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Abstract

2 X 2 table can be reconstructed as well.

into meta-analyses.

Background: Confidence intervals (or associated standard errors) facilitate assessment of the practical importance
of the findings of a health study, and their incorporation into a meta-analysis. For paired design studies, these
items are often not reported. Since the descriptive statistics for such studies are usually presented in the same way
as for unpaired designs, direct computation of the standard error is not possible without additional information.

Methods: Elementary, well-known relationships between standard errors and p-values were used to develop
computation schemes for paired mean difference, risk difference, risk ratio and odds ratio.

Results: Unreported confidence intervals for large sample paired binary and numeric data can be computed fairly
accurately using simple methods provided the p-value is given. In the case of paired binary data, the design based

Conclusions: Our results will facilitate appropriate interpretation of paired design studies, and their incorporation

Background
Not too long ago, analyses of research data comprised
performing a large number of unplanned hypothesis
tests, and reporting the results simply as p < 0.05 or
not, often in a selective way. Described as the cult of
statistical significance, this practice frequently produced
flawed interpretations, and made judging their practical
importance difficult. Extensive criticism has now put it
out of favor [1]. Reporting guidelines and many journals
currently require joint presentation of the three key sta-
tistical indices, namely, point estimate, actual p-value,
and confidence interval (CI), especially for the principal
analyses of the study [2,3]. The CI (or associated stan-
dard error) enables interpretation of the main effect
measure in a more complete manner, and is needed for
incorporating the study results into a meta-analysis.
Various remedies for different instances of incomplete
or varied reporting of essential findings (like confidence
intervals) and key data have been proposed. For inde-
pendent-groups 2 x 2 tables, Pietrantonj [4] detailed
and evaluated a series of methods for reconstructing the
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unreported data table in risk difference-, risk ratio-, and
odds ratio-based analyses. For a factor variable pre-
sented in quantile groups, Chéne and Thompson [5]
described how findings from diverse forms of analyses
can be re-expressed in terms of the mean difference.
Abrams et al. [6] looked at clinical trials reporting quan-
titative change from baseline and gave Bayesian and sen-
sitivity analyses methods to address partial reporting.
Focusing on two-period cross-over trials, Elbourne et al.
[7] presented simple formulas linking the relevant stan-
dard deviation and correlation, for both continuous and
binary data. These methods can be used to estimate one
when the other is given. Tang et al. [8] described and
evaluated methods to find the variance of the difference
between paired proportions using a specialized variance
recovery method that utilizes the variances of the indivi-
dual proportions.

Our paper is located within this broad field dealing
with incomplete reporting of data or analysis results.
We focus on pair matched designs, specifically matched
and cross-over clinical trials, paired cohort studies, and
1:1 matched case-control studies. We first note that for
such studies, confidence interval-related reporting short-
falls persist. Mills et al. [9] scrutinized a sample of 526
randomised controlled trials. Among these, 116 or 22%
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were crossover trials. Of the latter, only 30% presented a
CI or the standard error, 62% did not present a CI but
gave enough information to enable its computation, and
the remaining 8% did not report it and did not give data
enabling its computation. Their paper, however, does
not specify how the computability of the CI was judged.
Poor reporting in cross-over trials was also underscored
by Elbourne et al. [7].

We assessed the current state of CI reporting in
paired epidemiologic studies, albeit in a preliminary way,
with a systematic survey of the PubMed database. It was
searched on April 16, 2010 using the term “matched
case-control study”, then sorted by “Recently Added”.
Studies that classified themselves in the abstract as 1:1
matched case-control studies were potentially eligible. If
further scrutiny revealed the actual matching not to be
1:1, the study was excluded. The first 20 studies satisfy-
ing our criteria were selected. The median number of
pairs in these studies was 196 (range 7 to 42 542 pairs),
and one fifth had fewer than 50 pairs. The full list of
these studies is available from the authors.

Twelve studies were true case-control studies and
eight had a pair matched design but it was not a case-
control type. All of the 12 true case-control studies
reported Cls, but three used inappropriate unpaired
data methods. Only two of the other eight studies used
paired data methods. None of them reported a CI, but
seven gave sufficient data to compute it. Overall, in the
twenty self-labeled pair matched case-control studies,
correct calculation and reporting of CI was done in 9/20
(45%), and a correct CI was computed or was directly
computable in 16/20 (80%).

When a paper lacks a CI or the relevant standard
error, one option is to contact the authors. If that does
not yield the needed data, or if the process is too time-
consuming, is there an alternative? Our paper presents
simple methods, hitherto underutilized or unpublished,
that can be used for this purpose.

Methods

It is helpful to note that the prevalent style of reporting
descriptive statistics makes the problem of non-comput-
ability of CIs more acute for paired designs than for
independent samples designs. A comparison of two pro-
portions usually reports the sample proportions and
sample sizes, and of two means, the sample means, sizes
and standard deviations, whether the design is unpaired
or paired. For the former design, these quantities
respectively suffice to compute the Cls for effect mea-
sures like risk difference, risk ratio, odds ratio or the dif-
ference of means. In the case of paired data, they do
not. For paired binary data, we need the 2 x 2 table
with the concordant and discordant pairs, and for paired
continuous data, we need the mean difference and
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standard deviation of the differences. These entities, in
part or full, are rarely reported, even when they were
used to compute a p-value via appropriate tests like the
McNemar’s test, paired f-test, paired z-test, or a paired
exact test. If only group level proportions (or means and
standard deviations) are given, additional measures, such
as between-group correlation, are required to determine
the relevant standard error [7,8]. Such entities are hardly
reported.

We deal with four common effect measures (mean
difference, risk difference, risk ratio and odds ratio) for
paired design studies where the CI has not been given,
and the design based 2 x 2 table or the standard devia-
tion of the differences (as the case may be) and the rele-
vant correlation are also unknown. For each measure,
we show that if the p-value is known, the corresponding
standard error and CI can be obtained from a simple
computation scheme. In the case of binary data, the
data table with the concordant and discordant pairs can
be reconstructed as well.

Results

We first introduce the main example we use to illus-
trate our methods. Xie et al. [10] reported a multi-cen-
ter study of critically ill surgical patients with severe
sepsis (SS). Its main aim was to assess if the presence
of invasive fungal infection (IFI) affected the outcome
for such cases. The subjects were drawn from the sur-
gical intensive care units of ten teaching hospitals in
China. All admissions in the one year study period
meeting the set criteria for sepsis were included. The
data on patient characteristics, treatments, and out-
comes were compiled through daily chart reviews and
physician interviews.

The main study had 90 SS patients with IFI and 228
SS patients without IFIL. In a sub-study, 60 of the SS
patients with IFI were matched, on a one-to-one basis
and in terms of center, sex, age and APACHE II score,
with 60 SS patients without IFI. We consider the
matched portion of this study, and show a part of the
results in Table 1.

Paired continuous data

One variable (hospital LOS) in Table 1 is continuous;
the other (mortality) is binary. For now, consider the

Table 1 Fungal infection and severe sepsis

Patient group

Outcome SS & IFI SS & no IFI p-value
Hospital LOS (mean days) 30 20 0.020
Hospital mortality (%) 70.0% 50.0% 0.023
Total subjects 60 60

Note: LOS = Length of stay. Source: Xie et al. [10], Table five.
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former. The paper reports the group interquartile ranges
for hospital LOS but not the standard deviations. Also,
the CI for the difference in hospital LOS is not given.
However, the p-value is stated with two significant
digits. Using this, we impute the needed CI as follows.

For comparing hospital LOS, the two sided p = 0.020.
The associated standard normal deviate is z = 2.326. In
general, let X; be the mean of the differences, and s,, the
standard normal paired two-sided z-test standard error.
The mean of the differences is the difference of the
means, so X; = X; — Xp. From the p-value, we get z, the
corresponding two-sided deviate of the standard normal
distribution. Then we apply the relation

X4 X4
z= = 5=
Sz z

The 95% CI for the difference of the means thereby is

- _ _ 1.960
Xg£1.960s, or (x; —X3) (1.0 + . )
Suppose the paired two-sided ¢-test was used. From
the p-value, we get ¢, the corresponding deviate of the ¢
distribution with # - 1 degrees of freedom. With s, as
the corresponding standard error for the difference of
the means, we have

X4 X4
= = St =
St t

The 95% CI for the difference of the means is then
- = - tnfl
XgEtty—1ss or (X1 —x2)(1.0+ .

where £, _ ; is the 97.5th percentile of the ¢ distribu-
tion with # - 1 degrees of freedom.

Further, the standard deviation of the differences of
the means is obtained by using one of the two formulas,
as appropriate, given below

sq = Si/n

Applying these formulas to the hospital LOS data, we
get, under the z-test, that s, = (30 - 20)/2.326 = 4.299
with 95% CI equal to (1.57, 18.4), and s, = 33.3. Under
the t-test, we get that s, = 4.182 with 95% CI equal to
(1.63, 18.4), and s; = 32.4. These 95% intervals are
almost identical. Also both are quite wide, with their
lower limits not far from zero days. The possibility of
just a minor difference in the hospital LOS for the two
groups cannot thereby be excluded.

sq=S;/n or

Paired binary data
First consider paired binary data under a prospective
design. The data format and the cell-wise and marginal
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Table 2 Paired data and paired proportions
Alive Dead Total Alive Dead Marginal
Alive a c a+c M P 1-1m5
Dead b d b+d ios T T
Total a+b c+d n 1-m M 1.00

proportions are shown in Table 2. The marginal propor-
tions are estimated by

c+d b+d

T =

A

and 7, =

Risk difference

Researchers usually apply two effect measures for paired
prospective designs, risk difference and risk ratio. First
consider the former, 6 = m; - m,. It is estimated by

c—b
n

8 =

For this measure, two different variance formulas are
usually used, one for null hypothesis testing and the
other for confidence interval computation. These formu-
las are shown in the first two rows of Table 3[11-14].

Suppose the p-value for the two-sided z-test for risk
difference equal to zero is known. This gives the asso-
ciated standard normal deviate, z, from which we deter-
mine the null standard error as s, = S/z. With 7y, 79,
and sy known, the variance formula from the second
row of

Table 3 provides the three equations

c+d=nm
b+d=nfr2

2
b+c=ns;

Since a + b + ¢ + d = n, we can solve for a, b, ¢ and
d. The corresponding solution scheme is in the first row
of Table 4. All the numbers are rounded to the nearest
integer.

We apply these formulas to the mortality data from
Xie et al. Since p = 0.023, then z = 2.27. From Table 1,
we find § = 0.7 - 0.5 = 0.2. Thus, 5o = 0.2/2.27 = 0.088.
Using these with # = 60 in the scheme of the first row
of Table 4 gives a = 10, b = 8, ¢ = 20, and d = 22.
Thereby, we learn that the number of pairs in which
both subjects died were 2.2 times as many as those in
which both subjects remained alive.

After reconstructing the paired 2 x 2 table, we can
check whether we are able to reproduce the p-value for
hospital mortality given in Table 1. Xie et al. used the
McNemar test, which has test statistic equal to

Clb—d

T_ ’
Vb+c
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Table 3 Variances for matched pairs comparisons.
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Statistic

Variance

Estimate of variance

risk difference (general)*

(7712 +7T21) - (7712 - 7T:)_1)2

1 —b)?
n2 |:(C+b)_(c n ) :|

risk difference (null)** (712 1_: 1) c+b
n n?
log risk ratio (general) ' (7{12 + 7121) b+c
n(mwi2 + 722) (721 + 722) (b+d)(c+d)
log odds ratio (general) * (7T12 * 7{21)2 b+c
(b +c)mama bc

*Altman et al. [11], p.52.

**Fleiss, Levin and Paik [12], p.375.
Veeth and Poulsen [13]

* Rothman and Greenland [14], p.286

to be compared with the standard normal distribution.
With b = 8 and ¢ = 20, we get T = 2.268 and p = 0.023,
which is equal to the p-value given by Xie et al.

To get the 95% CI for the risk difference, we first
apply the formula in the first row of Table 3 to the
reconstructed table to get
§1 = [\/(28 —122/60)]/60 = 0.084. Hence the required
interval is § 4 1.96s, which is 0.2 + 1.96 x 0.084 =
(0.035, 0.37).

The number needed to treat (NNT) then is 1/.2 = 5,
implying that for every 5 cases with SS & IFI, on aver-
age, one additional case will die as compared with those
having SS & no IFL. The 95% CI for the NNT, obtained
by inverting the CI for the risk difference and reversing
the limits, is equal to (3, 29). This interval, like that of
the risk difference, is not that precise.

Risk ratio
The risk ratio is 6 = m, /m; which, for paired prospective
data, is estimated by

é—b+d
T c+d

Table 4 Reconstructing the 2 x 2 table.
b c

Risk

1 N 1 A
difference ) n(nsj — 9) ) n(ns3 +9)

) S S . FUR S N
Risk ratio 2n(mnzns2 + 7T — 7)) 2n(n1n2n52 — Ay +702)

Odds — np( —m1)/(p—1)  n(m —71)/(p—1)
ratio®

Odds (1+p)/s? (1+p)/ps?
ratio’

Determine the values of b and c first. Second, for all effect measures,
d=mn—canda=n-d+b+q).

sp or s is estimate of standard error calculated from the p-value.
*Estimate (ﬁ) and both proportions known.

fEstimate (0 ), one proportion (771 ), and p-value known.

The variance of the logarithm of § is in the third row
of Table 3. Now suppose the p-value for the null test of
the risk ratio is known. From this, we find the standard
normal deviate, z.

The associated standard error then is s = In(§)/z. For
this measure, the same variance formula is customarily
used for null hypothesis testing and for confidence
interval computation. Hence, we directly compute the
95% CI for In 6 as § + 1,965, and exponentiate this
interval to get the 95% CI for 6.

From the variance formula, we construct four simulta-
neous equations in the same way as for the risk differ-
ence. The corresponding solution scheme for a, b, ¢ and
d in this case is shown in the second row of Table 4.
Here also, these numbers are rounded to the nearest
integer.

In the above calculations, we assumed that the pub-
lished p-value was calculated using the correct standard
error for paired risk ratio. In practice, this may not
occur that often, especially when the CI is unreported.
If instead the p-value was calculated using McNemar’s
test, we reconstruct the paired 2 x 2 table using the
methods for risk difference, and then apply these num-
bers to get the variance estimate for the log risk ratio in
Table 3. We illustrate this approach in a hypothetical
situation.

Suppose we need to meta-analyse several studies with
the risk ratio as the effect measure. Suppose Xie et al.
[10] is one of the selected studies. The above computa-
tions then allow us to include it into this meta-analysis
even though it does not report the risk ratio, and the
risk ratio or its standard error are not directly computa-
ble from the paper. Using the paired data table recon-
structed above (a = 10, b = 8, ¢ = 20, and d = 22), the
risk ratio is 30/42 = 0.71, and the standard error of the
log-risk ratio is s =,/28/(30 x 42) = 0.15. We expo-
nentiate the logarithmic interval In (0.71) + 1.96 x 0.15
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to find the 95% CI for the risk ratio as (0.53, 0.95). This
CI also indicates a low precision for the study results.
The risk ratio and its standard error are now available
for the meta-analysis.

Odds ratio

Now consider the odds ratio, which is mostly used in
case-control studies. The marginal proportions in the
paired data table (Table 1) are the probabilities of expo-
sure given the outcome. Such studies usually apply a
conditional form of analysis that uses only the discor-
dant pairs whose sum is taken as fixed. The appropriate
conditional probabilities for the two types of discordant
pairs are 7r15/(715 + 7121) and 7151/ (7115 + 7121). Further,
the relevant odds ratio is p = 7,1/715, which is estimated
by p = b/c. The (conditional) variance of the logarithm
of p is shown in the last row of Table 3.

For the task of reconstructing the paired 2 x 2 table,
the odds ratio differs from the other two binary effect
measures in an important way. Unlike for the latter, the
paired data table can be computed once we know the
odds ratio, the marginal proportions and the total num-
ber of pairs. This computation scheme appears in the
third row of Table 4.

Consider a hypothetical case-control study where the
odds ratio is reported (6 = 2.0), but the CI is not. Also
reported are the marginal proportions (7; = 0.3125 and
7, = 0.50) and the total number of pairs (n = 80). Using
the third row of Table 4, we reconstruct the paired 2 x
2 table:

b=80-2.0-(0.50 —0.3125)/(2.0 — 1) = 30
¢=80-(0.50 —0.3125)/(2.0 — 1) = 15
d=03125-80— 15 = 10
a=80—(10+30 + 15) = 25

We then calculate the standard error of the log odds
ratio from the last row of Table 3: s = ,/45/450 = 0.32.
The 95% CI for the log odds ratio is In (2.0) £ 1.96 x
0.32. After exponentiation, we find that the 95% CI for
the odds ratio is (1.1, 3.7).

When only one marginal proportion is known, the
appropriate p-value is also needed. This then allows us
to compute the standard error s = In(p)/z. Like the risk
ratio, the same variance formula is customarily used for
null hypothesis testing and for confidence interval com-
putation, as given in the last row of Table 3. Using this,
we form four simultaneous equations as done earlier.
Solving these, we obtain the scheme shown in the last
row of Table 4 for reconstructing the needed data table.

Suppose that in the hypothetical example above, only
one of the marginal proportions was given
(71 = 0.3125) but that p = 0.029 was reported. The
standard normal deviate here is z = 2.18, and the
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standard error, s = 0.318, is obtained in the usual way.
The 95% CI is computed as above. To reconstruct the
paired 2 x 2 table, we use the last row of Table 4 to get
b=(1+2)/0318"~30and c = (1 + 2)/2 - 0.318> ~ 15.
The quantities d = 10 and a = 25 are obtained as before.

Impact of p-value accuracy

One important consideration is the accuracy of the sta-
ted p-value. A small absolute change in a small p pro-
duces a large change in the z or ¢ deviate. If the p-value
has not been stated accurately, our computation
schemes can yield flawed answers. To get an initial han-
dle on the error involved here, we performed a sensitiv-
ity analysis for the data in Table 1. For both
comparisons, the p-value was changed from 0.015 to
0.024 in increments of 0.001. For hospital LOS, the z-
test scheme gave 95% Cls ranging from (1.94, 18.06) to
(1.32, 18.68), and the t-test scheme gave 95% Cls ran-
ging from (2.01, 17.99) to (1.36, 18.64). And for the
same range of p-values, the computed 95% CI for the
risk difference in mortality ranged from (0.048, 0.352) to
(0.035, 0.365). These changes are neither dramatic nor
practically meaningful. All the intervals are close to the
corresponding intervals for the observed p-values. Our
experience thus far indicates that if the p-value is
known to two significant digits, the results are suffi-
ciently accurate, and often, one significant digit of accu-
racy suffices. Detailed simulation studies to resolve the
concerns relating to sample size, data structure, and
degree of accuracy of the p-value are, however, called
for.

Discussion

Our paper gives easy to apply computation schemes to
compute confidence intervals and other entities in situa-
tions where the needed information is unavailable. For
such tasks, our paper is a paired-data counterpart of
Pietrantonj [4] that addresses similar problems for
unpaired binary data. Note that the computational
schemes we give are simpler than their unpaired var-
iants. Further, our paper differs from previous work for
paired data cited earlier in that it is not based on the
knowledge of a measure of correlation, a rarely reported
entity, but requires the p-value, a commonly reported
item.

The use of our computation schemes is limited by
several considerations. First, for continuous data, we
need to know if the paired z or ¢ test was used to obtain
the p-value. Second, the computation scheme for the
risk ratio applies only if the p-value was obtained by the
use of the risk ratio standard error. This is rarely done.
p-values for paired binary data are usually computed
using a risk difference based (McNemar) test. If we then
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need the CI for the risk ratio, we use the risk difference
scheme to reconstruct the paired data table and obtain
the required standard error from this table. Third, as
the paired data table can often be reconstituted with the
odds ratio, the p-value based scheme here will be rarely,
if at all, used. We give it for completeness.

Other matters of concern are data structure and sam-
ple size. The data are sparse when one discordant pair
is much smaller in size than the other, or when both
corresponding marginal proportions are near one or
zero. Suppose the given p-value has been obtained by
either the z-test or t-test for continuous data, or a test
based on one of the null standard errors shown in Table
3 for binary data, and the paper notes the actual test
used. In each of these cases, the computation scheme
we give is valid at all sample sizes and with all data
structures, whether sparse, skewed or otherwise. Validity
here means that it will give the same confidence inter-
vals as that based on the original data.

Besides these standard tests, a wide variety of other
methods for computing p-values and ClIs for paired dis-
crete and continuous data exist [15,16]. Some of these
methods have better statistical properties compared with
the others. And some have complex formulas. With
sparse data or small number of pairs, different methods
may give appreciably different results. For such data,
researchers may also use non-parametric or exact meth-
ods employing special algorithms that are not amenable
to simple formulations [17]. When such methods have
been used in a study with small number of pairs or
sparse data, and if the CI has not been reported or the
data to compute it are not available, developing a proce-
dure to correct the deficiency is not a simple matter.
Applying the computation schemes in Table 4 to such
data when the p-value has been computed using a spe-
cialized test is not advisable.

However, simulation studies show that when viewed in
terms of their practical impact, the Cls for the paired
data risk difference computed by several methods are
fairly close to one another when the number of pairs
exceeds 50, and provided the data are not too sparse
[15,16]. Based on studies of this sort, we recommend
our computation schemes even when the p-value has
been computed using a non-parametric, exact, score, or
some other test provided there are more than 50 pairs
and the data are not too skewed or sparse. The error
involved would be, we suspect, acceptable for the point
of view of practical interpretation or incorporation into
meta-analysis.

Conclusion

Confidence intervals allow us to judge the practical
implications of a study. For a paired design, the paired
data table is more informative than the marginal data
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summary. The standard error of difference of the means
incorporates the correlation between the two paired
measures. Without this information, it cannot be com-
puted directly from the standard errors of each measure.
In crossover trials, for example, it enables us to examine
the presence of a treatment order effect. Reconstructing
the paired data table is useful when a study analyzed in
terms of the risk difference is not fully reported and
incorporating it into a meta-analysis requires the risk
ratio or odds ratio. That reconstruction also permits a
re-analysis of the data with methods that have better
statistical properties, including for performing a meta-
analysis.

Our methods are valid for all types of data when the
p-value has been computed using one of the standard
tests we consider, and may have reasonable accuracy
even for other tests provided the number of pairs
exceeds 50 and the data are not too sparse or skewed.
Simulation studies to identify the types of tests, sample
sizes, data structures and levels of accuracy of the p-
value under which they are acceptably accurate are,
however, warranted.

Better reporting of paired data is, nonetheless, the
optimal solution. When reporting a study, the point esti-
mate, p-value, and confidence interval for the main
effect measure must be given. For paired binary designs,
the full design based 2 x 2 table should be given, and
for paired continuous data, the mean and standard
deviation for each sample should be augmented by the
standard deviation of the differences. Reporting the rele-
vant correlation is an equivalent substitute. Improved
reports will make corrective schemes like the ones we
give somewhat superfluous. Until the day when such
reports are the almost universal norm, however, these
schemes will serve a useful purpose.

Abbreviations
Cl: confidence interval; IFI: invasive fungal infection; LOS: length of stay; NNT:
number needed to treat; SS: severe sepsis.
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