
RESEARCH ARTICLE Open Access

Progression of liver cirrhosis to HCC:
an application of hidden Markov model
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Abstract

Background: Health service databases of administrative type can be a useful tool for the study of progression of a
disease, but the data reported in such sources could be affected by misclassifications of some patients’ real disease
states at the time. Aim of this work was to estimate the transition probabilities through the different degenerative
phases of liver cirrhosis using health service databases.

Methods: We employed a hidden Markov model to determine the transition probabilities between two states, and
of misclassification. The covariates inserted in the model were sex, age, the presence of comorbidities correlated
with alcohol abuse, the presence of diagnosis codes indicating hepatitis C virus infection, and the Charlson Index.
The analysis was conducted in patients presumed to have suffered the onset of cirrhosis in 2000, observing the
disease evolution and, if applicable, death up to the end of the year 2006.

Results: The incidence of hepatocellular carcinoma (HCC) in cirrhotic patients was 1.5% per year. The probability of
developing HCC is higher in males (OR = 2.217) and patients over 65 (OR = 1.547); over 65-year-olds have a
greater probability of death both while still suffering from cirrhosis (OR = 2.379) and if they have developed HCC
(OR = 1.410). A more severe casemix affects the transition from HCC to death (OR = 1.714). The probability of
misclassifying subjects with HCC as exclusively affected by liver cirrhosis is 14.08%.

Conclusions: The hidden Markov model allowing for misclassification is well suited to analyses of health service
databases, since it is able to capture bias due to the fact that the quality and accuracy of the available information
are not always optimal. The probability of evolution of a cirrhotic subject to HCC depends on sex and age class,
while hepatitis C virus infection and comorbidities correlated with alcohol abuse do not seem to have an
influence.

Background
The evolution of chronic degenerative disease is charac-
terized by progression through intermediate states to
advanced disease and death. For these diseases, survival
analysis must take into account the various transitions
from one state to the next, as well as a series of prognos-
tic variables that can have an influence on each event
including death. For example, liver cirrhosis can evolve
to hepatocellular carcinoma, and the presence of comor-
bidities, exposure to hepatitis B or C virus, as well as
alcohol consumption and age, can influence the terminal
event. In fact, liver cirrhosis is well known to consist of a
diffuse alteration of the liver structure resulting from

protracted processes of liver inflammation and necrosis
of different natures. The main causes of liver cirrhosis
are chronic viral hepatitis B or C and the consumption of
alcohol. In particular, alcohol abuse can halve the time of
onset of cirrhosis in a patient already affected by chronic
viral hepatitis (from about 20-30 years to 10-15 years).
Hepatocellular carcinoma occurs at a rate of 1% to 4%
per year after cirrhosis is established [1] and cirrhosis
underlies HCC in approximately 80%-90% of cases
worldwide [2]. Stochastic multistate or competing mod-
els, like Markov chains, are those best suited to the analy-
sis of such phenomena [3-6]. It would, of course, be too
long and costly to program clinical studies, or indeed
prospective and follow-up trials, to study the natural
history of chronic degenerative diseases in order to be
able to apply multistate models correctly. In fact, in
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patients affected by these diseases passage from one state
to the next often occurs after fairly long intervals.
Retrospective studies, based on the use of health

service databases of administrative type (HSDBA), can
be a valid alternative, despite the limits posed by the
fact that the quality and accuracy of the available infor-
mation are not always optimal. For example, using the
hospital discharge sheets (HDS) database, patients can
be followed from the probable diagnosis of onset of the
disease through the subsequent worsening states. More-
over, by means of linkage with the death certificates
database (DCDB), it is ultimately possible to trace the
cause of death, if applicable.
A common problem when applying Markov models to

HSDBA is that assessment of the disease state of an
individual can be subject to classification errors. A simi-
lar classification problem frequently occurs in research
in the field of social sciences, where wide use is made of
a series of models that take into account latent states
[7-9].
Multistate models that exploit the properties of Mar-

kov chains offer a useful methodological structure for
describing complex time-dependent outcomes [10]. The
procedure for estimation of the probability of transition
most widely adopted in Markov models is the Cox pro-
portional model. This model can describe survival time
in function of a multitude of prognostic factors [11],
under the fundamental assumption of the proportional-
ity of hazards, in other words that the examined factors
will have a constant impact over time on the risk of
death.
Jackson et al. (2003) [12] described a procedure for

simultaneously estimating the transition rates and the
probabilities of misclassification in a hidden Markov
model, supplying software for implementing the multi-
state hidden Markov model in the R Project program-
ming environment. Aim of the present work is to study
the pathway leading subjects affected by liver cirrhosis
to develop hepatocellular carcinoma and to death, deter-
mining the transition probabilities through the degen-
erative disease states and verifying whether, apart from
being risk factors for the onset of cirrhosis, chronic viral
hepatitis B and C infection and alcohol abuse also have
a role in the process leading cirrhotic subjects to
develop hepatocellular carcinoma and/or to death.

Methods
Retrospective observational studies can be conducted
using the HSDBA, to assess the natural history of the
disease in a group of subjects. In fact, the HDS database
can be employed to individuate all subjects admitted to
hospital one or more times, as well as the duration of
the interval between one hospitalization and the next.
For each hospitalization, the disease state observed and

the covariates of interest can be traced. However. the
disease state may be affected by an unknown degree of
error, due both to an imperfect diagnosis and to incor-
rect classification. Moreover, due to the irregular nature
of follow-up, observations of the actual time of entry
into a disease state are frequently interval censored. The
proposed Markov model allows us to take into account
the above characteristics.
In a sample of n subjects, for the ith subject we

assume that the following variables are observed at the
jth visit:
Tij chronological time of clinical visit
Yij binary disease outcome measurement
Zij vector of covariates.
The observed disease outcome measures Yij are sub-

ject to error. The actual underlying disease status is
assumed to be a process evolving in continuous time
and is denoted (X(t), t > 0). This process is unobserved
or ‘hidden’, and will be modeled as a continuous time
two-state Markov process, where the states are inter-
preted as the presence or absence of the disease mani-
festation. Let Y1

j and T1
j denote the sequence from 1 to

j of observed disease states and observation times for an
individual i. The Markov assumption for the hidden dis-
ease process is given by

P[X(tj)|X(t1), X(t2), . . . , X(tj−1), Y
j−1
1 , T j

1 = t j1] =

P[X(tj)|X(tj−1), Y
j−1
1 , T j

1 = t j1] = Pxj−1, xj(tj − tj−1)
(1)

where the quantity Pxj-1, xj denotes the probability of
transition to occupy state x at time Tj = tj given that the
process was in state xj-1 at tj-1 and that the transition
probabilities are assumed to be stationary. We also
assume that, conditional on the state of the hidden pro-
cess at time tj, an observation Yj is independent of all
previous observations and the hidden process prior to
time tj:

P[Yj|X(t1), . . . , X(tj), Y1j−1, T1j = t1j] = P[Yj|X(tj), Tj = tj] = f(yj|xj) (2)

When Y is binary, f(y|x) can be interpreted as the
probability of correctly or incorrectly classifying the dis-
ease state given the true state of the subject. The condi-
tional independence of misclassification probabilities at
successive time points is a strong assumption. However,
dependence between successive measurements is con-
founded with dependence between the true disease
states. It is not possible to disentangle these two features
of the model with misclassified data [13].
Equations (1) and (2) constitute a hidden Markov

model.
If the disease status is observed accurately, then X(Tj)

and Yj coincide, and the model is reduced to a pure
continuous time Markov process.
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At any time t and for each pair of states r and s, the
transition from one state to the next and the time when
this transition occurs are regulated by the transition
intensity qrs. The transition intensity qrs represents the
instantaneous risk of moving from state r to state s:

qrs = lim δt→0 P (S (t + δ t) = s|S (t) = r) /δt (3)

The intensities form a matrix Q whose rows sum to
zero, so that the diagonal entries are defined by
qrr = −∑

s�=r qrs.
On the basis of the available data it is necessary to

estimate the matrix Q of transition intensity according
to the method described by Kalbfleisch and Lawless
[14], and Kay [15]. In addition, at each level of the
model explicative variables can be included and it is
possible to use a proportional hazards model to relate
transition intensities qrs(t) to time t with the covariates
z(t),

qrs{t, z(t)} = qrs exp{βT
rsz(t)} (4)

The new matrix of the transition probabilities P(t),
that takes into account any necessary covariates, can be
calculated by taking the matrix exponential of the scaled
transition intensity matrix (see, for example, Cox and
Miller [16]):

P(t) = Exp(tQ) (5)

The hazards proportionality can be verified using the
Schoenfeld residuals of the model [17,18], defined as the
value xik of the covariate K for individual i who actually
died at time ti minus the expected value, where the
expected value is given by

∑j∈R(ti)
i=1 xkipi and pi is the

probability of death of individual i at time ti. The graph,
that represents the trend of the Schoenfeld residuals cal-
culated for each individual and each covariate, can be
used to directly visualize the hazards ratio [17]. Assum-
ing proportionality of the hazards, the Schoenfeld resi-
duals are independent of time. The presence of a linear
relationship with time, an index of non proportionality,
can be tested by performing a simple linear regression
and a trend test: a slope significantly different from zero
would be evidence against proportionality and an
increasing (decreasing) trend would indicate an increas-
ing (decreasing) hazards ratio over time.
In our model the estimation of the parameters was

obtained using the maximum likelihood method (MLE),
and assuming that the chance variables are independent
and normally distributed. We considered a two-state
disease model: cirrhosis and hepatocellular carcinoma
and the absorbent state, death, that is irreversible
(Figure 1). State 1 is that of patients with a diagnosis of
liver cirrhosis (codes ICD9cm 571.2 and 571.5); State 2

is that of patients with a diagnosis of hepatocellular car-
cinoma (codes ICD9cm 155.0 and 155.2), regardless of
the concomitant presence of a diagnosis of cirrhosis;
State 3, absorbent, is that of deceased subjects. The few
cases of patients who underwent liver surgery, including
transplant, were excluded (codes ICD9cm for proce-
dures 50.21÷50.99). Supposing, therefore, that progres-
sion of cirrhosis to HCC is an irreversible procedure,
but in any case taking into account the possibility of
misclassification between the first and second state and
vice versa, we estimated the following transition intensi-
ties (Q) and misclassification (E) matrices:

Q =

⎛
⎝

−(q12 + q13) q12 q13
0 −q23 q23
0 0 0

⎞
⎠ E =

⎛
⎝
1 − e12 e12 0
e21 1 − e21 0
0 0 0

⎞
⎠

The covariates inserted in the model were age, sex, the
presence of disease correlated to alcohol abuse, the pre-
sence of diagnostic codes correlated to hepatitis C virus
infection and the Charlson Index assessing the subject’s
clinical severity.
The Charlson index, developed in 1987 [19] and

adapted to health data banks by Deyo et al. [20], is
based on ICD9-CM diagnosis codes and contains 17
categories of comorbidity, each with an associated
weight ranging from 1 to 6; the sum of all the weights
gives the value of the index that, being determined in
this way, takes into account both the number of comor-
bidities and their severity. The Charlson Index was
divided into 2 classes: less than or equal to 3, greater
than 3, as also was age: less than or equal to 65 years,
older than 65 years. We selected 65 as the age cut-off
because this is considered in the literature to be the

State 1
Liver

Cirrhosis

State 2
HCC

State 3
Death

q12

q23q13

Figure 1 Three-state hidden Markov model.
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mean age for development of liver cancer [21,22] and
also because it corresponded to the median value of the
observed distribution of cases of HCC, guaranteeing the
stability of the model.
The analysis was conducting using the electronic

Hospital Discharge Sheet coming from all the Apulia
hospitals for the years 2000-2006, and Death Certificate
DataBase related to all deaths events in Apulia for the
years 2000-2006. From both databases were selected
cases with the following ICD-9-CM (International Statis-
tical Classification of Diseases and Related Health Pro-
blems 9threvision Clinical Modification) as principal or
secondary diagnosis:
Liver cirrhosis (LC): 571.2; 571.5
Hepatocellular carcinoma (HCC): 155.0; 155.2.
To establish the starting point of the first state,

defined as of the first hospitalization with LC diagnosis,
were selected patients in whom the onset of cirrhosis
presumably occurred between 01/01/2000 and 31/12/
2000. For this purpose, we eliminated patients who had
been hospitalized at least once for cirrhosis or hepato-
cellular carcinoma in the years 1998 and 1999. After
identification the clinical course of the selected cirrhotic
patients was reconstructed searching others hospitaliza-
tions with diagnosis of LC or HCC in HDS databases,
or death correlated with LC or HCC in HDS and DCDB
databases.

Results
In total, 1925 patients were identified who had a pre-
sumed onset of cirrhosis in 2000 and had undergone at
least one transition of state by 31/12/2006 (Table 1). In
33 patients, after a hospital admission for hepatocellular
carcinoma, a subsequent hospitalization occurred with a
diagnosis of only cirrhosis despite not having undergone
surgery. These subjects were considered to have been
misclassified. Table 2 shows the frequency of the covari-
ates considered in the model. Estimates of the mean
time of persistence in each state, calculated according to
the procedure established by Jackson et al. [12,23], are
reported in Table 3. We calculated the times of persis-
tence also for the different levels of the covariates. The
shortest time of persistence in state 1 (months = 24.99;
CI =18.35-34.04) was observed in male subjects aged
> 65 years, with a Charlson Index > 3 and free from

diseases correlated to alcohol abuse or hepatitis C virus.
The longest estimated time (months = 178.92; CI =
151.13-211.82) was observed in female subjects aged
≤ 65 years, with a Charlson Index ≤ 3, the presence of
disease correlated to alcohol abuse and absence of hepa-
titis C virus infection. The shortest time of persistence
in state 2 (months = 15.63; CI = 1.95-125.38) was
demonstrated in male subjects aged > 65 years, with a
Charlson Index > 3 and the presence of diseases corre-
lated to alcohol abuse and hepatitis C virus infection,
whereas the longest estimated time (months = 48.91;
CI = 37.99-62.97) was found in male patients aged ≤ 65
years, with a Charlson Index ≤ 3, and absence of dis-
eases correlated either to alcohol abuse or hepatitis C
virus infection. For each covariate, the proportionality of
hazards was verified using the Schoenfeld residuals
method (Table 4). The overall test shows strong evi-
dence of the proportionality of hazards and all the vari-
ables contribute to this proportionality.
The parameters estimated for the hidden Markov

model are reported in Table 5. The estimated intensity
matrix demonstrates that cirrhotic patients have twice
the probability (0.0151/0.0071) of developing a liver
cancer than of dying without developing a tumour.
Moreover, the probability of death is four-fold higher in
a subject with a liver cancer than in a subject with only
cirrhosis (0.0284/0.0071).
The estimated odds ratios are reported in Table 6.
Figure 2 shows the trend over time of the estimated

probabilities of transition in cirrhotic subjects free from

Table 1 Summary of the number of transitions of state in
the data set

From: To: Lost to Follow-up Total

State 1 State 2 State 3

State 1 922 393 610 - 1925

State 2 33* 124 154 82 393

*Patients certainly misclassified.

Table 2 Frequency of the covariates at the start of
follow-up.

Covariate N. patients
(% of 1925 cirrhotic patients)

Sex (Male) 1107 (57,51%)

Age (>65 years) 1027 (53,35%)

Charlson Index (>3) 142 (7,38%)

Hepatitis B Virus
(070.20, 070.33)

1 (0,05%)

Hepatitis C Virus
(070.41, 070.44, 070.51, 070.54)

49 (2,55%)

Alcohol-correlated disease
(291.-, 303.0-, 303.9-, 305.0-, 357.5,
425.5, 535.3-, 790.3)

61 (3,17%)

Table 3 Estimates of the mean permanency times in the
transitory states

State 1 State 2

Estimate (months) 44.93 35.19

St. Error 2.47 2.97

Lower limit 40.33 50.05

Upper limit 29.82 41.52
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comorbidities correlated to alcohol abuse or HCV infec-
tion. The probabilities of transition in Figures 2a and 2c
are referred to cirrhotic subjects, male and female, aged
65 years or younger and with a Charlson Index of 3 or
less.
The probabilities of transition from one state to the

next are generally higher in males; in particular, the
probability of progressing to HCC is never higher than
15.7% in females, whereas it reaches 30% in males after
4 years. In the first 40 months after the onset of liver
cirrhosis, the probability of developing hepatocellular
carcinoma is greater than the probability of death in
males: 15.7% versus 6.8% after one year, 24.5% versus
15.5% after two years. In females, instead, the probability
of death is little lower than that of developing HCC in
the first few months, while already after two years the
probability of death is higher (13.4% versus 11.8%).
In Figures 2b and 2d the transition probabilities are

referred to males and females, respectively, with a more
severe casemix (age > 65 years and Charlson Index >3).
The male-female differences in the probabilities of

transition from cirrhosis to death grow over the first

3 years (being 10% at 36 months) but remain constant
thereafter. The probability of developing HCC in the
short term is higher in males than females (after 2 years,
it is 25.8% in males versus 13.2% in females), but the
values tend to converge in the longer term (6.3% in
males versus 5.5% in females after 7 years).
The probabilities of death, both for subjects with only

cirrhosis and with HCC, are generally higher than in
subjects with a less severe casemix. In females the case-
mix does not seem to affect the probability of transition
cirrhosis-HCC, whereas in males the more severe case-
mix has a long term effect when the probability of
developing HCC declines in favor of a greater probabil-
ity of death.

Discussion
By exploiting the properties of Markov chains applied to
a stochastic multistate model, we have calculated the
temporal intensities of transition during the degenera-
tive course of chronic liver cirrhosis. It was also possible
to determine the time hazards of degeneration of the
liver disease until death. Various studies have employed
Cox models with the principal aim of determining the
risk factors for the progression of cirrhosis to HCC
[24,25]. In 2000, Degos et al. [26] studied progression to
HCC and death using an “illness-disease-death” in a
small cohort of subjects with a diagnosis of HCV-related
cirrhosis, estimating the time of the events with the
Kaplan Meier method. Then, in 2007 Ioannou et al. [27]
applied the Cox proportional hazards model to a large
administrative database of cirrhotic patients to deter-
mine the incidence of hepatocellular carcinoma, but
without calculating the probabilities of transition from

Table 4 Proportionality Test based on Schoenfeld’s
residuals

Variable p-value

Sex 0.316

Age class 0.567

Hepatitis C 0.749

Alcohol 0.288

Charlson Index 0.468

Overall 0.729

Table 5 Parameters and standard errors estimated with the hidden Markov model

Parameter Results of model

Transition Intensities (with covariates set at their mean values)

q̂12
▲ 0.0151 (0.0012)

q̂13
▲ 0.0071 (0.0006)

q̂23
▲ 0.0284 (0.0024)

Probabilities of misclassification (with covariates set at their mean values)

ê12 0.0237 (0.0040)

ê21 0.1408 (0.0329)

Covariates

Sex Age class Charlson Index Alcohol HCV

β̂12 0.7961(0.1377)* 0.4362(0.1202)* 0.1858(0.2036) -1.3280(0.8806) -0.5330(0.4792)

β̂13 -0.0185(0.1662) 0.8667(0.1744)* -0.1982(0.3543) -0.2327(0.9073) -0.4910(0.7100)

β̂23 -0.1628(0.1485) 0.3437(0.1365)* 0.5391(0.1652)* 0.2792(0.9727) -0.0214(0.3018)
▲Instantaneous probability of transitions between the states (q̂12 between LC to HCC; q̂13 between LC to Death; q̂23 between HCC to Death)

* Significant at alpha = 0.05.

(The β̂ are the coefficients which weight the contribution of each variable on the probability of transition between states; the minus sign indicates that
probabilities decrease if value of covariate increase, the plus sign indicates an increase in transition probabilities if value of covariate increase).
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the first to the second state. Moreover, they acknowl-
edged that a limit of their study was the risk of error
when filling out the diagnosis codes ICD-9. In our
study, using the data contained in the administrative
health services databases, the multistate hidden Markov

model we applied enabled us to identify the possible
misclassification errors that can occur.
Previous studies based on surveillance programs for

hepatocellular carcinoma in cirrhotic subjects reported
an incidence of hepatocellular carcinoma of 1.5 [28],

Table 6 Estimated Odds Ratios for the covariates inserted in the hidden Markov model (95% confidence intervals in
brackets)

Transitions of State

Covariate State 1 -> State 2 State 1 -> State 3 State 2 -> State 3

Sex
(Ref.: female)

2.2168(1.6923-2.9083) 0.9816(0.7087-1.3596) 0.8497(0.6351-1.1369)

Age class
(Ref.: Aged≤65)

1.5469(1.2221-1.9581) 2.3791(1.6905-3.3482) 1.4102(1.0791-1.8429)

Hepatitis C
(Ref.: no HCV)

0.5868(0.2294-1.5011) 0.6120(0.1522-2.4612) 0.9787(0.5417-1.7685)

Alcohol abuse
(Ref.: no alcohol)

0.2649(0.0471-1.4884) 0.7923(0.1338-4.6909) 1.3221(0.1965-8.8968)

Charlson Index
(Ref. Charls. Ind.≤3)

1.2041(0.8078-1.7948) 0.8202(0.4095-1.6429) 1.7144(1.2402-2.3700)

b) Male, aged > 65 years, Charlson Index > 3

d) Female, aged > 65 years, Charlson Index> 3

a) Male, aged ≤ 65 years, Charlson Index ≤ 3

c) Female, aged ≤ 65 years, Charlson Index ≤ 3

0
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0,8
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1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85
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Figure 2 Transition probabilities over time in cirrhotic subjects with no comorbidities correlated with alcohol abuse or hepatitis C
virus.
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2.5 [29], 6.7 [30] per 100 subjects a year. In our study
we found an incidence of HCC of 1.5% per year. Ioan-
nou et al. (2007) [27], who conducted their analysis on
an administrative database as we have done, found an
incidence of 2.4% per year. The difference between
these two values (1.5% vs 2.4%) is probably due to the
different reference population, but also to insertion in
our model of the misclassification matrix. In fact, the
probability of misclassifying subjects with HCC as sub-
jects with cirrhosis alone was revealed to be 14.08%,
while the reverse error, i.e. misclassifying cirrhotic sub-
jects as affected by HCC, was 2.73%.
The estimated parameters for the covariate “age class”

were statistically significant for all the transitions. “Sex”
was significant only for the transition of state from cir-
rhosis to HCC, while the Charlson Index had an effect
only on the transition from HCC to death.
In various longitudinal studies it has been shown that

advanced age and the male sex are associated with an
increased risk of HCC in cirrhotic subjects [24,31-33],
as was also shown in the present study. In fact, male cir-
rhotic subjects have approximately twice the probability
of developing hepatocellular carcinoma as compared to
female cirrhotic patients, while elderly patients (aged ≥
65 years) have a higher risk of degeneration of the liver
disease, and especially of dying while affected by
cirrhosis.
The ample presence of concomitant diseases (Charl-

son Index ≥ 3) increases the risk of death in subjects
with HCC. The Charlson Index was not found to have
an incidence on the transition from cirrhosis to HCC.
The insertion of specific comorbidities among the
model covariates, such as diabetes mellitus [27,34,35],
could help to identify the co-morbid conditions that
may become risk factors for progression to HCC in cir-
rhotic subjects.
Alcohol is proposed to cause HCC mainly because it

causes cirrhosis, whereas its association with HCC with-
out cirrhosis is controversial and it probably has no
direct carcinogenic role [36]. In a case-control study
conducted in 2007, Kumar et al. [37] showed that
although HCV RNA positivity and alcohol abuse signifi-
cantly increased the risk of hepatocellular carcinoma
among cirrhotic patients, no significant risk increase
was evident in the absence of cirrhosis. In our study the
estimates of the parameters related to hepatitis C virus
and to the presence of morbidity correlated to alcohol
abuse did not result significant. This result likely con-
firms that hepatitis C virus and alcohol abuse are risk
factors for the onset of cirrhosis [38], but once the cir-
rhosis has become established they do not have an influ-
ence on the development of HCC.
Despite the advantages of the structured hidden Mar-

kov model approach, there are some limitations. As is

typical of population dynamic models, collinearity
between parameter estimates can lead to identifiability
problems [39]. As a consequence, maximum likelihood
estimates can sometimes yield implausible parameter
values, and maximization algorithms may fail to converge
[40]. The problem becomes particularly severe when
time series are short and data scarce. Moreover, addition
to the model of further covariates could exacerbate this
problem. However, it seems likely that such problems
with the proposed structured hidden Markov models
might be overcome by adopting a Bayesian formulation.

Conclusion
Markov model proved to be a useful tool for analysis of
the course of a chronic degenerative disease like liver
cirrhosis. In particular, the hidden Markov model that
takes into account the risk of misclassification is well
suited to the analysis of administrative health data
because it can capture bias due to the problem that the
data quality is not always optimal, as well as enabling
the study of the effect of different covariates on the
transitions of state.
A further improvement of the model could be that of

predicting the state of subjects who have undergone sur-
gery and appear cured or temporarily HCC-free. In our
case, due to the paucity of such observations, it was not
possible to consider a model like this.
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