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Abstract

Background: Intention-to-treat (ITT) is the standard data analysis method which includes all patients regardless of
receiving treatment. Although the aim of ITT analysis is to prevent bias due to prognostic dissimilarity, it is also a
counter-intuitive type of analysis as it counts patients who did not receive treatment, and may lead to “bias toward
the null.” As treated (AT) method analyzes patients according to the treatment actually received rather than
intended, but is affected by the selection bias. Both ITT and AT analyses can produce biased estimates of treatment
effect, so instrumental variable (IV) analysis has been proposed as a technique to control for bias when using AT
data. Our objective is to correct for bias in non-experimental data from previously published individual patient data
meta-analysis by applying IV methods

Methods: Center prescribing preference was used as an IV to assess the effects of methotrexate (MTX) in
preventing debilitating complications of chronic graft-versus-host-disease (cGVHD) in patients who received
peripheral blood stem cell (PBSCT) or bone marrow transplant (BMT) in nine randomized controlled trials (1107
patients). IV methods are applied using 2-stage logistic, 2-stage probit and generalized method of moments
models.

Results: ITT analysis showed a statistically significant detrimental effect with the use of day 11 MTX, resulting in
cGVHD odds ratio (OR) of 1.34 (95% CI 1.02-1.76). AT results showed no difference in the odds of cGVHD with the
use of MTX [OR 1.31 (95%CI 0.99-1.73)]. IV analysis further corrected the results toward no difference in the odds of
cGVHD between PBSCT vs. BMT, allowing for a possibility of beneficial effects of MTX in preventing cGVHD in
PBSCT recipients (OR 1.14; 95%CI 0.83-1.56).

Conclusion: All instrumental variable models produce similar results. IV estimates correct for bias and do not
exclude the possibility that MTX may be beneficial, contradicting the ITT analysis.

Background
Intention-to-treat (ITT), per protocol (PP), and as trea-
ted (AT) methods have commonly been used to analyze
data from experimental studies involving human sub-
jects. ITT analysis includes all patients regardless of
whether they adhered to the prescribed protocol and is
recommended as the least biased method to estimate
treatment effects in randomized controlled trials (RCTs)
[1-4]. Excluding patients from the analysis who do not
adhere to the assigned treatment is called per protocol

(PP) analysis. It is designed to measure the treatment
effects only in patients who complied with the treatment
and ignores the ones who were intended to receive
treatment but did not actually receive it [5-7]. Not dis-
carding information and analyzing patients according to
the treatment received rather than intended is called as
treated (AT) or treatment received analysis [4,7]. On its
face value PP and AT analysis seem to be reasonable
alternatives to ITT. However, both estimates can be
unreliable because non-compliance to the protocol can-
not be assumed random and may be related to many
factors, which may include adverse events, prognosis,
etc. and lead to selection bias compromising the pur-
pose of randomization.
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Differences in the calculated estimates using ITT, PP
and AT methods can be considerable[6]. A recent study
comparing treatment effects using ITT versus PP meth-
ods concluded that on average, the PP estimate (log
odds ratio [OR]) is 1.25 times the ITT estimate [8]. The
choice then seems to be between ITT analyses that
eliminate selection bias and produces conservative esti-
mates in favor of no treatment effects versus PP analyses
that aim to produce actual but biased treatment effects.
As an alternative to ITT, PP or AT analysis, instru-

mental variable (IV) methods have been proposed [6,9].
IV analysis derives potentially unbiased estimates of
treatment effects and has been extensively discussed and
applied in the medical literature, both in the context of
individual RCTs [10-12] and observational studies
[13-17]. However, the IV methodology based on the
treating center prescribing preference (CPP) has not
been applied in the context of individual patient data
meta-analyses (IPD MA), which has been described as
the gold standard for combining evidence from existing
clinical trials [18-20]. Specifically, the effects of unac-
counted confounding variables in the context of RCTs
(e.g. effect of co-interventions in one arm versus other)
have not been systematically evaluated. We are inter-
ested in applying the IV methodology in the context of
IPD MA and AT data. Specifically, our objective is to
test the strength of CPP as an instrument and obtain
less biased estimates of the effect of methotrexate
(MTX) on chronic graft-versus-host-disease (cGVHD) in
transplant patients with hematological malignancies.

Methods
Previously collected IPD from nine separate randomized
controlled trials were used to address the objective of
this study [21]. The study was approved by the Univer-
sity of South Florida Institutional Review Board, which
is accredited by the Association for the Accreditation of
Human Research Protection Programs. Transplant
patients were randomized to receive either peripheral
blood stem cell transplant (PBSCT) or bone marrow
transplant (BMT). Chronic GVHD is one of the most
serious complications of stem cell transplantation that is
associated with significant morbidity and mortality. The
incidence of cGVHD is significantly increased in the
patients who receive PBSCT [22], which on the other
hand may provide benefits in terms of the increases in
the overall and disease free survival. In order to counter
the negative effects of cGVHD, particularly related to
the use of PBSCT, some centers preventatively adminis-
tered four doses of MTX (on days 1, 3, 7, and 11), while
others administered three doses (on days 1, 3, and 7). It
is not clear if the fourth dose of MTX provides an addi-
tional prophylactic effect on the incidence of cGVHD.
Three centers prescribed three doses of MTX and six

centers prescribed four doses of MTX to all their
patients. Out of 1107 patients, 135 had missing values
for cGVHD and were therefore not evaluable for the
outcome and excluded. The analysis was not adjusted
for the missing values of cGVHD, as attempts to impute
data would produce results using assumptions that cur-
rently cannot be justified on a theoretical or empirical
basis. We re-analyzed the data using IV methodology
and center prescribing preference (CPP) as the instru-
ment to correct for non-compliance. The distribution of
CPP and cGVHD by the number of doses of MTX actu-
ally received is summarized in Table 1.
Preference based instruments have been used in litera-

ture, but never in the context of IPD MA (for a discus-
sion on preference based instruments see [23-25]). The
application of IV analysis rests on the idea that given
treatment (MTX), outcome (cGVHD), and a set of mea-
sured and unmeasured confounders, there exists a vari-
able such as CPP, which is related to the treatment but
not to the outcome, except indirectly through the treat-
ment. We used CPP as the instrument keeping in mind
that CPP sufficiently varies among centers that prescribe
treatment. Although the allocation of MTX was not ran-
domized, the natural variation in CPP, creates a
“pseudo-randomizing” process by which patients got
assigned to different treatment groups. This argument is
identical to the one utilized in the context of studies of
adverse drug effects (ADE) where physicians who pre-
scribed the drug could not predict ADE and make a
choice on the basis of risk factors; however, the differ-
ence in adverse effects could be ascribed with confi-
dence to the drug [26]. In this sense, prescribing
preference at the center or physician level can indeed be
thought of as a natural randomizing instrument [27].
Figure 1 shows a causal diagram that describes the fol-

lowing three conditions that CPP must meet in order to
qualify as an instrument:

1) Instrument (CPP) is independent of any measured
confounder C or unmeasured confounder U,
between treatment (MTX) and outcome (cGVHD)
2) CPP is associated with treatment MTX
3) CPP is independent of cGVHD given MTX and
confounders (measured C and unmeasured U)

Table 1 CPP and observed cGVHD versus MTX received
for 972 evaluable patients

CPP MTX cGVHD Total

Four doses Four doses 275 441

Three doses 55 84

Three doses Four doses 0 0

Three doses 264 447
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The first condition is the most difficult to justify in
practice. In the case of our observational data, the argu-
ment is that CPP exhibits natural variation across differ-
ent centers and introduces a natural randomizing effect.
The second and third conditions are easier to justify,
because the assignment of MTX is related to the cen-
ters’ preference apriori and CPP affects cGVHD only
through the centers’ influence on the administration of
MTX. This also satisfies another criterion-referred to in
literature as monotonicity [28]-that no trial center would
assign the opposite dose than what the protocol called
for. In the context of our study, the violation of this cri-
terion is highly unlikely.
Conditions 1-3 are satisfied in a randomized con-

trolled trial, if equal treatment assignment becomes the
instrument, whereby MTX would become treatment
received[10]. In this case, the treatment assignment
would affect the treatment received, but would not fully
determine it, as some patients will inevitably not receive
treatment due to voluntary refusal, non-compliance,
treatment switch, or administrative error. Since MTX
was not randomly assigned, in this non-experimental
setting causal inference relies on the assumption that no
unmeasured confounders exist, which as noted already
may be difficult to control for in practice [29]. As ran-
domization in clinical trials allows for valid inference in
the presence of unmeasured covariates, under regression
models without misspecification IV analysis provides an
unbiased estimate in the presence of unmeasured cov-
ariates and potential confounders [30,31]. This does not
hold for nonparametric analysis.
Two approaches have commonly been used in IPD

MA: the two-stage approach in which treatment effects
are analyzed within a trial and then pooled across all
available trials, and the one-stage approach, where all
the trials are combined and the pooled estimate is calcu-
lated stratified by trial [32,33]. The two methods for
conducting IPD MA produce similar results, though the
one-stage approach is rarely used[34-38]. Since the IV

methodology we applied is based on the one-stage
approach, we assessed the reproducibility and the
equivalence of the approaches using our previously
reported results [39,40]. Using the two-stage methodol-
ogy, previous results reported that the overall survival
was significantly better among recipients of PBSCT
compared to BMT in studies where four doses were
prescribed (OR = 0.67, 95% CI 0.52-0.88, P = 0.004).
There was no difference in survival where only three
doses of MTX were prescribed (OR = 1.19, 95% CI
0.89-1.60) [21]. Using 1-stage regression methodology
we calculated odds ratios to be equal to 0.61 (0.51-0.72)
and 1.26 (0.98 - 1.60) in studies that used four versus
three doses of MTX, respectively.
We chose to use the one-stage approach for computa-

tional reasons and because the IV methodology applied
to non-experimental data in the context of structural
equation modeling allows for simultaneous causal mod-
eling of MTX received as the outcome for MTX
assigned and predictor of cGVHD occurred. If we let X
be treatment (MTX), Y be outcome (cGVHD), C be one
or more measured confounders (Trial and BMT vs.
PBSCT allocation) and Z be the instrument (CPP), then
for coefficients ai and bi, and errors εi, the following
equations are solved simultaneously:

X = α0 + α1Z + α2C + ε1

Y = β0 + β1X + β2C + ε2

In step one, the predictor variable was regressed on
the instrument CPP and measured confounders (trial
and allocation to PBSCT and BMT), and in step two the
outcome was regressed on the instrumented predictor
(MTX) and measured confounders. In our study both
MTX and cGVHD are dichotomous variables.
Even though prescribing preference has been shown to

be a strong instrument in past studies [15,41], we tested
the strength of CPP as an instrument statistically using
the partial F test statistic and Shea partial correlation
coefficient r2 [42]. The partial F statistic has the null
hypothesis that the coefficient for the instrument effect
in the first-stage regression is zero. The Shea partial cor-
relation coefficient is the square of the partial correla-
tion between the instrument and the treatment,
conditional on other covariates in the model. The partial
F statistic greater than 10 and a reasonable value of r2

indicate that the instrument is not weak and contributes
substantially to the prediction of treatment [15,43].
Three classes of two-step regression models have been

proposed to implement IV analysis in the context of
regression modeling of dichotomous outcomes such as
ours (MTX and cGVHD), where odds ratios are of
interest: two stage logistic equation, Probit and general-
ized method of moments (GMM) [17,44]. In two-step

Figure 1 Instrumental variable causal diagram.
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logistic IV modeling, the first logistic equation predicts
the effects of instrument(s) and confounder(s) on the
dichotomous treatment, whereas the second logistic
equation models the dichotomous outcome in terms of
the treatment and confounders.
Probit models are also two-step, but as opposed to

two-step least squares they model probabilities directly
and are restricted on [0,1], so that the system of Probit
equations can be expressed as:

X = I[(α0 + α1Z + α2C) > ε1]

Y = I[(β0 + β1X + β2C) > ε2],

where I(.) is the indicator function which returns 0 if
the condition is not met and 1 if it is. Since two-step
least squares modeling may not return values in the 0-1
range, the Probit model has been suggested as the best
alternative to modeling dichotomous data and has been
preferred in the economics literature [17]. All models
have been shown to provide similar estimates in past
studies [16,17]. The coefficients of Probit models are
not interpretable as logarithms of odds ratios (as is the
case with logistic regression), but it has been shown that
multiplying probit coefficients by 1.6 or 1.8 we get
approximate logistic coefficients [45].
Lastly, GMM model estimates were derived by making

assumptions about the moments of the error term
under the mean logistic regression model

Y = μ(X, C,β) + ε,

where

μ(X, C,β) =
1

1 + exp(β0 + β1X + β2C)
.

In particular, given outcome Y (cGVHD), treatment X
(MTX) and instrument Z (CPP), the generalized method
of moments (GMM) model estimates parameters by
assuming the following:

i) The residuals should sum to zero:

1
n

∑
[Y − μ(X,C,β)] = 0

ii) The errors ε must be uncorrelated with the con-
founders C:

1
n

∑
C[Y − μ(X,C,β)] = 0

iii) The errors ε must be uncorrelated with the
instrument Z:

1
n

∑
Z[Y − μ(X,C,β)] = 0

The GMM methods rely on the estimation of
moments and are robust in that they do not make dis-
tributional assumptions of maximum likelihood. The
parameters are estimated using the Newton-Raphson
iterative methods. The standard errors of the two-step
logistic and two-step Probit models cannot be expressed
in closed form and were calculated using bootstrapping
methods (using 1000 iterations).
All the analyses were done using STATA statistical

software and ivreg2 module [46,47].

Results
Assessment of the strength of CPP as an instrument
resulted in the partial F statistic of 18.10 and Shea par-
tial r2 of 0.69 suggesting choice of CPP as a strong
instrument. Results of the study by Stem Cell Trialists’
Group reported a significant increase in the odds of
developing cGVHD in patients treated with PBSCT,
irrespective of whether patients received three or four
doses of MTX. Therefore, treatment allocation to
PBSCT versus BMT was included in all three models as
a confounding control covariate and to preserve the
effects of the original randomization. A forest plot sum-
marizes the distribution of OR estimates (Figure 2).
According to the ITT method, the OR for all the
patients, regardless of whether they received dose four
MTX or not, was 1.34 (95% CI 1.02-1.76). It is impor-
tant to note that the outcome cGVHD is a “bad” event.
The ITT analysis counted those who did not receive the
fourth dose of MTX as if they actually did, thus making
it appear as if giving the fourth dose was increasing the
odds of developing cGVHD. This is similar to what hap-
pens in non-inferiority trials where the ITT may bias
estimates away from the null. The OR using AT analysis
was 1.31 (95% CI 0.99-1.73). IV OR estimates range
from 1.14 (95% CI 0.83-1.56) to 1.22 (95% CI 0.64-2.17)
and suggest that the odds may be reduced by as much
as 20%.

Discussion
To our knowledge, this is the first paper that assesses
the use of IV analysis in the context of IPD MA. We
show how IV methods may be applied to correct for
bias in observational data in IPD MA. We also show
that center prescribing preference is a strong instru-
ment. ITT analysis suggests that the fourth dose of
MTX is detrimental and that physicians should see-
mingly not administer it. Per protocol, as well as IV esti-
mates, support the conclusions of a previous study that
reported no treatment difference with use of the fourth
dose of MTX. However, the IV estimates based on cen-
ter prescribing preference show a substantial decrease in
odds of cGVHD compared with both ITT and AT
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estimates. In fact, IV IPD MA further corrected the
results toward no significant difference in the odds of
cGVHD adjusted for PBSCT vs. BMT groups, suggesting
no effect of the fourth dose of MTX in preventing
cGVHD in PBSCT recipients[22]. However, our goal
here is not to develop practice guidelines for the use of
MTX in the prevention of cGVHD. Our main objective
is to show that IV analysis may offer an alternative to
ITT analysis and that IV analysis is doable in a meta-
analytic setting, which has not previously been done.
We are also aware that based on IV analysis practicing
physicians would obtain a different advice than based on
ITT analysis.
Our study has some limitations. For example, we have

not addressed the complexities of IV analysis that may
involve multiple instruments, multiple regressors, or
effects of other measured confounders. The objective
was limited to the bias correction in AT data using only
center prescribing preference as the instrument. Also,
the two-step regression modeling we used is less effi-
cient that the standard adjustment methods used and
will generally produce wider confidence intervals, as Fig-
ure 2 clearly shows.
The key difficulty in conducting an IV analysis is find-

ing and justifying a strong instrument, especially if the
research questions revolve around multiple instruments
and predictors. The assumptions of the existence of

high level of correlation between the IV and the expo-
sure, and zero correlation between the IV and the out-
come must be justified. This is especially difficult for
the latter as it is often impossible to do so on empirical
grounds [27]. These issues need further exploration in
the context of IPD MA.

Conclusion
Our findings demonstrate that IV analysis can be
applied to IPD MA of randomized and observational
data. We recommend that IV methods for confounding
control should be considered when conducting a meta-
analysis of randomized controlled trials or observational
studies, regardless of whether the analysis is based on
aggregate or individual patient data.
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