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Abstract

Background: Gastric Emptying Scintigraphy (GES) at intervals over 4 hours after a standardized radio-labeled meal
is commonly regarded as the gold standard for diagnosing gastroparesis. The objectives of this study were: 1) to
investigate the best time point and the best combination of multiple time points for diagnosing gastroparesis with
repeated GES measures, and 2) to contrast and cross-validate Fisher’s Linear Discriminant Analysis (LDA), a rank
based Distribution Free (DF) approach, and the Classification And Regression Tree (CART) model.

Methods: A total of 320 patients with GES measures at 1, 2, 3, and 4 hour (h) after a standard meal using a
standardized method were retrospectively collected. Area under the Receiver Operating Characteristic (ROC) curve
and the rate of false classification through jackknife cross-validation were used for model comparison.

Results: Due to strong correlation and an abnormality in data distribution, no substantial improvement in
diagnostic power was found with the best linear combination by LDA approach even with data transformation.
With DF method, the linear combination of 4-h and 3-h increased the Area Under the Curve (AUC) and decreased
the number of false classifications (0.87; 15.0%) over individual time points (0.83, 0.82; 15.6%, 25.3%, for 4-h and 3-h,
respectively) at a higher sensitivity level (sensitivity = 0.9). The CART model using 4 hourly GES measurements
along with patient’s age was the most accurate diagnostic tool (AUC = 0.88, false classification = 13.8%). Patients
having a 4-h gastric retention value >10% were 5 times more likely to have gastroparesis (179/207 = 86.5%) than
those with ≤10% (18/113 = 15.9%).

Conclusions: With a mixed group of patients either referred with suspected gastroparesis or investigated for other
reasons, the CART model is more robust than the LDA and DF approaches, capable of accommodating covariate
effects and can be generalized for cross institutional applications, but could be unstable if sample size is limited.

Background
Gastric emptying scintigraphy at intervals over 4 h after a
standardized meal is commonly regarded as the gold stan-
dard for measuring gastric emptying times. In practice, a
simplified hourly measure of residual gastric contents is
used for diagnosing gastroparesis defined as delayed Gas-
tric Emptying (GE) in the absence of mechanical obstruc-
tion [1,2]. The technique measures radio-labeled food
remaining in the stomach at hourly intervals after patient
ingests a standardized meal [3] as an indicator of delayed
GE. Because of differences in food used, techniques
employed, and endpoints measured with GES, analysis and
interpretation of the results vary among institutions [4].

Most previous studies have shown that delayed gastric
emptying can be best indicated with gastric retention of
>10% at 4- h after meal, which was established as the 95
percentile in gastric retention with normal volunteers
through a multicenter study [5,6]. As always, a distribu-
tion-based diagnostic decision is arbitrary and may inevita-
bly induce error because of misclassification. It is reported
that the simplified approach has a specificity of 62% and a
sensitivity of 93% [7]. Others use the percent retention at
2-h as the routine clinical measurements of GES [8], sug-
gesting GES at 2-h or 3-h might be the best individual
time point with higher diagnostic power. However, per-
cent gastric retentions at different time points may also be
subject to patient age and gender [5]. The lack of standar-
dization in conducting GES along with differences in
quantitative analysis used at various institutions may limit
the clinical utility of the test, and presents problems if
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cross institutional data need to be evaluated. In 2008, on
behalf of the American Neurogastroenterology and Moti-
lity Society and the Society of Nuclear Medicine, research-
ers from 13 US medical institutions jointly issued a
consensus statement for standardization of GES across
institutions [4]. In addition, issues requiring further inves-
tigation were identified by the consensus which include: 1)
use of 3-h compared to 2- and 4-h results for detection
of delayed GE; and 2) use of multiple time points (2- and
4-h) versus single 2- or 4-h values for further understand-
ing of the clinical meaning of discordant results between
2- and 4-h scans.
Methodology on using different diagnostic markers to

detect diseases or assess health related risks has been an
active field of research [9-11]. With the rapid advances
in genomic and proteomic technologies, the focus on
biomarker-based disease detection and risk assessment
has now shifted from a single biomarker to a panel of
biomarkers since different markers may be sensitive to
different aspects of a disease [12]. It is argued that, com-
pared with a single clinical or genetic marker, a panel of
multiple markers may contain a higher level of discrimi-
natory information, particularly across large heteroge-
neous patient populations and for complex multistage
diseases. This is important because using multiple mar-
kers simultaneously might lead to a new diagnostic mea-
sure with higher sensitivity [11].
When multiple markers are continuous and normally

distributed, Fisher’s LDA provides the best linear combi-
nation that maximizes the sensitivity over the entire spe-
cificity range uniformly under the multivariate normal
distribution model [11]. When marker values deviate
from normal, a Box-Cox power transformation can be
used to improve the normal fit [13]. This approach has
been found effective in estimating the AUC and ROC
curves if the underlying true distributions, either on the
original or on a transformed scale, are close to multivari-
ate normal [11]. Otherwise, a rank based distribution free
approach can be applied. The theoretical aspects of the
best linear combination for biomarkers are well reported
[[9,11,14-19], and [20]]. Fisher’s LDA is easier to com-
pute, while the DF approach is more robust to deviation
from normal distribution, but is computationally prohibi-
tive if more than two markers are involved [19]. We used
the parameter estimates from LDA as a starting point for
grid search with DF if marker space goes beyond bilat-
eral. The CART model, on the other hand, provides
another approach to optimize the diagnostic power when
markers are multi-dimensional [21-23]. Rather than
creating a new diagnostic measure like LDA or DF,
CART uses a sequential process to identify the set of pre-
dictor variables, in their original scale, that best differ-
entiate groups among the outcome variable of interest. It
is particularly useful when there are many predictor

variables that are highly correlated. It is computationally
less intensive and easy to interpret, but can be unstable if
the model is inadequately trained with limited data.
Most previous studies focus on deriving the best com-

bination of markers that maximizes AUC for subjects
whose disease status was known [11,14-20]. It is unclear
if the diagnostic power for such a combination extends
to the population with known marker values but
unknown disease status or to the population whose mar-
ker values are not used for deriving the diagnostic para-
meters. With a standardized meal (see Materials and
Methods) and the hourly GES technique (five 2-minutes
imaging sessions) over 4 hour period, less camera time is
required while results can be reproducible from hospital
to hospital. This paper evaluates the statistical options
that optimize the diagnostic power with GES measures at
a few time points. Using the primary clinical diagnosis,
defined by symptoms such as nausea, vomiting, early sati-
ety, postprandial fullness, abdominal discomfort, and
pain, in addition to evidence of delayed gastric emptying
in the absence of mechanical gastric outlet obstruction,
as the true status of gastroparesis, this study focuses on
finding the parameters of the best linear combination of
GES at different time points with training data, then,
investigates and cross-validates its performance in test
data that was not used for deriving the model.

Methods
The Receiver Operating characteristic Curve (ROC) and
the area under the curve in particular is a simple and
meaningful measure to assess the usefulness of a diag-
nostic marker(s) [10]. Throughout this paper, ROC and
AUC are used to compare across different methods and
various models for the best diagnostic power of gastro-
paresis. The sum of false positive and false negative
diagnoses over the entire sample was used to contrast
the diagnostic power between LDA, DF and CART
through jackknife (take one out) cross validation.

Fisher’s Linear Discriminant Approach (LDA)
Let wij represents the i

th marker value of the jth subject in
the diseased group; and vik be the ith marker value of
the kth subject in the control group; where i = 1, ..., p; j = 1,
..., m; and k = 1, ..., n.
Suppose X and Y are vectors of marker values with

multivariate normal distribution for the diseased and
control groups respectively, then

X(m × p) =

⎡⎣ w11 . wp1

. . .
w1m . wpm

⎤⎦ ∼ MVN(μx,�x), and

Y(n × p) =

⎡⎣ v11 . vp1
. . .
v1n . vpn

⎤⎦ ∼ MVN(μy,�y)

(1)
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The coefficient vector, ap × 1, for the best linear
combination of the combined marker vector from the
diseased and control groups under the ROC criteria is:

αp×1 ∝ (�x + �y)−1μ, where μ = μy - μx (2)

The AUC under the ROC curve is:

AUC = �(
√
(μT(�x + �y)−1μ)) (3)

Where, F denotes the standard cumulative normal
distribution function.
The Specificity (Fa (c)) and Sensitivity (Ha (c)) are:

Fa(c) = �

{
c − αTμx√
αT

∑
xα

}
= p0 (4)

Ha(c) = 1 − �

{
αT(μx − μy) + �−1(p0)

√
αT(

∑
x)α√

αT
∑

yα

}
(5)

Where, c = αTμx + �−1(p0)
√

αT�xα

Rank based Distribution Free approach (DF)
Under the rank based distribution free approach [19],
the AUC can be calculated as the Mann-Whitney U sta-
tistic [24]:

AUC(α) =
m∑
j=1

n∑
k=1

I
[
α × wD

ij ≥ α × vCik
]
/mD × nC (6)

Where I = 1, if α × wD
ij > α × vCik

= 1/
2, if α × wD

ij = α × vCik

= 0, if α × wD
ij < α × vCik

Note, for continuous distribution, Pr (I = 1/2) = 0.
Where, wijis the ith marker value for the jth subject in

the diseased group; vikis the ith marker value for the kth

subject in the control group; i, j, k, m, and n as defined
in the previous section; AUC(a)is area under the curve
by distribution free approach with optimal coefficient
vector (a). Since ROC is invariant to monotone increas-
ing transformation, the coefficient vector a in both LDA
and DF approaches can be rescaled as (1, b2/ b1, b3/ b1,
... bi/ b1), where bi/ b1 represents the weight for the ith

marker value relative to marker 1 [19].

Classification and Regression Trees (CART) model
Unlike LDA or DF, CART methodology identifies the
set of predictors from all variables that best differentiate
classes in the outcome of interest in a sequential

process. At each step (node), CART algorithm first iden-
tifies the best predictor from all candidate variables and
then searches through all values for the best predictor
but uses only one cutoff point to divide the sample
within the node into two sub-branches. It then searches
through all predictor variables and identifies the best
cutoff point from the best predictor within each sub-
branch and repeats the process until a certain criteria,
such as a minimum variance or a minimum group size,
in all terminal nodes is met. At each node, CART seeks
to classify the sample into groups such that maximum
homogeneity of the child nodes is reached. When a
terminal node is reached, the model gives the probabil-
ity of belonging to a particular category for all remain-
ing subjects that fall into that node. In practice, the
minimum node size is usually set at 10% of the learning
sample to avoid potentially over fitting the model such
that the final decision tree is more likely to be useful for
classifying populations with similar characteristics as
that of the learning sample but was not used for deriv-
ing the CART model. In contrast to LDA approach,
CART can be especially useful when the correlation pat-
terns among predictor variables are not consistent over
the entire range, because it is not necessary for the
same variable to be optimal for all branch nodes of the
entire tree [22].

Parameter estimation
For LDA approach, we wrote a SAS/IML program [25]
for calculating the mean (m), the variance (S) for dis-
eased and control groups, and all parameter estimates
are described in the method section. First, the coeffi-
cient vector a, AUC for the linear combination as well
as for individual markers, was obtained with equations
(2) and (3) from the training data. Then, the coefficient
a was applied to the corresponding test data to obtain
the linear combination score. Three threshold values
corresponding to sensitivity levels at 0.7, 0.8, and 0.9 for
the linear combination score were obtained with the
gastroparesis data using c = αTμx + �−1(p0)

√
αT�xα in

equation (5). Each threshold value was used on the left
out data to classify the case into either diseased or non-
diseased group. The predicted status was then cross
tabulated with the known disease category.
The DF approach started with an arbitrary starting

point and then grid searched for the coefficients that
maximize the Mann-Whitney U statistic with the train-
ing data in the following steps.
1) A linear combination score for each observation

was obtained by multiplying the marker vector X with a
starting coefficient vector, a (1,a).

2) The AUC corresponding to the coefficient vector
ais calculated with equation (6).
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3) Repeat the first two steps for every possible coeffi-
cient vector and aggregate the corresponding AUC and
a.
4) Select the coefficient that maximized the AUC and

identify the critical linear combination score value at
0.7, 0.8, and 0.9 sensitivity levels.
5) Applying the coefficient from step 4 to the test data

to obtain the best linear combination score.
6) Use each critical value from step 4 in the test data

to predict each case into either diseased or non-diseased
group, then cross tabulate with the known disease
category.
For CART model, we used the TREE package within R

[26] environment for each of four hourly measures, and
their combination along with patient age and gender to
identify the best model. Cross-validation with a mini-
mum size of 10 subjects for each terminal node was
used to optimize the decision tree model using all
observations [27]. AUC for each optimized decision tree
was calculated to compare across all models. Then, one
observation was taken out from the entire sample, and
the remaining subjects used to build the decision tree,
which in turn was used to predict the disease status of
the left out observation. Performance for each decision
tree was summarized with the total number of wrong
predictions across the entire sample.

Gastroparesis data
A total of 320 charts from patients aged 16 ~ 89 (42.8 ±
14.3 (mean ± std)), 255 (79%) female, with GES mea-
sures at 1 h, 2 h, 3 h and 4 h after a standard meal
using a standardized method (5) were retrospectively
collected at The University of Kansas Medical Center
(KUMC). The study protocol was approved by the Insti-
tutional Review Board (IRB) at KUMC. During GES
measurement, the fraction of meal consumed and the
time taken for the consumption was recorded. Subjects
with unusual percent meal consumed (e.g. <20% of the
meal)/consumption time (e.g. >30 minutes) were
excluded. All patients were either referred with sus-
pected gastroparesis or investigated for other reasons
because of self reported symptoms such as nausea, full-
ness, early satiety, vomiting, and bloating. Based on
overall evaluation, in addition to hourly GES measures,
the study physicians diagnosed 197 (62%) of the 320
patients with gastroparesis as the primary reason for
above mentioned clinical symptoms and their hospital
visits. Despite similar medical experiences, diseases
other than gastroparesis were considered as the primary
diagnoses for the remaining 123 patients. No significant
difference in mean age (p = 0.12, by t-test) and gender
(p = 0.99, by c2 test) were found between groups with
and without gastroparesis. For each patient, gastric emp-
tying scintigraphy was performed in the morning after

an overnight fast with prokinetics stopped for at least 3
days. The standardized method for gastric emptying
consists of the equivalent of two scrambled eggs (egg
substitute ) labeled with 99m Tc sulphur-colloid, 2 pieces
of toast with jelly, and 4 oz of water with a total caloric
value of 255 kcal. Anterior and posterior images of the
stomach were taken immediately after eating, and then
hourly for 4 hours [28].

Results
During repeated measurement of gastric emptying, per-
cent retentions of the isotope in the stomach at 1-h, 2-
h, 3-h, and 4-h after meal decreased with time and were
highly correlated, especially for males and for patients
with gastroparesis. Spearman correlation coefficient ran-
ged from 0.34 (p < 0.001) between 1-h and 4-h for
patients without gastroparesis to 0.93 (p < 0.001)
between 3-h and 4-h for patients with gastroparesis.
Overall, the distribution in percent retention deviated
from normal, with the first two hourly values skewing
toward the lower end, and the second two hours skew-
ing toward the higher end (Figure 1).

Diagnostic powers by LDA and DF approach
Hourly measures at 3-h and 4-h were previously
reported as having the best diagnostic utility, we
contrasted their best linear combination by both LDA
(Figure 2) and DF approaches (Table 1). First, we esti-
mated AUC for the two measurements along with the
optimal coefficient for their best linear combination and
the threshold values for the linear combination score at
0.7, 0.8, and 0.9 sensitivity levels by both LDA and DF
approaches for all but 1 out of 320 subjects. The opti-
mal coefficient, along with the three threshold values
was then applied to the left out subject. By comparing
the threshold values with the calculated linear combina-
tion score, the predicted gastroparetic status for the left
out subject was recorded. The rates of false negative
and false positive were obtained by repeating the jack-
knife process for all 320 subjects. Then, a Box-Cox
power transformation was applied and the same analysis
was repeated for the transformed data.
The best linear combinations of the two hourly mea-

sures increased the diagnostic power of its individual
components by both approaches (Table 2), but the gain
was limited, 3.9% for the DF, and 0.4% for the LDA
approach. As expected, Box-Cox power transformation
on individual markers improved the diagnostic power by
the best linear combination with the LDA approach by
4.7% than that of the raw measures.
With the raw data, the differences in sum of false

positive and false negative rates for the best linear com-
binations were 0.2%, 1.6%, and -6.5% between the DF
and LDA approaches at the 0.7, 0.8, and 0.9 sensitivity
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levels. While the false negative rates by the LDA
approach showed large deviation from that correspond-
ing to the preset threshold levels (≤3.0%), those by the
DF approach are relatively close (≤± 0.2%).
Data transformation improved the diagnostic power of

the best linear combinations for both the LDA and DF
approaches by decreasing the sum of false negative and
false positive rates. The reductions are 2.2%, 2.8%,
13.8%, and -0.9%, -1.1%, 20.1% for the DF and LDA
approaches, respectively. Interestingly, the largest
improvement in diagnostic power is at the higher level
of sensitivity for both approaches.

Diagnostic powers with CART approach
Seven decision tree models, including the full model (4
hourly measurements along with the patient’s age), the
combinations of 2-h and 4-h, 3-h and 4-h, along with
each hourly measures, were optimized through tree-prun-
ing with minimum size for the final node of 10 subjects
[26]. For all single time point models, percent retention

at 4-h has the largest AUC of 0.865, followed by 3-h, 2-h,
and 1-h, respectively (Table 3). The rate of false diagnosis
by decision tree model with 4-h is 14.4% (28 out of 123
for patients without gastroparesis, and 18 out of 197 for
those with gastroparesis), less than half of those who
would be wrongly diagnosed by 1-h and 2-h points, and
37% ((73-46)/73) less than that -at 3-h. Including 2-h or
3-h along with 4-h with the decision tree did not increase
the number of correct diagnoses over using 4-h alone as
indicated by jackknife cross validation. These differ from
results obtained from LDA and DF approaches, in which
the linear combination of 3-h and 4-h showed slight
improvement over using 4-h alone. However, decision
tree model with either 4-h alone or its combination with
2-h or 3-h did not suffer in diagnostic utility compared
with its counterpart models identified with either LDA or
DF approach, regardless of data transformation. The
CART model using all four hourly GES measures along
with patient age was very interesting. For the criteria of
gastric retention >10% at 4-h and <53% at 2-h, patients

Figure 1 Percent gastric retention at 1-h, 2-h, 3-h, and 4-h after meal for case (green) vs. control (grey). 1-h-c, 2-h-c, 3-h-c, 4-h-c
represents percent gastric emptying (GE) at 1-h, 2-h, 3-h, and 4-h after meal for patients diagnosed with gastroparesis; Whisker represents 70%
interquartile range.

Hou et al. BMC Medical Research Methodology 2011, 11:84
http://www.biomedcentral.com/1471-2288/11/84

Page 5 of 10



>47.5 years old were nearly 2 fold less likely to have gas-
troparesis (probability = 0.44) as those with age <47.5
(probability = 0.85).

Discussion
Linear combinations of diagnostic markers obtained by
LDA or DF approach usually lead to higher discrimi-
nate powers (larger AUC) than with its individual com-
ponents. A simulation study (results not show here)
indicated that the stronger the correlation among indi-
vidual markers, the smaller the increase in AUC by
their linear combination. The potential gain in diagnos-
tic power, however, diminishes when the correlation
between individual markers increase up to 0.7 and
above. The effectiveness of using a linear combination
decreases with the increase in magnitude of dispropor-
tion in covariance matrices between the diseased and
control groups.

Small sample sizes lead to large variation in optimal
coefficients for best linear combination and the corre-
sponding AUC, especially for the LDA approach. As sam-
ple size increases, optimal coefficients and AUC by LDA
or DF methods may or may not approach each other
depending on the distribution of individual markers.

Marker values normal
When the marker values are multivariate normal, the
estimates by the LDA approach are very close to that of
the DF method in terms of AUC, optimal coefficients,
and the diagnostic power as indicated by simulation.
With normal distribution and adequate sample size, the
first two moments capture marker’s location and scale
parameter with small variation. In such cases, the LDA
approach has the advantage in saving computation time
(more than 100 fold less) without suffering in predictive
power than the DF approach. Nevertheless, LDA cannot
outperform DF as long as the searching grid for optimal
coefficient with DF contains the point estimate by LDA.
In other words, the limitation with DF is in computa-
tion, rather than methodology.

Marker values not normal
When marker values deviate from normal distribution,
the DF approach always leads to higher AUC for the
best linear combination if the searching grid for optimal
coefficients is fine enough. The downgrading perfor-
mance with LDA approach is a direct result of using the
means that is biased due to abnormality. Exponential
distribution, for example, tends to have a long tail with
a high degree of skewness, leading to a mean with a
positive bias. As a consequence, the variances for mar-
kers are inflated and the AUC tends to be smaller. More
importantly, the best linear combination obtained with
LDA approach tends to overestimate the false negative
rate and underestimate the false positive rate at the
lower sensitivity level (Table 2), and do exactly the
opposite at the higher sensitivity level. On the contrary,
the best linear combination by DF approach is less
affected by extreme values and tends to have higher
diagnostic power while maintaining the preset sensitivity

Table 1 Parameter estimates (Area Under the Curve (AUC) and coefficient for best linear combination) with Fisher’s
Linear Discriminant Analysis (LDA) and Distribution Free (DF) approaches

4-h 3-h Linear combination DF Linear combination LDA

Raw Tran Raw Tran a Raw a Tran a Raw a Tran

Mean 0.830 0.879 0.824 0.827 0.02 0.869 0.02 0.869 0.681 0.834 0.055 0.881

STD 0.002 0.001 0.002 0.002 0.00 0.001 0.00 0.001 0.032 0.002 0.002 0.001

Median 0.830 0.879 0.824 0.827 0.02 0.869 0.02 0.869 0.679 0.833 0.055 0.880

Range 0.013 0.009 0.011 0.009 0.00 0.008 0.00 0.008 0.284 0.012 0.017 0.009

Note: Raw stands for AUC for measurement in original scale;

Tran represents AUC for measurement in transformed scale;

a is coefficient for the best linear combination for measurement at 3-h after meal.

Figure 2 Receiver’s Operating Characteristic (ROC) Curve for
hourly percent retention at 2-h, 3-h, 4-h, and their best linear
combination. Area Under the Curve (AUC) increased from 2-h to 4-
h and maximized with the best linear combination of all three
hourly measurements.
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levels. This is important because, in practice, a fixed
false negative rate represents a critical limit of tolerance
in diagnostic medicine. Beyond such limit, the stake
of loss-benefit ratio would increase, or, at least, the
diagnostic decision is less cost effective.

The effect of data transformation
Effective data transformation improves the normal fit
and thus parameter estimation by LDA approach, but
whether this improvement will hold in new data that is
not included for parameter estimation remains unclear.
Cross-validation with the gastroparesis data indicated
that power transformation increased AUC and stabilized
parameter estimates in the training sets, and, that such
gains would translate into higher diagnostic power in
the test sets (Table 2). Data transformation closed the
gap in diagnostic power between the best linear combi-
nations by LDA and DF approaches with the clinical
data. Interestingly, the DF approach showed a consistent
improvement with transformation across all levels of
sensitivity at 0.7, 0.8, and 0.9. The trend with the LDA
approach is not as clear. One reason might be the per-
cent gastric retentions measured at 3-h and 4-h are so
skewed that power transformation is not enough to put
the measurements on nearly normal distribution.

Optimizing the diagnostic power by GES
measures with CART model
Unlike previous research with normal volunteers, our
study population consisted with a mixed group of

subjects either referred with suspected gastroparesis
or investigated for other reasons. All subjects were
experiencing some kind of gastric related symptoms but
were not necessarily having gastroparesis as the primary
reason. Consequently, gastric retention at 4-h for the
control group (subjects with other primary diagnoses
[non-gastroparesis]), in this study (10.3 ± 16.9%, mean ±
std) were higher than that of the published with normal
volunteers (5.4 ± 11.1%) (5). The control value in this
study was primarily inflated by including more cases in
the mild (10-15%), moderate (16-35%) and severe (>35%)
categories as defined by a recently published reviews in
the New England Journal of Medicine [7] and the Ameri-
can Journal of Gastroenterology [29]. We rely on the
decision of clinical diagnosis by the study physician in
reference to various symptoms and GES measures at dif-
ferent time points [30]. While using the inflated control
value may reduce the sensitivity for gastroparesis, it will
increase the chance to discover other major diseases that
might be causing similar clinical symptoms. This is
important because in real clinical settings, a lot of
patients are experiencing complicated health problems
with various comorbidities beyond or not explained
purely by gastroparesis. Differentiating gastroparesis as a
primary diagnosis would lead to different treatment
approaches than recognizing it as comorbidity. The pre-
sence of patients with abnormal GES values in the con-
trol group, on the other hand, allows us to contrast the
robustness of the three different models. Classification
tree modeling is more appealing than the classic LDA

Table 2 False classifications (%) with jackknife cross-validation by Fisher’s Linear Discriminant Analysis (LDA) and
Distribution Free (DF) approaches

Criteria 3-h DF 4-h DF Linear combination DF Linear combination LDA

ŷ = 1
y = 1

ŷ = 1
y = 0

ŷ = 0
y = 1

ŷ = 1
y = 0

ŷ = 0
y = 1

ŷ = 1
y = 0

ŷ = 0
y = 1

ŷ = 1
y = 0

ŷ = 0
y = 1

0.7 24 (19.5%) 59 (30.0%) 16 (13.0%) 59 (30.0%) 15 (12.2%) 58 (29.4%) 15 (12.2%) 64 (32.3%)

0.8 37 (30.1%) 39 (19.8%) 21 (17.1%) 40 (20.3%) 21 (17.1%) 40 (20.3%) 20 (16.3%) 46 (23.4%)

0.9 60 (48.8%) 21 (10.7%) 27 (21.9%) 23 (11.7%) 28 (22.8%) 20 (10.2%) 27 (22.0%) 22 (11.2%)

Note: ŷ: model predicted disease status (1 for yes, 0 for no);

y: diagnosed disease status (1 for yes, 0 for no).

Table 3 False classifications (%) with jackknife cross-validation by optimized Classification And Regression Tree (CART)
models

Type of Misdiagnosis 1-h 2-h 3-h 4-h 2-h + 4-h 3-h + 4-h 4-h + 3-h + 2-h + 1-h + Age

ŷ = 1
y = 0

76 (61.8%) 28 (22.8%) 29 (23.6%) 28 (22.8%) 28 (22.8%) 28 (22.8%) 26 (21.1%)

ŷ = 0
y = 1

24 (12.2%) 69 (35.0%) 44 (22.3%) 18 (9.1%) 18 (9.1%) 18 (9.1%) 18 (9.1%)

Total Misdiagnosis 100 (31.3%) 97 (30.3%) 73 (22.8%) 46 (14.4%) 46 (14.4%) 46 (14.4%) 44 (13.8%)

AUC For Optimized Model 0.724 0.753 0.825 0.867 0.865 0.858 0.881

Note: ŷ: model predicted disease status (1 for yes, 0 for no);

y: diagnosed disease status (1 for yes, 0 for no).
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and DF approaches in that: 1) it is computationally as
efficient as the classic LDA approach; 2) it can handle
any number of diagnostic markers and is robust to the
presence of outliers and invariant to data transformation;
and 3) it uses marker values in their original term and
scale, thus easy to interpret in clinical practice. Figure 3
shows the optimized CART model with the highest diag-
nostic power for the gastroparesis data.
In practice, the critical value of 0.5 in probability can

be used. That is, a patient is diagnosed with gastropar-
esis if, based on the post meal percent gastric retention
measures along with covariates, the probability is greater
than or equal to 0.5.
The CART model was optimized from 4 hourly mea-

sures on percent gastric retention along with patient age
and gender as covariates. Besides giving a probability esti-
mate of having gastroparesis for patients falling into each
node (Figure 4), the CART model uses the cut point of
10% gastric retention at 4-h as the main diagnosing tool
with patients having gastric retention value >10%, more
than 5 times likely to be gastroparesis (179/207 = 85.6%)
than those with ≤10% (18/113 = 15.9%). This is consis-
tent with the recommended >10% by the consensus
report [4], despite the fact that the decision tree model
derived the cutoff value from patient data while the con-
sensus report established the cutoff point with normal
subjects. Interestingly, the model also incorporated age
into its predictor space. For the criteria of gastric reten-
tion >10% at 4-h and <53% at 2-h, hence normal at 2-h
and abnormal at 4-h, we found that patients >47.5 years

of age were nearly 2 fold less likely to have gastroparesis
(probability = 0.44) as those with age <47.5 (probability =
0.85). Considering the large patient population used in
this study, age could be an important covariate that helps
diagnosing gastroparesis along with gastric retention at
multiple time points. This is in agreement with a recent
publication assessing gastric emptying in a large number
of normal subjects utilizing the same gastric emptying
methodology - the standardized egg meal over 4 hours.
They found that older subjects had a faster gastric empty-
ing rate than younger subjects who were slower [5]. A
corresponding model with LDA approach would be pro-
blematic because 1) GE measures are not normally dis-
tributed; 2) gender is not a continuous variable; and 3)
age effect is not consistent over the range of GES mea-
sures. With DF approach, GE data distribution is not a
problem, but computation would be enormously difficult,
even with the help of using a set of starting value that
could be a rough estimate at best from the LDA
approach. In addition, a model in multidimensional pre-
dictor space (6 in this case) with either LDA or DF
approach is hard to conceive and might be meaningless
to clinicians in practice.

Conclusions
By contrasting CART, LDA, and DF approaches with
the gastroparesis data, we hoped to be able to answer

Figure 3 Receiver’s Operating Characteristic (ROC) Curve for
classification tree models. The full model has the largest area
under the Receiver’s Operating Characteristic Curve (ROC) followed
by the combination of post-meal % retention at 2-h, and 4-h.
Individually, the best time point is 4-h, followed by 3-h.

 

 
59 

0.27 

h-4 <10.5 
113, 207 

62% 

  h-2 <38.5 
67, 46 
16% 

h-1 <74.8 
59, 8 
24% 

 
8 

0.00 

 
46 

0.04 

h-2 <52.8 
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156 
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33, 18 
71% 

 
18 

0.44 

 
h-3 24.3 
21, 0.95 

 
h-3 <24.3 
12, 0.67 

Figure 4 The hierarchy of the Classification and Regression
Tree (CART) model starts from the top with terminal nodes at
the bottom. Within each intermediate node are criteria for splitting,
numbers of subjects, and percent of cases (diagnosed with
gastroparesis) of all subjects within the node. Integers in the
terminal nodes represent total number of subjects and decimal
number at the bottom is the probability of a subject being
diagnosed with gastroparesis.
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the two questions raised in the 2008 consensus state-
ment [4]. In summary, we found that: 1) The diagnostic
power of 4-h is higher compared to 2- and 3 -h results
for detection of delayed GE, regardless of the method
employed and whether the data is in original scale or in
transformation; 2) Use of multiple time points (2-, 3-,
and 4-h) will increase AUC and, as a result, the diagnos-
tic power, versus single 2-, 3-, or 4-h values (Figure 2
&3). The improvement, however, is limited, especially
with the LDA approach, because hourly measures are
skewed and highly correlated. Therefore, we conclude
that among LDA, DF, and CART, the CART model is
more appealing because it is robust to outliers and
invariant to data distribution, easy to compute, capable
of using any number of predictor variables, and it offers
easy interpretation. A potential downside with the
CART model, however, lies in its limitation when the
number of subjects (n) is small.
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