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Abstract

Background: Estimating the required sample size and statistical power for a study is an integral part of study
design. For standard designs, power equations provide an efficient solution to the problem, but they are
unavailable for many complex study designs that arise in practice. For such complex study designs, computer
simulation is a useful alternative for estimating study power. Although this approach is well known among
statisticians, in our experience many epidemiologists and social scientists are unfamiliar with the technique. This
article aims to address this knowledge gap.

Methods: We review an approach to estimate study power for individual- or cluster-randomized designs using
computer simulation. This flexible approach arises naturally from the model used to derive conventional power
equations, but extends those methods to accommodate arbitrarily complex designs. The method is universally
applicable to a broad range of designs and outcomes, and we present the material in a way that is approachable
for quantitative, applied researchers. We illustrate the method using two examples (one simple, one complex)
based on sanitation and nutritional interventions to improve child growth.

Results: We first show how simulation reproduces conventional power estimates for simple randomized designs
over a broad range of sample scenarios to familiarize the reader with the approach. We then demonstrate how to
extend the simulation approach to more complex designs. Finally, we discuss extensions to the examples in the
article, and provide computer code to efficiently run the example simulations in both R and Stata.

Conclusions: Simulation methods offer a flexible option to estimate statistical power for standard and non-
traditional study designs and parameters of interest. The approach we have described is universally applicable for
evaluating study designs used in epidemiologic and social science research.
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Background
Estimating the sample size and statistical power for a
study is an integral part of study design and has profound
consequences for the cost and statistical precision of a
study. There exist analytic (closed-form) power equations
for simple designs such as parallel randomized trials with
treatment assigned at the individual level or cluster
(group) level [1]. Statisticians have also derived equations
to estimate power for more complex designs, such as
designs with two levels of correlation [2] or designs with
two levels of correlation, multiple treatments and

attrition [3]. The advantage of using an equation to esti-
mate power for study designs is that the approach is fast
and easy to implement using existing software. For this
reason, power equations are used to inform most study
designs. However, in our applied research we have routi-
nely encountered study designs that do not conform to
conventional power equations (e.g. multiple treatment
interventions, where one treatment is deployed at the
group level and a second at the individual level). In these
situations, simulation techniques offer a flexible alterna-
tive that is easy to implement in modern statistical
software.
Here, we provide an overview of a general method to

estimate study power for randomized trials based on a
simulation technique that arises naturally from the
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underlying data model typically assumed by power and
sample size equations. The method is universally applic-
able to a broad range of outcomes and designs, and it
easily accommodates complex design features such as
different follow-up plans, multiple treatment interven-
tions, or different site-specific cluster effects. Simulation
can also estimate the expected impact of deviations from
optimal study implementation, such as item non-
response and participant drop out. Statisticians have esti-
mated design power using computer simulation for
decades to benchmark analytic sample size equations
[4,5], but most published articles on estimating power
using simulation have been either highly specific in appli-
cation or highly technical [6-10,10-15]. Feiveson [16] pre-
sents an applied, general overview of estimating power by
simulation using Stata software, but the article is not
indexed in major databases, and has only been cited
twice in applied research [17,18]. To our knowledge, this
is the first published application of this approach that
outlines the method using the data generating models
that are both the foundation of traditional power calcula-
tions and familiar to quantitative epidemiologists. Our
goal with this article is to motivate and demonstrate with
concrete examples how to use simulation techniques to
estimate design power in a way that quantitative, applied
epidemiologists can use in practice. We believe this
approach has the potential for widespread application
because the setting in which we have applied it is similar
to that found in many studies.
As a motivating example, we recently considered a

study design to test the independent and combined
effects of environmental interventions (sanitation, hand-
washing and water treatment) and nutrient supplemen-
tation on child growth, measured by length/height.
Growth faltering in the first years of life can have pro-
found, negative consequences on lifelong human capital
[19]. Enteric infections can cause growth faltering
through acute diarrhea and parasitic insults [20,21].
There is abundant evidence that environmental inter-
ventions can reduce enteric infections [22-24] and some
evidence that they improve growth [25,26]. Interestingly,
even the best nutritional interventions fail to eliminate
the majority of linear growth faltering typically observed
in low-income country populations [27]. Nutritionists
have hypothesized that nutrient supplementation inter-
ventions could be enhanced by complementary house-
hold environmental interventions that reduce fecal
bacteria ingestion during the first years of life and
potentially improve gut health [28,29].
To test this hypothesis, we considered a two-treatment

factorial trial in rural Bangladesh, where children < 6
months of age are randomly assigned to one of four
groups: control (no treatment), sanitation mobilization,
lipid-based nutrient supplementation (LNS), and

sanitation plus LNS. (The trial is still in the planning
stage, and will include additional environmental inter-
ventions.) Sanitation mobilization campaigns rely on
community-level intervention techniques, such as
village-level defecation mapping and ‘walks of shame,’
under the premise that community-level dynamics help
catalyze a shift of community norms away from open
defecation and toward using improved sanitation facil-
ities, such as private toilets [30]. LNS is a micro- and
macronutrient rich paste that is incorporated into exist-
ing meals and is typically administered daily beginning
at age 6 months to supplement breast feeding and tradi-
tional foods [31-34]. Since sanitation mobilization must
be delivered at the community level and spillover effects
within a community are almost certain to exist, a clus-
ter-randomized trial would be a natural design of choice
[1]. However, due to field logistics, the monetary cost of
adding clusters is far higher than the cost of adding
households within clusters, and so we considered a
design where the sanitation treatment is deployed
randomly at the community level, and LNS is deployed
randomly to households within each community cluster
(Figure 1). Consistent with existing trials of LNS that
are randomized at the household level [31-34], we
assume no significant spillover effects between house-
holds in the same community. Children’s length is mea-
sured at baseline (pre-treatment) and again after two
years of intervention.
This design makes power calculations difficult for two

reasons. First, the two treatments are deployed at differ-
ent levels (community and household) and second,
there are two sources of correlation in the outcome:
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Villages Randomized 

Sanitation Mobilization
Villages

Within each village,
households are randomly assigned to 
control or to nutritional supplements

Village-level treatment
Household-level treatment
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Figure 1 Schematic of the factorial design described in the
introduction. Village clusters are first randomized to either control
(C) or a sanitation marketing treatment (SAN). Then, households
with children < 6 months within each village are randomized to
control (C) or to daily nutritional supplementation (NS).
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within-community and within-child. Considering the
estimating approach that will be used, combined with
the complex clustered nature of the data-generating dis-
tribution, no analytical solution exists to calculate the
statistical power for our hypothesis of interest given this
design. Below, we introduce the simulation approach to
estimate power, benchmark it against the conventional
approach for a simple design, and then return to this
example to demonstrate a more complex application.
We conclude with a practical discussion of extensions
and limitations to the approach, and in supporting files
we provide example code to run our simulations
in both R and Stata (see additional files 1 and 2: R-pro-
grams.pdf, Stata-programs.pdf).

Methods
The statistical power of design is defined as the comple-
ment of the Type II error rate (1-b), and is the probability
of rejecting the null hypothesis when it is false. Estimating
study power requires an investigator to specify a small
number of non-design parameters that describe the out-
come and expected treatment effect. These parameters
may include the mean, variance and expected difference
between treatment and control in the outcome variable
(the effect size). For cluster randomized trials or trials with
repeated measures, an investigator using conventional
power equations must also specify the intraclass correla-
tion coefficient (ICC) or its variant, the coefficient of varia-
tion, which summarizes the correlation between repeated
measures within an experimental unit [1,35]. Power equa-
tions for designs with multiple levels of correlation require
that investigators specify even more parameters [2,3].
Typically, these parameters are estimated from existing
data or extracted from prior published studies. The simu-
lation approach we outline below estimates a related set of
parameters and then uses those to simulate outcome data
from a specified data-generating model under a null and
alternative hypothesis.
As an introductory example, consider a community-

randomized intervention trial to evaluate the impact of a
sanitation mobilization campaign (as described in the
introduction) on child height, where child height is mea-
sured once, post-intervention. We measure the outcome,
Yij, as standardized height-for-age Z-scores (HAZ) for
child j living in community i, and the treatment, Ai, is
randomly assigned at the community level with equal
probability to half of the enrolled communities. To use
simulation, it is necessary to specify the data generating
distribution for Yij. One such convenient distribution
that we use throughout this article is the class of mixed
effects models [36], which give rise to conventional
power equations for clustered or longitudinal designs [1].
Specifically, we assume that the continuous outcome
HAZ (Yij) arises from the following model:

Y A bij i i ij= + + +m b e1 (1)

There are four parameters in the model: μ is the mean
HAZ score in the control children, b1 is the estimated dif-
ference in HAZ comparing intervention children (A = 1)
to the control children (A = 0); bi is a cluster-level random
effect and εij is an error term that captures individual-level
variability and measurement error. We assume that the
random effect and error term are normally distributed
with mean zero and known standard deviation, and are
uncorrelated: bi ~ N(0, sg ), εij ~ N(0, se), cov(bi, εij) = 0.
The variability of the random effects and residual

error relate directly to the ICC because in this model
the definition of the ICC is the ratio of between-cluster
variability to the total variability [1]:

ICC g g e= +s s s2 2 2( ) (2)

The model in equation 1, along with the assumptions
on the error distribution and the related parameter esti-
mates, are what we use to simulate the outcomes yij.
(Throughout this article our notation uses capital letters
to identify random variables and lower case letters to
identify realizations of those random variables: Yij is a
random variable, and yij is a realized outcome drawn
from the distribution of Yij.) In order to run the simula-
tions, it is necessary to make assumptions about the four
parameters (μ, b1, sg, se). The effect size (b1) will likely
be specified based on prior studies, subject matter knowl-
edge or the minimum effect size that is either biologically
meaningful or cost-effective. We use an existing and
representative dataset with HAZ measurements for chil-
dren nested within clusters (the training dataset) to esti-
mate the remaining three parameters. (When existing
data are unavailable, an investigator can also assign
values to these parameters from prior studies or subject
matter knowledge.) In practice, it is possible to estimate
the variability of the cluster and residual random effects
with the training dataset by fitting a mixed model of the
outcome on an intercept with a random intercept speci-
fied for clusters:

E Y b bij i i ij[ | ] = + +m e (3)

where μ, bi and εij are defined above. This is imple-
mented in Stata using the xtmixed command, in SAS
with PROC MIXED, and in R with the nlme or lme4
packages (for examples in Stata, see additional file 2:
Stata-programs.pdf). The linear mixed model will pro-
vide two estimates of variability: cluster-level variability

˘ ( )s g iSD b= and residual variability ˘ ( )s ee ijSD= .

Importantly, the different levels of variability can only
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be estimated if the dataset includes repeated observa-

tions at each level. For this example, to estimate s̆ g

repeated measures of Yij are required (i.e., HAZ for mul-
tiple children within each cluster).
The simulation requires the following steps:

1. Estimate parameters ( ˘ , ˘ , ˘ )m s sg e from a training

dataset (described above).
2. Create a population of 2,000 children (2 arms × 100

clusters/arm × 10 children/cluster), with a unique ID
variable for each cluster, a unique ID variable for each
child and an indicator for assigned treatment: treated
(A = 1) and control (A = 0).
3. Generate a random effect for each cluster (200

total), bi, which is a draw from a normal distribution

with mean 0 and SD s̆ g .

4. Generate a residual error term for each child, εij,
which is a draw from a normal distribution with mean

zero and SD s̆ e .

5. Simulate an outcome for each child, yij, using equa-
tion 1.
6. Regress yij on the treatment indicator Ai, using

robust sandwich standard errors [37] to account for
clustering at the highest level of correlation, and store

the one- or two-sided P value for the test b̆1 0= .

7. Repeat steps 3 through 6 a large number of times
(at least 1,000).
8. The empirical power of the design is the fraction of

P values that are smaller than 0.05.
Figure 2 includes a schematic for the simulation pro-

cess. The fraction of statistically significant P values
across simulation runs is an estimate of empirical power
because simulation runs that fail to identify statistically
significant differences are technically Type II errors
(since we assume b1 ≠ 0 in the simulation).
Note that in this article’s examples we use generalized

linear models with robust sandwich standard errors to
account for correlation; we could equivalently use a gen-
eralized estimating equation (GEE) approach [38] with
robust sandwich standard errors. For our specific applica-
tion, generalized linear models and GEE are useful
because they naturally estimate marginal parameters and
require investigators to make fewer assumptions about
the data generating distribution during parameter estima-
tion than mixed effects models [39]. On a practical level,
marginal models are also computationally simpler than
mixed models, which is relevant when simulating the
analysis thousands of times. However, an advantage of
using simulation to estimate power is that investigators
can use whatever estimation approach they plan to use in
their actual analysis.

It is straightforward to modify the approach for a con-
tinuous outcome to accommodate a binomial outcome.
For example, in the sanitation mobilization intervention
investigators may also want to measure its impact on
child diarrhea. Let pij be the probability of diarrhea for
the jth child in the ith cluster. Consider a standard
logistic model of pij :

p A bij i= + − + +( )⎡⎣ ⎤⎦( )−
1 1

1
exp m b (4)

where μ is the log-odds of the baseline probability of
diarrhea, b1 is the log of the odds ratio of diarrhea com-
paring children in intervention communities (A = 1) to
the children in control communities (A = 0); bi is a clus-
ter-level random effect. As before, we assume that the
random effect is normally distributed with mean zero
and known standard deviation: bi ~ N(0, sg).
The model in equation 4 is used to simulate a binary

outcome that is distributed as a Bernoulli random vari-
able with probability pij, and so three parameters must
be specified (μ, b1, sg). Analogous to the approach for
continuous outcomes, we use a training dataset with
repeated outcome measurements at the cluster-level to
estimate the log-odds of baseline diarrhea prevalence

(μ), and the cluster-level variability, ˘ ( )s g iSD b= . It is

possible to estimate the variability of the cluster-level
random effect by fitting a binomial mixed model of the
outcome on an intercept with a random intercept speci-
fied for clusters:

E Y b bij i i| exp( ) = + − +( )⎡⎣ ⎤⎦( )−
1

1
m (5)

As with continuous outcomes, the mixed model will

estimate the cluster-level variability ˘ ( )s g iSD b= .

Given these parameters and an assumed effect size (b1),
power for the design with 100 clusters per arm and 10
children per cluster is estimated using a similar proce-
dure as for the continuous outcome example above.
Steps 1-4 and 7-8 remain the same. Steps 5 and 6 now
involve simulating outcomes yij for each child as a Ber-
noulli random variable with probability pij (equation 4),
and yij is regressed on the treatment indicator Ai, using
a logistic regression with sandwich robust standard

errors to obtain P values for the test b̆1 0= that are

adjusted for clustering.
After designing a simulation and implementing it in a

software language, we strongly recommend setting a
random number generating seed (for perfectly reprodu-
cible results) and using a simple diagnostic test to check
for errors. This involves running a simulation under the
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null hypothesis (b1 set to zero) for a representative
design scenario. Given a large enough set of simulations
(e.g., 10,000), the fraction of runs in which a statistically
significant difference is identified between groups should
be equivalent to the Type I error rate - the probability
of falsely rejecting the null hypothesis - or 5% in this
case for a two-sided test (10% if using a one-sided test).
A quantile-quantile plot of the empirical P values
against the uniform distribution should fall on the line
of equality; a histogram should also show a uniform dis-
tribution of the P values between 0 and 1 (Figure 3).
The distribution of P values across the simulations can
be tested against the uniform distribution using a boot-
strapped Kolmogorov-Smirnov test [40,41].

Results
Comparison of Simulation and Conventional Methods
For the design described in the previous section, we
compare the simulation approach for estimating study
power to the more familiar analytic approach. For a
continuous outcome, a design’s power for a parallel
cluster-randomized trial is calculated analytically as [1]:

1
2 1 1

2

2 2− = ⋅ ⋅
+ −( )⎡⎣ ⎤⎦

−
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

b
s r aΦ c n d

n
Z / (6)

where b is the Type II error rate, F is the normal cumu-
lative distribution function, c is the number of clusters per
arm, n is the number of individuals per cluster, d is the
mean difference between treatment groups, s2 is the var-
iance of the outcome, Za/2 is the quantile of the standard
normal distribution associated with a Type I error rate of
a, and r is the ICC (equation 2). To estimate parameters
for the power calculation we use a training dataset from
Indonesia that is part of an ongoing evaluation of the
World Bank’s Water and Sanitation Program’s (WSP)
Total Sanitation and Sanitation Marketing campaign [42].
The dataset includes length measurements from 2,090
children under age 24 months collected from 160 rural vil-
lages (clusters) in East Java at the baseline of the study. All
length measurements (accurate to 0.1 cm) are standar-
dized to HAZ using the WHO 2006 international standard
[43]. The mean HAZ in the sample is -0.875 and its

μ 

μ + bi 

Cluster Population

Cluster i 

yij = μ + bi + ij Child ij yij = μ + 1 + bi + ij 

Simulation Steps 

1. Assume a baseline mean  

   and cluster level standard   

   deviation 

2. Draw a random effect bi for  

    each cluster i 

3. Assign treatment or no  

    treatment to cluster i 

4. Draw error term for child j   

    in cluster i, compute yij 

μ + 1 + bi 
(No treatment)   (Treatment) 

b

(SD = g) 

(SD = e) 

Figure 2 Summary of random effects draws used in a basic simulation of a cluster-level intervention with individual-level outcomes
(yij). The population mean is μ, bi are random effects at the cluster level and εij are random errors at the individual level. b1 is the assumed
difference in yij for individuals in treated clusters versus individuals in control clusters.

Arnold et al. BMC Medical Research Methodology 2011, 11:94
http://www.biomedcentral.com/1471-2288/11/94

Page 5 of 10



standard deviation is 1.384. To estimate the fraction of the
variability explained at the village level, we estimate a
mixed model regression of the form in equation 3. Esti-
mates of the standard deviation for the village-level ran-
dom effect for HAZ and the residual error

are: ˘ ( ) .s g iSD b= = 0 482 and ˘ ( ) .s ee ijSD= =1 297 ,

respectively. This implies that the majority of the variabil-
ity is at the child level, and the implied ICC is 0.4822/
(0.4822 + 1.2972) = 0.12.
Given these parameter estimates, and assuming the

study intervention is expected to increase mean HAZ by
0.2 SDs, we estimate power for a range of study designs
with 20 children per cluster and between 20 and 200
clusters per arm. We calculate power using both the
simulation approach outlined in the previous section
(with 10,000 iterations per scenario) and again using
equation 5. Figure 4 shows power estimates for the two
approaches across the scenarios considered and demon-
strates very good agreement, as expected given both are
derived from the same data-generating model.

The Use of Simulation to Estimate Power for More
Complex Designs
There are many study designs for which analytic equa-
tions are not available. An example of a non-standard
design is the two treatment factorial trial described in
the introduction, in which sanitation mobilization is
randomized at the community level, and LNS is pro-
vided to a random sub-sample of children in each village

(Figure 1). We assume one child per household and that
child length is measured at baseline (pre-treatment) and
again two years later. This poses problems for a conven-
tional sample size equation due to treatment at multiple
levels (community and child) and correlation at multiple
levels (within-community and within-child). The three
hypotheses of interest include whether or not each
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Figure 3 Summary of 2-sided P values obtained from 10,000 simulation runs under a null treatment scenario. The left panel includes a
histogram of the P values and the right panel is a quantile-quantile (QQ) plot of the P values against a uniform random variable. The solid line
in the QQ plot is the line of equality. Such diagnostic plots - using P values generated in a scenario where the null hypothesis is true - are useful
to validate a simulation program.
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cluster-randomized design described in the text.
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individual intervention improves child HAZ scores on
its own, and whether there is additional benefit to pro-
viding the interventions together (interaction or
synergy).
Let Yijt be the HAZ score for child j in village i at

time t, and let Aijt be an indicator variable equal to 1 if
that child has been exposed to the sanitation mobiliza-
tion intervention and zero otherwise. Similarly, let Xijt

be an indicator variable equal to 1 if the child is located
in a household that has received nutritional supplements
and zero otherwise. For the purposes of the simulation,
we assume that the HAZ for each child is a function of
the underlying population mean, μ, the treatment effects
alone and in combination (b1, b2, b3), a village-level ran-
dom effect bi, a child level random effect bij, and a resi-
dual error term εijt:

Y A X A X b bijt ijt ijt ijt ijt i ij ijt= + + + + + +m b b b e1 2 3 (7)

As with the simple example, we assume that the ran-
dom effects and the error term are normally distributed
with mean zero and are uncorrelated with each other.
In this design, each child is measured twice, at baseline
before the intervention (t = 0) and at follow-up (t = 1).
To estimate the variability of the HAZ scores at the vil-
lage and child level, we use a training dataset from a
longitudinal cohort study in India, where up to two
HAZ measurements are available for 1,236 children in
25 rural villages [44]. The mean (SD) of HAZ in the
data is -1.98 (1.68). To estimate the cluster, child and
residual variance components, we estimate a mixed-
effects regression model of child HAZ on an intercept
term using the training data. This is equivalent to speci-
fying the following model for the mean HAZ:

E Y b b b bijt i j i ij ijt| ,( ) = + + +m e (8)

The parameter estimates obtained from the training data

are: ˘ ( )s g iSD b= = 0.297, ˘ ( )s c ijSD b= = 1.259 and

˘ ( )s ee ijtSD= = 1.079. Using these simulation para-

meters, and assumed intervention effects (b1 = b2 = b3 =
0.15), we can estimate power for different design scenarios.
For example, consider a design scenario where half of
study villages receive the sanitation mobilization interven-
tion, and we enroll 20 households with a child aged < 6
months in each village. Half of the study children in each
village (n = 10) receive complementary LNS feeding. We
assume that 10% of the children dropout between baseline
and follow-up. The supporting files include code in both R
and Stata to run this simulation (see additional files 1 and
2: R-programs.pdf, Stata-programs.pdf). Figure 5 plots
power curves for between 60 and 160 clusters per arm

using the scenario above with 10,000 iterations per run.
As expected, the power to detect main effects (b1, b2) is
much higher than the power to detect interaction effects
(b3) of the same magnitude because the model pools infor-
mation across all households, and there are twice as many
children treated with either the sanitation or the LNS
intervention than both combined.
Other parameters may be of interest beyond the treat-

ment contrasts that the design implies, such as those
estimated using population intervention models [45,46],
where the distribution of sanitation or nutrition supple-
mentation reflects conditions of the study population at
baseline (before intervention) or of a relevant, external
population. Simulation could naturally accommodate
such alternate parameters of interest for which no
closed form power equations exist.

Discussion
We have demonstrated with practical examples how to
use computer simulation to estimate study design power
based on an assumed mixed model data generating distri-
bution for the outcomes, which is identical to the distribu-
tion assumed for conventional power equations [1].
Simulation naturally extends conventional power equa-
tions for simple parallel trial designs by substituting pro-
gramming and computer time for the effort it would
require a statistician to derive analytical solutions (which
for many designs may be impossible). These methods are
universally applicable and can accommodate arbitrarily
complex designs. The general approach can be extended
to any data-generating model, and statistical test of
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interest (see [16] for practical examples that include the
Poisson distribution, Cox-proportional hazards estimation
and rank sum tests). Although we have focused on power,
the process can be iterated to identify the minimum
detectable effect for a fixed design.
Beyond the flexibility of simulation, an additional ben-

efit of this approach to power studies is that it requires
investigators to be more explicit about their analysis
plan. The process ensures that the investigators specify
a parameter of interest and estimation approach in
advance, which may reduce the temptation to explore
alternative modeling approaches in the presence of
negative findings and is consistent with CONSORT
guidelines [47]. Despite these potential benefits, we cau-
tion against the over interpretation of power simulation
results. Like equation-based power calculations, the
results are sensitive the assumptions about outcome
variability and the data generating model (e.g., that ran-
dom effects are drawn from a normal distribution),
which are nearly always violated to some extent in prac-
tice. A simulation approach, like conventional power
equations, will not inform investigators about optimal
design choices under threats to validity like non-random
losses to follow-up or systematic measurement error.
We recommend the use of the diagnostic checks out-
lined in this article and suggest that simulations be
audited in similar fashion to a primary analysis. Burton
et al. [48] provide a general overview of how to conduct
simulation studies in medical research. We also recom-
mend that the characteristics of training datasets reflect
the planned study population as closely as possible (e.g.,
age, geographic distribution, and measurement
frequency).
Extensions to the basic methods in this article are

possible. For example, we have used simulation to make
mid-study design corrections, assuming lower levels of
variability at follow-up than those observed at baseline
(to reflect lower error due to improved measurement
techniques). We have also used the approach to design
multi-country trials where each country’s cluster sizes
and variance parameters differ, but a common test
across countries is desired. Other extensions that involve
more assumptions include more complex patterns of
attrition [3], optimization using cost functions [6], or
inclusion of covariates for either stratification or var-
iance reduction [7]. For situations in which existing data
are available to inform the parameters of the data gener-
ating model, one could consider adopting a Bayesian
approach and simulating the posterior distribution for a
design’s power. This would provide a full description of
estimated power, enabling the researcher to determine
not just the expected power for a given design but also,
for example, the probability that the power will be
above an unacceptably low value.

Conclusions
The use of simulation to estimate study design power
extends conventional power equations to accommodate
non-standard designs that often arise in practice. Inves-
tigators can estimate power for virtually any design as
long as training datasets are available to estimate the
appropriate variance parameters. The approach we have
described is universally applicable for estimating the
power of study designs used in epidemiologic and social
science research.
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