
in the west.
Finally, results derived from the SCM are shown in

Table 3 and Figure 2. About 99.3% (CI95%: 97.4 to 99.8)
of the spatial variation in men was captured by the
shared term (l), leaving only 0.7% (CI95%: 0.2 to 2.5) of
the variability for the specific pattern of males. This
shared term captured slightly less of the total spatial
variation in women (94.2%; CI95%: 91.7 to 96.4), leaving
a 5.8% (CI95%: 3.6 to 8.3) for the specific female com-
ponent, which is mainly spatially correlated (a 4.2% out
of the 5.8%). Hence, most of the risk was partitioned
into the shared component, suggesting a weak residual
signal.
A comparison between SCM and BYM in terms of

goodness of fit, showed that SCM is superior (DICBYM-
DICSCM = 43). A comparative analysis of the precision
of the relative risk estimates, studied via the standard
deviation of the log-relative risks, yielded a relative
mean reduction of uncertainty about 22% in SCM com-
pared to BYM.
SCM results indicate that the discrepancies between

genders are small in the particular case of chronic dis-
eases, but still it is of interest to allocate them. The first

row in Figure 2 shows both the spatially structured
common component (posterior median estimates of eli)
as well as the spatially structured discrepant one for
females (ebi) using the posterior median estimates. Maps
in the second row plot the probabilities for these risks
of hospitalization being above 1. The shared component
detects two noticeable clusters in the north and north-
east showing higher common risks, apart from some
high risk sparse regions in the south and south-east, all
in agreement with previous models. The spatially struc-
tured discrepant pattern is much smoother, but still
depicts slightly higher hospitalization risks for females
in the centre part of the country, which are more
marked in some north-east regions, in contrast to the
lower risks in the north-west. Last row of the figure
shows the unstructured specific pattern for males and
females. It shows a very smooth pattern, given the low
proportion of variability they explain.
Sensitivity analysis for SCM (Additional File 2) showed

that: a) the choice of different spatial and non-spatial
priors did not affect estimates; b) model comparison
showed better DIC for models accounting for spatial
correlation; and c) as for hyperprior distributions, uni-
form, half-normal, and inverse-gamma (0.5, 0.005)
hyperpriors led to equal results, whereas inverse-gamma

Table 2 BYM modelling: results by gender

Men
Median (CI95%)

Women
Median (CI95%)

Parameter estimates

Unstructured variance(σ2h ) 0.022 (0.004,0.038) 0.037 (0.022,0.054)

Marginal Spatial variance(σ2u ) 0.054 (0.036,0.073) 0.060 (0.040,0.080)

Fraction of variability explained

Spatial fraction 71.2% (50.1,94.5) 61.7% (45.2, 77.2)

Model fit comparison criteria

DIC (Total DIC = 3888.07) 1942.81 (pD = 174.90) 1945.26 (pD = 175.721)

CI: Confidence Interval, type I error = 5%; DIC: Deviance Information Criterion

Table 3 SCM modelling: results by gender

Men Women

Fraction of total variations

% shared component (l) 99.32% (97.45 to 99.82) 94.24%(91.68 to 96.37)

% specific component 0.68%(0.17 to 2.55) 5.76%(3.63 to 8.32)

Unstructured (j1, j2) 0.68%(0.17 to 2.55) 1.61%(0.23 to 4.38)

Spatially structured (b) 4.15%(1.73 to 6.70)

Variance Components

Specific unstructured (σ2φ ) 0.0005 (0.0001 to 0.0019) 0.0015 (0.0002 to 0.0039)

Common spatial (σ2χ ) 0.0810 (0.0158 to 0.0865)

Female specific spatial (σ2β ) 0.0038 (0.0016 to 0.0062)

Delta coefficient (δ) 0.967 (0.939 to 0.997)

Model fit comparison criteria

DIC (pD) 3845.7 (pD = 301.21)

DIC: Deviance Information Criterion
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≤ 0.67
> 0.67 - ≤ 0.77
> 0.77 - ≤ 0.91
> 0.91 - ≤ 1.00
> 1.00 - ≤ 1.10
> 1.10 - ≤ 1.30
> 1.30 - ≤ 1.50
> 1.50

Common(λ) ≤ 0.67
> 0.67 - ≤ 0.77
> 0.77 - ≤ 0.91
> 0.91 - ≤ 1.00
> 1.00 - ≤ 1.10
> 1.10 - ≤ 1.30
> 1.30 - ≤ 1.50
> 1.50

Structured −Diferential(β)

≤ 0.05
> 0.05 - ≤ 0.95
> 0.95

Pr(λ > 1) ≤ 0.05
> 0.05 - ≤ 0.95
> 0.95

Pr(β > 1)

≤ 0.67
> 0.67 - ≤ 0.77
> 0.77 - ≤ 0.91
> 0.91 - ≤ 1.00
> 1.00 - ≤ 1.10
> 1.10 - ≤ 1.30
> 1.30 - ≤ 1.50
> 1.50

Men(φ) ≤ 0.67
> 0.67 - ≤ 0.77
> 0.77 - ≤ 0.91
> 0.91 - ≤ 1.00
> 1.00 - ≤ 1.10
> 1.10 - ≤ 1.30
> 1.30 - ≤ 1.50
> 1.50

Women(φ)

Figure 2 Gender differences in the risk of admission: shared and differential components. Map representing the posterior median of the
shared spatial component is shown at the top left; whereas female-male differential spatial component is mapped at the top right. At the
middle row, posterior probabilities for a risk being above 1 are shown for both, shared and differential components. Unstructured posterior
median for the specific-gender components is shown at the bottom row. Dark brown color in the posterior probability maps represents areas
where the probability for each component (common el and structured discrepant eb, respectively), of having a relative risk of admission higher
than 1 is above 0.95.

Ibáñez-Beroiz et al. BMC Medical Research Methodology 2011, 11:172
http://www.biomedcentral.com/1471-2288/11/172

Page 7 of 10



(0.01, 0.01) slightly biased some of the variance compo-
nents, although not affecting final risk estimates.
Regarding the hospitalization relative risk estimates for

men and women, the SCM model provides global
results practically equivalent to both the BYM and clas-
sical methods, with a correlation between models above
0.99 in both cases.

Discussion
In this study, both, classical SAVA and Bayesian techni-
ques (BYM and SCM) have been used to elicit systema-
tic and unwarranted gender differences in
hospitalization for chronic conditions in elderly people.
Actually, men with chronic conditions were more likely
to be admitted than women (21.4 versus 13.9 admissions
per 100 inhabitants).
The three methods provided different and, ultimately,

complementary information upon this variation: SAVA
showed that variation in men was slightly lower than
that observed in women, but not negligible in either
case, according to the EB statistic (table 1). In turn,
BYM showed a reliable pattern of geographical cluster-
ing in the risk of hospitalization, taking into account
uncertainty in each area (Figure 1). And eventually,
SCM as our hypothesis postulated, drew up that the
vast majority of the gender difference was constant
across healthcare areas. And most relevant, only a 5.8%
of the variation found a discrepant geographical pattern.
Up to now, most of the works based on aggregated

data, and devoted to assess the geographical variation in
utilization or health outcomes, carried out separate ana-
lysis for men and women. Using the classical methodol-
ogy or standard Poisson regression assuming
independence among areas, they estimated specific rates
or ratios that allow comparison between genders
[9,35-37]. The use of classical methods can be adequate
in many contexts, but it is well known that when utiliza-
tion rates are low, or when the geographical areas are
low populated (where the risk of intra-area heterogene-
ity is larger), the instability of these indicators may pro-
duce misleading results [11]. Moreover, from an
inferential standpoint, the strategy of a separate analysis
does not help to understand underlying factors that
might explain the difference between genders.
In our case-study, the use of this classical methodol-

ogy allowed to observe that elderly men do have higher
hospitalization rates than women in chronic conditions,
that spatial variability was low to moderate in both
cases, and that the geographical distribution of the utili-
zation pattern was very similar.
Some of the deficiencies related to the instability of

the estimates in the classical SAVA approach can be
overcome by using the Bayesian hierarchical models
proposed within the disease mapping framework. They

take into account many nonstandard features in ecologic
data such as strong patterns of dependence as well as a
considerable level of noise [14]. Thus, the use of BYM
to assess variation in medical practice would provide
more reliable estimates of the hospital utilization pat-
terns for infrequent events as wells as giving a quantifi-
cation of the spatially correlated variability. It also yields
probability maps that use not only point estimates for
each region but also the whole posterior distribution (i.
e. a representation of the statistical significance of the
finding) leading to a more complete picture of the
underlying utilization pattern [24].
In our case-study, BYM added, to the classical

approach, information about the strong spatial pattern
for both men and women, and provided the probability
maps which allocated high-utilization areas in men and
women suggesting similar patterns for both.
None of the aforementioned two approaches (SAVA

and BYM) takes advantage of the fact that many risk
factors, diseases, utilization patterns or health outcomes
might share similar geographical patterns. If so, like it
would be the case of gender disparity studies, joint mod-
elling may lead to improved inference by reducing the
number of alternative explanations for the observed
variability [14]. Abundant disease mapping literature has
been recently aimed to strengthen inference borrowing
information from related factors. Developments pointed
out that the SCM used in this work offers a significant
improvement over individual BYM [17], and performs
slightly better than other multivariate models [14].
In our case-study, we found that the model achieved

considerable improvement both in terms of DIC (i.e.
goodness of fit) and in getting more precise estimates of
relative risks of hospitalization. Using the variance parti-
tioning, the model also found high similarity in the pat-
tern of hospitalization between men and women. And
finally, it allowed to signal those regions in which dispa-
rities among genders were higher, such as those at the
north-east with particularly lower rates in women.
The latter is precisely the most interesting property of

SCM. The technique elicits discrepant areas, those
where latent factors are affecting differently to men and
women in the risk of hospitalization. Thus, this
approach improves inference and may help in gaining
further insight into the true underlying factors that are
relevant to each specific gender. In this particular work,
it could be hypothesized that the unmeasured factors
expected to adopt a similar distribution between both
genders are: time-distance to the referring hospital,
socioeconomic gradient within the area or supply of pri-
mary care physicians. In turn, differences in morbidity
or differences in the propensity to be referred to a hos-
pital were able to be hypothesized as latent factors
expected to affect differentially to men and women.
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This SCM property would, eventually, have other
potential applications in health services research, a field
of knowledge challenged by the need of the adoption of
new methodologies [38,39], and particularly, in the
study of the geographical variations in medical practice.
In addition to the study of gender inequalities in many
domains (e.g., access to coronary revascularization, men-
tal health unplanned admissions, knee replacement,
avoidable hospitalizations, etc.), SCM could be used
when analyzing healthcare adequacy to population’s
needs (e.g., Acute Myocardial Infarction rates vs coron-
ary revascularization rates), technology substitution phe-
nomenon (e.g., rates of conservative versus non-
conservative mastectomy), alternative strategies of care
at population level (e.g. defined-daily-doses of psychia-
tric drugs vs rates of mental health hospitalization in
short-term units) or sub-optimal quality of care (e.g.
knee replacement rates versus knee prosthesis revision
rates).
Finally, to properly interpret and use SCM results, sev-

eral caveats should be pointed out. SCM improves the
ability of SAVA or traditional disease mapping Bayesian
techniques in terms of inference; however, because of
the nature of ecologic studies, caution is still needed
when attributing variation to a specific cause. As an
example, and out of the scope of this work, morbidity at
population level should have been modelled, [40] to rule
out this factor as an alternative explanation for the
observed differences.
At a different point, it is worth noticing that although

SCM improves the performance of classical techniques
by smoothing the effect of small areas, extreme hetero-
geneity in population structure and size might still affect
the estimates; ultimately, misleading towards attributing
variation to a specific cause -differential gender access
in our example-, when the underlying reason is on the
differences in the population structure [41].
Finally, variability studies showed us that variation is

expected to be a local phenomenon. SCM, like the other
Bayesian techniques, models the “vicinity effect” borrow-
ing information from the counts in the neighbored
areas, smoothing the estimated variance. So, factors like
different practice style or different strategies of admis-
sion between genders, which are expected to explain
variation across areas, have been also smoothed. If these
factors were highly predictive in producing unwarranted
variability, the obtained results would have under-esti-
mated the actual variation.

Conclusion
As the conclusion of this empirical study, it could be
stated that, whereas SAVA and BYM focus on the mag-
nitude of the variability and on allocating where this

variation cannot be due to chance (being the latter
more accurate in the estimates because it accounts for
spatial autocorrelation), SCM signals those discrepant
areas where latent factors are affecting differently to
men and women in the risk of hospitalization, improv-
ing the inferential capacity of the other techniques.

Additional material

Additional file 1: Models description. Detailed description on the
assumptions for each model, the estimation procedures and the
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estimations robustness.
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