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Abstract

Background: Computerized adaptive testing (CAT) is being applied to health outcome measures developed as
paper-and-pencil (P&P) instruments. Differences in how respondents answer items administered by CAT vs. P&P can
increase error in CAT-estimated measures if not identified and corrected.

Method: Two methods for detecting item-level mode effects are proposed using Bayesian estimation of posterior
distributions of item parameters: (1) a modified robust Z (RZ) test, and (2) 95% credible intervals (Cr/) for the
CAT-P&P difference in item difficulty. A simulation study was conducted under the following conditions: (1)
data-generating model (one- vs. two-parameter IRT model); (2) moderate vs. large DIF sizes; (3) percentage of DIF
items (10% vs. 30%), and (4) mean difference in 6 estimates across modes of 0 vs. 1 logits. This resulted in a total of
16 conditions with 10 generated datasets per condition.

Results: Both methods evidenced good to excellent false positive control, with RZ providing better control of false
positives and with slightly higher power for Crl, irrespective of measurement model. False positives increased when
items were very easy to endorse and when there with mode differences in mean trait level. True positives were
predicted by CAT item usage, absolute item difficulty and item discrimination. RZ outperformed Crl, due to better
control of false positive DIF.

Conclusions: Whereas false positives were well controlled, particularly for RZ, power to detect DIF was suboptimal.
Research is needed to examine the robustness of these methods under varying prior assumptions concerning the
distribution of item and person parameters and when data fail to conform to prior assumptions. False identification

of DIF when items were very easy to endorse is a problem warranting additional investigation.

Background

Computerized adaptive testing (CAT) is widely used in
education and has gained acceptance as a mode for
administering health outcomes measures [1,2]. CAT
offers several potential advantages over conventional
(e.g., paper-and-pencil) administration, including auto-
mated scoring and storage of questionnaire data, and
reduction of respondent burden. Instruments devel-
oped for paper-and-pencil administration frequently
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form the basis for CAT. In these situations, the transi-
tion to computerized adaptive testing requires estab-
lishing the equivalence between CAT-administered
measures and their original paper-and-pencil version
[3,4]. A meta-analytic review of 65 studies comparing
computerized an paper-and-pencil administration of
patient-reported outcome measures suggests that
scores obtained by computer are comparable to those
obtained by conventional modes of administration [4].
This study, however, did not focus on CAT. Unlike
computer-based assessment, CAT selects items for ad-
ministration based on item parameters that, if not ac-
curate for CAT mode of administration, may diminish
the reliability or efficiency of CAT [5,6]. Item-level
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mode effects, in other words, may have a greater effect
on CAT compared to other assessment modalities. The
shift in item parameters resulting from changes in ad-
ministration mode reflects the presence of differential
item functioning (DIF), which can be defined as differ-
ential performance (e.g., differences in level of endorse-
ment) of an item between two or more groups
matched on the total score or measure [7,8]. This
paper will focus on the detection of DIF between CAT
and paper-and-pencil administrations of a measure.

Methods used for assessing DIF by mode of adminis-
tration fall into two general categories: (1) approaches
based on classical test theory (CTT), such as compari-
sons of item p values, representing percentage of en-
dorsement; and (2) methods based on item response
theory (IRT) [9-12], including comparisons of item diffi-
culty parameters. Confidence intervals of item endorse-
ment probabilities (i.e., p-values) have been found to
vary significantly by mode [13,14]. Pommerich [13] also
presented the proportion of items statistically favoring
each mode. In another study [15], item p-values and IRT
item difficulty parameters were compared and scatter-
plots of item parameters across mode were constructed.
Johnson and Green [16] compared p-values of items as
well as conducted a qualitative examination of error
types (e.g., transcription error, place value error, partial
answer, computation error, misunderstanding) made by
students in each mode. Keng, McClarty, and Davis [17]
examined differences in mode at the item level by com-
paring p-values and differences in chosen response cat-
egory and by computing IRT-based DIF tests. Finally,
Kim and Huynh [18] employed a robust-Z statistic to
determine whether differences in item parameters across
mode were statistically significant.

Though these studies often employed multiple meth-
ods of assessing item comparability, systematic compari-
sons across methods were not conducted. Nevertheless,
there is reason to believe that some methods, such as
item p-values may not be appropriate when detecting
mode effects involving CAT-administered items. That is,
differences in item p-values may not be valid indicators
of DIF if the samples completing each mode of assess-
ment differ in mean level on the measure. Moreover,
item p-values can be influenced by the selective adminis-
tration of items that takes place during CAT. For in-
stance, CAT typically selects items that have an
approximate probability of endorsement of 50% (i.e.,
items tailored to the individual to provide maximum in-
formation). Therefore, comparing CAT vs. P&P item p-
values would likely result in items erroneously flagged as
exhibiting DIF.

Several methods have been developed that attempt to
overcome the limitations of classical procedures for
detecting mode effects. Most of these methods are based
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on item response theory and involve comparisons of
item parameters after matching of respondents accord-
ing to trait level. Achieving accurate identification of
DIF based on an IRT framework requires precise esti-
mates of item parameters and person measures and the
use of an appropriate measurement model [6]. However,
a limitation of IRT-based methods is that missing data
(e.g., resulting from CAT administration) can reduce ac-
curacy in parameter estimates and in DIF detection
[19,20]. In their simulation study, Robitzsch and Rupp
[19] observed that when the missing data rate was 30%
and data were missing at random, mean bias (difference
between true and observed differences in item difficulty
between groups) was 0.60, nearly two standard devia-
tions above average bias across all conditions. CAT can
reduce the number of items administered by as much as
90%, depending upon the size and quality of the item
bank and criteria for stopping the test [21-23]. Therefore,
higher rates of bias would likely occur when examining
DIF in CAT-administered items with these methods.

Given the uncertainty in trait and item parameters,
some investigators have recommended methods to iden-
tify DIF based on Bayesian probability theory. Bayesian
approaches use probability distributions to model uncer-
tainty in model parameters. These probability distribu-
tions represent prior beliefs or assumptions concerning
the nature of the data and the level of uncertainty
regarding various parameters. For instance, an investiga-
tor may specify that item discrimination parameters ad-
here to a lognormal distribution with log mean of 0 and
variance of 0.5. The prior (particularly the prior vari-
ance) reflects uncertainty about the values before ob-
serving the data. Conversely, the posterior distribution
reflects updated knowledge about parameter values after
observing the data. Bayesian approaches make inferences
using the posterior distribution. Unlike frequentist sta-
tistics, Bayesian methods do not rely on asymptotic
(large-sample) theory in order to obtain standard
errors, making Bayesian methods particularly attractive
when small samples or missing data are involved.

Two general methods of DIF detection employing
Bayesian methods have been proposed. The first ap-
proach is the use of Bayesian procedures to directly esti-
mate DIF magnitude such as the Mantel-Haenszel (MH)
test [24]. Zwick and her associates [25-27] tested an em-
pirical Bayes (EB) formulation of the MH test and
demonstrated that EB results more closely approximated
targeted DIF values (i.e., values used to simulate DIF in
the item response data) compared to standard MH. The
latter finding was particularly true for the relatively small
(N=1,000 per group) sample size condition. Power ran-
ged from 63.8 to 81.4% depending on sample size and
mean difference in proficiency between groups. How-
ever, Zwick and Thayer [26] acknowledged that EB
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resulted in a higher Type I error rate (ranging from 10%
to 20%) compared to conventional MH.

A second approach involves estimation of the poster-
jor distribution of model parameters, which can be used
in subsequent DIF analyses [28-31]. Wang, Bradlow,
Wainer and Muller [31] examined DIF for a given item
by producing separate item difficulty estimates for each
group. Posterior distributions of the item difficulty par-
ameter (big; and big, for groups 1 and 2, respectively)
are computed, and from this a Bayesian p value repre-
senting the number of times (b - biz) >0 can be used as
an indicator of DIF. This procedure provided more ac-
curate results compared to standard MH DIF analysis,
especially when items were very easy to endorse [31]. In
a similar application [29] posterior distributions of profi-
ciency measures were used in two nonparametric regres-
sion models (one with and one without group
membership as a covariate) to compute posterior mean
p values for the likelihood ratio based on the two mod-
els. Using Bonferroni-adjusted p values and a total sam-
ple size of 900 simulees, the investigators were able to
obtain power of .90 to 1.00 and false-positive rates well
below the set alpha level of .05.

Despite these promising results, none of the studies
employing posterior distributions of item parameter esti-
mates assessed DIF in CAT-administered items. More-
over, to our knowledge there has been no application of
Bayesian methods to the assessment of DIF between
non-CAT and CAT-administered assessments. Standard
methods of assessing DIF can be problematic when com-
paring CAT- and P&P-administered data because of the
confounding of CAT item selection, sample differences
in trait level, and actual mode effects.

Rationale of the Study

It is common practice to employ paper-based forms
when validating and scaling an item bank for use in
CAT. Thus, it is important to determine that the result-
ing item parameters are not influenced by mode DIF. As
suggested earlier, current methods of assessing DIF may
not be appropriate when comparing adaptively and non-
adaptively administered items. One solution would be to
administer the entire item bank via computer and con-
ventional modes of administration and then employ
standard methods of DIF assessment. Whereas this ap-
proach could be used with small item banks, it would be
quite burdensome to respondents and likely require col-
lecting data apart from standard assessment practice
with very large item banks.

Other researchers have already faced this issue. For ex-
ample, to reduce respondent burden, the Patient
Reported Outcomes Information System (PROMIS) only
administered the entire set of initially developed PRO-
MIS item to a small set of individuals from the total
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PROMIS calibration sample. This has limited the PRO-
MIS collective’s ability to address some key issues, simi-
lar to what we raise here. Thus, while the less technical
approach is possible, we suspect the common problem
of needing to reduce respondent burden will generally
limit the application of the less technical approach, indi-
cating the need for alternative approaches. One alterna-
tive approach, which we present in this paper, is to
develop procedures appropriate for detecting mode DIF
in CAT vs. non-CAT-administered items, enabling as-
sessment of DIF using data collected as part of standard
assessment.

The purpose of the present study was to develop and
evaluate two approaches to assessing item-level mode
effects employing a Bayesian framework. In the following
sections we outline this framework and describe the de-
sign and results from a preliminary Monte Carlo simula-
tion study. The procedures are described and evaluated
with respect to false-positive (i.e., DIF is detected when
not simulated) and true-positive (i.e., DIF is detected
when simulated) detection rates under several study
conditions. We then examine factors associated with
true and false DIF identification.

Research Questions:

1. How well does each method detect item-level mode
effects as indicated by ROC analysis, true positive
and false positive rates? In the present study, true
positives are defined as identification of items as
exhibiting mode DIF when mode DIF is simulated,
which is also referred to as correct DIF detection.
Conversely, false positives refer to flagging of items
as exhibiting DIF when DIF was not simulated,
which is also referred to as incorrect DIF detection.

2. What factors influence correct (true positive) and
incorrect (false positive) detection of item-level
mode DIF using each procedure?

Methods

The methods employed in this study will be presented in
three main sections. First, we describe the development
and underlying assumptions of two Bayesian methods
for detecting item-level mode effects. Second, we de-
scribe the simulation study, including its design and data
generation procedures. The third section outlines the
analysis of the simulated data.

A Bayesian procedure for detecting item-level mode
effects

In the proposed model, analysis of mode effects involved
a three-step process:

Step 1. Estimate 6 using item response data pooled
across administration modes (CAT and P&P).
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That is, 8 is obtained using item parameters
based on the combined CAT and P&P response
data. This is to ensure that item parameters
estimated in subsequent steps are on a
common metric.

Using 6; obtained in Step 1, estimate the
posterior distributions of mode-specific item
parameters for subsequent comparison in

step 3.

Estimate DIF for each item common across
modes by assessing the difference in the
posterior distributions of the item parameters
(i.e., between ﬁjCAT and ﬂJP P) In the present
study we examined two approaches to making
this comparison. The first approach involved
calculating a variation of the robust Z statistic
[32] as shown in equation 1:

Step 2.

Step 3.

Med (ﬁjCAT _ ﬁfap)
(1)
0.74(1QR {ﬁf’” - ﬁj"“”’D

where Med is the median and IQR is the interquartile
range. The standard robust Z is asymptotically con-
sistent with a standard normal distribution while min-
imizing the effect of extreme values. It has been used
as a screening method for identifying stable items for
IRT linking and DIF procedures [18,32]. Unlike previ-
ous application of the robust Z in which the median
and interquartile range are based on point estimates
of parameters for all items in the instrument, here
these values are based on the posterior distribution of
the parameters for item j in each administration
mode.

The second approach involved constructing the 95%
credible interval (Crl) of the CAT vs. P&P difference for
item j’s difficulty parameter. This interval is computed
by obtaining the 2.5 and 97.5 percentiles of item j’s pos-
terior distribution of BjCAT - ﬁjP&P. In order to obtain a
single value reflecting the level of mode DIF, we also
computed the minimum difference of each bound of the
Crl from zero (referred to as ACrl). Note that ACrl = 0
if the credible interval includes zero. The following
priors were used in the model:

Robust Z; =

6; ~ Normal(0,1)

a; ~ Lognormal(0,0.5)

Bj ~ Normal(0,2)

Yy ~ Bernouli(P[Yy= 1|6, &, 3])

where the first value in parentheses for priors of 8, a;
and f; is the prior mean and the second is the prior
variance. These priors may be regarded as “semi-
informative.” They are similar to priors employed in
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earlier IRT studies, with the exception that we selected
a lognormal rather than a truncated normal prior for
the discrimination parameters [33-35].

The Markov chain Monte Carlo estimation consisted
of three parallel chains each with a separate and ran-
domly generated set of starting values for model para-
meters. For each chain, the first 1,000 MCMC iterations
were discarded (burn-in phase), followed by 500 itera-
tions per chain retained for subsequent analysis. The
total number of iterations and the length of the burn-in
phase were chosen on the basis of preliminary examin-
ation of trace plots of item and person parameters which
revealed good convergence of the three chains of param-
eter estimates (analysis results are available upon re-
quest). Using additional iterations or a longer burn-in
did not change DIF analysis results.

Simulation study

A preliminary Monte Carlo simulation study was per-
formed to assess the accuracy of the proposed method
for detecting item-level mode effects. Two interests
guided the design and implementation of this simula-
tion: First, in this preliminary study we decided to re-
strict our focus to uniform DIF instead of or in addition
to non-uniform (i.e., discrimination) DIF. Second, we fo-
cused on instruments fitting a one- (1PL) or two-
parameter (2PL) IRT model [9-11], which are commonly
applied to health outcome measures. . Under the two-
parameter (2PL) model, let i index respondents (i =
1...N) and let j index items (j = 1...L). The probability
of respondent i endorsing item j can be expressed as

woloufo-1)
1+ exp (D“J [ei - ﬁi] )

P(Yy=1|w.5,.6,) = 2)

where Yj is the response to item j by respondent i, a; is
the discrimination parameter and fg; is the difficulty par-
ameter for item j, 6; is respondent i’s measure on the la-
tent trait, and D is a scaling constant. In our
simulations, D = 1.702 which makes the estimated re-
sponse probabilities consistent with the normal ogive
model and is used by the IRT estimation software
employed in the study. In the one-parameter (1PL) case,
all a; are equal across items.

Study Design

In this study, the following factors were investigated: (1)
data-generating model (one-parameter [1PL] vs. two-
parameter [2PL] logistic IRT model); (2) DIF magnitude
(|B<AT = B7%P|) of 0.42 vs. 0.63 logits, which corresponds
to “B” and “C” class DIF, respectively, according to Edu-
cational Testing Services criteria [25]; (3) DIF percentage
(10% vs. 30% of items in the item bank), and (4) mean
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difference in 6 estimates across modes of 0 vs. 1 logits.
We employed a fully crossed research design that
resulted in a total of 16 conditions, with 10 replications
(datasets) per condition.

Data Generation

Data were generated for the present study in three steps:
(1) generation of validation (paper-and-pencil) data, (2)
generation of CAT item response data, and (3) CAT
simulation, which produced item response datasets con-
taining only those items selected by the CAT. Each of
these steps is outlined in the following sections.

Generation of the Validation (Paper-and-Pencil) Item
Parameters and Response Data

For each IRT model, a set of item parameters and corre-
sponding item response datasets were generated. Both
item banks consisted of 100 items. In the 1PL model,
discrimination (@;) parameters for all items were set to
1.0; in the 2PL item bank, a; parameters were randomly
generated from a lognormal distribution with log mean
= 0 and SD = 0.5, with values restricted to a range of 0.5
to 2.5. Discrimination parameters were limited to this
range because items with very low discrimination (i.e.,
less than 0.5) are rarely used in item banks, whereas
highly discriminating items (i.e, true discrimination
parameters greater than 2.5) tend to be poorly estimated
(i.e., positively biased) parameters [36]. For both item
banks, item difficulty (f;) parameters were generated
from a uniform distribution ranging from -3.0 to 3.0
logits, in increments of 0.25 logits. Person measures (6;)
for 500 simulees were generated using an N(0, 1) stand-
ard normal distribution.

Parameter Estimation

The generated item-response data were then used to es-
timate IRT item parameters (see Additional file 1). For
both datasets, the standard deviation of the theta esti-
mates was set to 1.0 in order to identify the model. In
the 1PL case, discrimination parameters were also con-
strained to be equal across items. Maximum likelihood
estimation was employed rather than a Bayesian proced-
ure in order to avoid potential confounds between
Bayesian priors used in item calibration and subsequent
DIF analysis. Correlations between true and estimate j;
parameters were 0.99 and 1.00 and root mean squared
error (RMSE) values were 0.11 and 0.15 for 1PL and
2PL-generated datasets, respectively. For the 2PL data,
correlation between true and estimated a; parameters
was .9 and RMSE was 0.14. As previously observed [36],
RMSEs for the discrimination parameters increased with
higher values of @;. The estimated item parameters were
used in subsequent CAT simulations. RMSEs and corre-
lations between item parameters and their estimates
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were consistent parameter recovery results presented
elsewhere [37-39].

Generation of CAT Item Response Data

Prior to performing CAT simulations, response data for
all 100 items in the simulated item banks described
above were generated for a total of 3000 simulees in
each iteration. This sample size permitted examination
of the effect of CAT item usage on DIF detection rates.
Employing the study variables described above, a total of
160 item-response datasets were created and used for
CAT simulation. For each dataset, person measures
were generated from an N(ycar, 1.0) distribution, where
tcat = 0.0 or 1.0. Non-DIF-item response data were gen-
erated using the estimated parameters in Additional file
1. Items simulated to exhibit mode effects (DIF) were
randomly selected according to the percentage of DIF
items (10% or 30%) for the specified simulation condi-
tion. The direction of DIF (i.e., easier vs. more difficult
to endorse in the CAT sample) was also randomized.
Specifically, a value of 1 (harder to endorse) or —1 (easier
to endorse) was generated from a uniform discrete distri-
bution. This value was then multiplied by the appropriate
DIF magnitude (0.42 or 0.63 logits), with the resulting
value added to the corresponding f5; parameter (see Add-
itional file 1 for table of generated and estimated item
parameters and Additional file 2, Additional file 3, Add-
itional file 4 for data files containing these parameters
and item response data used in the simulation) The «;
parameters for the generated CAT item responses were
the same as those used to generate the initial P&P data.

CAT Simulation

Each generated dataset was then used in a series of CAT
simulations. In order to ensure comparability across
conditions, a fixed-length CAT consisting of 30 adminis-
tered items for each simulee was conducted. This stop-
ping rule is similar to that used in a previous
investigation of CAT and DIF [40]. All CAT simulations
employed maximum-likelihood estimation and item se-
lection based on Fisher’s information criterion, a stand-
ard CAT algorithm. Each CAT simulation produced the
following data: (1) item responses of items selected dur-
ing the simulated CAT session, (2) index numbers iden-
tifying the items selected by CAT, and (3) estimated
theta and standard error of theta for each CAT simulee.
The originally simulated P&P response data and simu-
lated CAT item-response data were employed in the DIF
analysis procedures described earlier (see “A Bayesian
Procedure for Detecting Item-Level Mode Effects”).

Analysis
Prior to addressing the main research questions, descrip-
tive analyses were performed for both the CAT
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simulation results and the RZ and Cr{ statistics. Descrip-
tive statistics for the CAT simulations included CAT-to-
full-scale correlations and mean standard errors (MSE),
Distributional properties of the RZ and CrI statistics, in-
cluding mean, standard deviation, skewness, kurtosis,
and values corresponding to the 2.5 and 97.5 percentiles
were calculated.

Detection of Mode Effects (Research Question 1)

The overall performance of the robust Z (RZ) and
Bayesian credible interval (Crl, as measured by the mini-
mum difference of Crl to 0 or ACrl) was assessed first
by examining the sensitivity, specificity, and correct clas-
sification rates using cutoff values for a = .05 (i.e., |RZ]
> 1.96 and 95% ACrI # 0).

Logistic regression and ROC analyses were also per-
formed to examine the predictive accuracy of each stat-
istic without reference to specific cutoff values. Since
both RZ and ACrI can have negative and positive values
that are indicative of mode DIF, we first fit a logistic re-
gression model with a quadratic term (i.e., RZ + RZ* and
ACrI + ACrI * for robust Z and credible interval models,
respectively) to predict simulated mode DIF. ROC ana-
lyses were then conducted based on predicted probabil-
ities from each logistic regression model. The difference
in the area under the ROC curves (AUCs) was also
assessed for statistical significance using a chi-square
procedure [41]. Descriptive statistics (percentages) were
used to summarize the true positive and false positive
mode-of-administration DIF results in the simulation
study.

Factors Related to True and False Positive Mode Effects
(Research Question 2)

A series of multilevel random-intercept logistic regres-
sion analyses were performed at both univariate (single
predictor) and multivariate levels. At the multivariate
level, four models were developed, one for each statis-
tical test (RZ and ACrl) and each DIF decision (correct
and incorrect). In each model, the main predictors are:
(a) size of DIF, (b) percentage of DIF items in the data-
set, (c) IRT model used to generate the response data,
(d) difference in mean performance between the P&P
and CAT samples (0 vs. 1 logit), (e) number of times a
given item was administered by CAT (item usage), (f)
item difficulty, and (g) item discrimination, the latter
two predictors based on the estimated parameters using
the simulated P&P dataset. Preliminary analyses revealed
that absolute values of item difficulty better predicted
correct DIF detection, whereas signed item difficulty
values more accurately predicted incorrect DIF deci-
sions. With the exception of binary variables (i.e., IRT
model, difference in CAT vs. P&P mean trait level), pre-
dictors were normalized by dividing each variable by two
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standard deviations prior to analysis [42]. AUC values
derived from ROC analyses based on each model and
each individual were also reported to indicate predictive
efficacy. Random intercepts were estimated at both item
and dataset levels.

Relationship of Item Difficulty to Power and Type | Error

In order to provide a clearer picture of the relationship
of item difficulty with power and Type I error, a plot of
mean power and Type I error by P&P item difficulty was
created. This plot was based on a series of linear regres-
sion analyses to predict mean power and Type I error
for both RZ and Cr! using the paper-and-pencil item dif-
ficulties and their higher level (i.e., quadratic, cubic,
quartic, and quintic) terms as predictors. Predicted
values from these regression analyses were used to cre-
ate the plot.

Software

Generation of item and person parameters and item re-
sponse data was performed in the R statistical package
[43]. Estimation of P&P item parameters was performed
using MPlus version 6.0 [44]. CAT simulations were per-
formed with Firestar version 1.33 [45]. For the DIF pro-
cedures, estimation in Steps 1 and 2 of the DIF analyses
outlined above was performed using WinBUGS version
1.4.3 [46]; see Additional file 5], which has been used in
previous IRT applications [28,30,39]. Specifically, we
called WinBUGS from R using the R2WinBUGS package
[47], the latter used to retrieve the posterior estimates
generated by WinBUGS for subsequent analysis. De-
scriptive analyses and analyses of the simulation results
were performed in Stata version 11.0 (Stata Corp., Col-
lege Station, Texas).

Results

Descriptive analyses

CAT Simulation

The CAT simulations are summarized in Table 1. As
seen in Table 1, CAT to full-instrument correlations
were .97 across all conditions. MSEs were 0.26 for the
1PL and 0.23-0.24 for the 2PL conditions. Comparable
results were observed as a function of DIF magnitude
and percentage and mean 64T,

With respect to the number of times a given item was
administered by CAT (CAT item usage), the median
number of item administrations across items and simu-
lation conditions is 553 (IQR = 119—1318). The median
and IQR was 586 (144—1312) and 504 (87—1333) for
1PL and 2PL item banks, respectively. Item usage was
comparable for items simulated with DIF (Med=557.5,
IQR = 123—1315) and non-DIF items (Med = 551, IQR
= 117—1320). For RZ, an item usage of > 369 and > 422
were associated with power to detect DIF of 80 percent
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Table 1 Summary of CAT simulations by underlying
measurement model, DIF size, mean CAT measures and
percentage of DIF items

IRT CAT to Full-Scale 6 Mean Standard
Model Correlation Error

1PL 2PL 1PL 2PL
DIF Size 042 0.63 042 063 042 0.63 042 0.63
Diff. Mean 6 =0
DIF % =10 097 097 097 097 026 026 023 024
DIF % = 30 097 09 097 097 026 026 024 024
Diff. Mean 6 =1
DIF % =10 097 097 097 097 026 026 024 024
DIF % = 30 097 096 097 097 026 026 024 024
Average 097 097 097 097 026 026 024 024

1PL = one-parameter item response model; 2PL = two-parameter item
response model; CAT = computerized adaptive testing; DIF = differential item
functioning; IRT = item response theory; 6 = person measure.

for the 1PL and 2PL conditions, respectively. For Crl,
80 percent power was associated with CAT item usage
of 305 and 341 for 1PL and 2PL conditions, respect-
ively. In the 2PL condition, item usage was positively
correlated with item discrimination (r = 46, p < .01),
reflecting the fact that CAT-bases item selection on
item discrimination.

Robust Z and 95% Credible Interval Indices

Among non-DIF items, RZ had a mean of -0.10 and a
standard deviation of 0.82. Mean ACrl was 0.01
(§D=.06). Though both indices were positively skewed
and leptokurtotic, this was particularly true for ACrl (RZ
skewness = 0.26, ACrI skewness = 14.94; RZ kurtosis =
1.46; ACrI kurtosis = 253.70). RZ values of —-1.60 and
1.53 corresponded to the 2.5 and 97.5 percentiles for
items not simulated with mode DIFE, respectively. Both
2.5™ and 97.5™ percentiles corresponded to a ACrI of
0.00 for non-DIF items.

Detection of mode effects (Research question 1)

Correct classification, sensitivity, and specificity were
examined using expected cutoff values at a = .05 level, i.e.,
|RZ| > 1.96 and ACrl # 0. Employing these criteria
resulted in correct classification, sensitivity, and specifi-
city of 92.4%, 69.1%, and 98.1% for RZ and 92.3%, 71.8%,
and 97.2% for ACrl, respectively. Since our descriptive
results presented above suggest that both indices are
non-normal, these cutoff values may not be appropriate.
We therefore performed logistic regression and ROC
analyses to examine the relative performance of the
two indices without reference to specific cutoff values.
ROC analyses revealed an area under the curve (AUC)
of 91 and .82 for RZ and ACr, respectively. This dif-
ference in AUCs was statistically significant [X*(1) =
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545.06, p < .0001]. This indicates that RZ values are sig-
nificantly stronger predictor of the presence of mode
DIF compared to ACrI values. Further analyses revealed
that empirically derived cutoff values for both RZ and
ACrl may help to improve sensitivity or specificity.
However, since these results are preliminary and for
convenience purposes, results presented in subsequent
sections of the paper will use the original cutoff values
of |[RZ| > 1.96 and ACrl # 0.

Table 2 summarizes mean true positive and false posi-
tive percentages for each of the simulation conditions.
Overall, the false positive rate was well controlled, par-
ticularly with RZ, with an average false positive rate of
1.9% and ranging from 0.1% to 4.9%. False positive rate
was somewhat higher for ACrI, averaging 2.8% and ran-
ging from 0.1% to 6.9%. The false positive rate for RZ
was higher under the large (0.63) DIF effect size condi-
tion (RZ: 2.3%; ACrI: 3.1%) relative to the medium (0.42)
DIF effect size (RZ: 1.5%; ACrI: 2.4%), and when 30% of
the items exhibited DIF (RZ: 2.2%; ACrI: 3.1%) relative
to the 10% condition (RZ: 1.5%; ACrI: 2.4%). False posi-
tive rates also increased as the difference in mean trait
levels between the CAT and P&P modes increased from
0 (RZ: 2.8%; ACrl: 3.0%) to 1.0 logits (RZ: 4.4%; ACrL:

Table 2 True positive and false positive rates as a
function of generating IRT model, DIF size, number of
DIF items, and mean difference between modes

IRT DIF  DIF Diff. Robust Z Bayes 95% Crl
Model Size %  Mean 0 P%  FP% P% FP%
1PL 042 10 0 5490 091 60.35 1.36

1 70.00 236 66.35 3.88

30 0 6966  0.29 70.67 044

1 71.09 1.05 7191 258

0.63 10 0 7800 056 83.00 0.89
1 7500 356 81.00 522

30 0 8267 257 87.00 3.00

1 7633 214 79.33 329

2PL 042 10 0 6082  0.06 60.42 0.06
1 5824 209 55.10 3.89

30 0 62.71 0.14 66.09 0.28

1 66.00  4.86 66.33 6.86

063 10 0 7200 033 77.00 0.55
1 7000 239 77.00 3.56

30 0 7233 314 7767 3.14

1 6633 333 69.00 5.00

Average 69.13 1.86 71.76 2.75

1PL = one-parameter item response model; 2PL = two-parameter item
response model; CAT = computerized adaptive testing; DIF = differential item
functioning; DIF% = percentage of items simulated with DIF; FP% =
percentage of false positive DIF results; IRT = item response theory; TP% =
percentage of true positive DIF results; 6 = person measure.
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5.8%). The false positive rate increased slightly when
data were generated and CAT conducted using the two-
parameter IRT model (RZ: 2.0%; ACrl: 2.9%) relative to
the 1PL condition (RZ: 1.7%; ACrI: 2.69%). Though these
results are promising, it should be noted that 10.2% of
datasets evidenced false positive rates above the nominal
.05 rate using RZ and 15.1% exceeded the 5% false posi-
tive threshold when ACrl was employed.

The present findings revealed power (true positive)
rates of 69.1% and 71.8% for RZ and ACrI, respectively.
Power was highest in the 1PL condition when DIF was
large (0.63 logits) and the percentage of items with DIF
was high (30%) and the mean difference in trait level be-
tween CAT and P&P modes was 0 (RZ: 82.7%; ACrI:
87.0%). Power was lowest for RZ in the 1PL, medium
DIF effect size (0.42) 10% DIF items and mean 6<*T-
6P = 0 condition (54.9%) whereas for ACrI it was low-
est under the 2PL, medium DIF effect size, 10% DIF
items, and mean 6“*T-0"%" = 1.0 (55.1%). For RZ, the
average true positive rate was 64.2% when DIF size =
0.42 and 74.1% when DIF size = 0.63 logits. Similarly,
true positive rates of 64.7 and 78.9 were observed using
ACrlI for medium and large DIF effect sizes, respectively.

Factors related to true and false positive mode effects
(Research question 2)

We examined the relationship of study independent vari-
ables, CAT item usage and item parameters on correct
(true positive) and incorrect (false positive) DIF deci-
sions by conducting a series of random-intercept multi-
level logistic regression analyses, with separate models to
predict correct and incorrect DIF decisions based on RZ
and ACrl. IRT model used to generate the data and in
CAT, DIF size, percentage of DIF, mean difference in
trait level, item difficulty, and discrimination (based on
values estimated from the simulated P&P data) were
used to predict correct and incorrect identification of
mode effects and are presented in Tables 3 and 4, re-
spectively. At the univariate level, correct DIF detection
was significantly and positively predicted by DIF size,
CAT item usage, and item discrimination and signifi-
cantly and inversely related to the 2PL model and abso-
lute values of P&P item difficulty parameters for both
RZ and ACrI statistics. ROC analyses at the univariate
level revealed that CAT item usage was most predictive
of correct DIF decisions (AUCs=0.94 and 0.92 for RZ
and ACrI, respectively) followed by absolute item diffi-
culty (AUCs=0.85 and 0.83 for RZ and ACrI, respect-
ively). All significant predictors at the univariate level
were also significant in the multivariate model. Though
not significant at the univariate level, mean difference in
mean trait level by mode of 1 logit was significantly and
inversely related to true mode DIF detection in the
multivariate model. It is noteworthy that both CAT item
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Table 3 Univariate and multivariate multilevel logistic
regression to predict correct detection of mode effects
defined by Robust Z and Bayesian 95% credible interval
as a function of study variables

Model/Predictor Univariate Multivariate

OR AUC®  OR 95% CI
Robust Z (Model AUC = 0.95)
Size of DIF 149%* 055 342 (2.58-4.54)
Percentage of DIF 117 052 1.20 (0.89,1.61)
2PL IRT Model® 0.76** 053  047% (0.35,0.64)
Diff. Mean 6 = 1.0 0.99 050  0.66%* (0.50,0.87)
CAT Item Usage® 21133.86** 094 3111.68** (1417.85,6829.03)
Absolute Item Diﬁ‘icultyd 0.03** 0.85 0.10%* (0.07,0.14)
Item Discrimination® 3.62% 060  3.02% (2.344.17)
Bayesian 95% Credible Interval (Model AUC = 0.93)
Size of DIF 1.73%* 056  3.52%* (2.73/4.53)
Percentage of DIF 117 052 1.16 (0.89,1.50)
2PL IRT Model® 074* 053  0.50** (0.39,0.65)
Diff. Mean 6 = 1.0 091 049  0.60** (0.47,0.77)
CAT Item Usage® 246829 092 505.64*  (264.29,967.37)
Absolute Item Dii‘ficultyd 0.04** 083  0.15** (0.11,0.20)
Item Discrimination® 2.86%* 0.58 1.99%* (1.54,2.56)

Correct Detection of Mode Effects = true positive detection of mode DIF among
items simulated with mode DIF; AUC = area under the ROC curve; Cl = 95%
confidence interval; IRT = item response theory model used to generate response
data and parameters used in CAT; CAT item usage = number of times a given
item was administered by CAT divided by 100; * p < .05; ** p < .01.

usage and absolute item difficulty were significant pre-
dictors in the multivariate models given that these vari-
ables are strongly and negatively correlated (r=-.67),
indicating that items of high and low difficulty are admi-
nistered less frequently by CAT.

For the RZ procedure, univariate logistic regression
analyses revealed that the following were significantly
and positively associated with increased false-positive
DIF results: size of DIF, mean difference in mean trait
level by mode, CAT item usage, and item discrimination
(see Table 4). Conversely, item difficulty was inversely
associated with false positive results, indicating that
items of higher difficulty were less likely to be incor-
rectly flagged as exhibiting mode effects. These predic-
tors were also significant at the multivariate level with
the exception of item discrimination. For the Crl pro-
cedure, size of DIF and difference in mean trait level by
mode significantly and positively predicted false-positive
DIF results, whereas item difficulty was significantly and
inversely associated with false positive mode DIF. These
factors were also statistically significant in the multivari-
ate model. CAT item usage was also significantly and
positively predictive of false positive DIF results in the
multivariate model. Based on AUCs, item difficulty was
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Table 4 Univariate and multivariate multilevel logistic
regression to predict incorrect detection of mode effects
defined by Robust Z and Bayesian 95% credible interval
as a function of study variables

Model/Predictor Univariate Multivariate

OR AucC? OR 95% CI
Robust Z (Model AUC = 0.77)
Size of DIF 1.93%* 0.55 201** (1.36,2.97)
Percentage of DIF 144 0.55 148 (0.99,2.20)
2PL IRT Model 1.14 0.52 0.96 (0.63,1.46)
Diff. Mean 6 = 1.0 331% 0.59 3.95%* (2.56,6.08)
CAT Item Usage 1.91%* 0.54 4.17%* (3.11,5.60)
[tem Difficulty 0.28** 0.62 0.12%* (0.08,0.19)
[tem Discrimination 1.64%* 0.56 123 (0.96,1.58)
Bayesian 95% Credible Interval (Model AUC = 0.74)
Size of DIF 1.62% 0.55 1.61%% (1.20,2.15)
Percentage of DIF 133 0.53 1.30 (0.97,1.75)
2PL IRT Model 1.14 052 1.08 (0.80,1.47)
Diff. Mean 6 =10 1.28E+08** 0.62 4.01%* (290,5.55)
CAT Item Usage 0.96 044 236 (1.82,3.06)
Item Difficulty 0.30** 065 0.16** (0.11,0.22)
[tem Discrimination 1.19 0.51 1.02 (0.82,1.26)

Incorrect detection of mode effects = False positive identification of DIF due to
mode among items not simulated with mode DIF; AUC = area under the ROC
curve; Cl = 95% confidence interval: IRT = item response theory model used to
generate response data and parameters used in CAT; CAT item usage = number of
times a given item was administered by CAT divided by 100; * p < .05; ** p <.01.

the single best predictor of false positives in DIF identifi-
cation for both RZ and Crl, followed by difference in
mean trait level between modes. The overall model
AUCs were 0.77 and 0.74 for RZ and ACrI DIF indices,
respectively.

Relationship of Item Difficulty to Power and Type | Error

In order to better understand the performance of RZ
and Crl at varying levels of item difficulty, we plotted
mean true and false positive rates for both RZ and Crl
as a function of the P&P item difficulty parameters (see
Figure 1). This plot reveals that mean false positive rates
were well controlled (under the 5% nominal rate) except
when item difficulty fell below -2.5 logits. Form -2.5 to
-3.5 logits, false positive rate increased from 2% to 15%
and from 3% to 20% for RZ and Crl, respectively. Con-
versely, true positive rate was > .80 between —1.5 and 2.0
logits for both procedures, though power for Crl was
slightly higher.

Discussion

Bayesian methods have been widely used in IRT and
have received considerable attention in DIF analysis.
However, their application to detecting DIF between
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CAT and conventional modes of administration has
received relatively little attention. Thus, this study
sought to develop and test methods for assessing CAT
vs. P&P mode DIF employing a Bayesian framework.
The present study revealed that the robust Z (RZ) and
Bayesian credible interval (Crl) methods generally
showed good control of false positive DIF results. Power
as measured by the true-positive rate varied considerably
for both methods but was consistent with previous
reports [25-27]. The Crl method resulted in slightly
higher power, but this was offset by a higher false posi-
tive rate relative to RZ. ROC analysis revealed that RZ
significantly outperformed Crl, which appears mainly at-
tributable to improved control of false positives. The
results of the study indicate that neither RZ nor ACrI
conform to a standard normal or similar distribution. In
fact, RZ and particularly ACrI evidenced positive skew-
ness and kurtosis. Thus, empirically derived cutoff values
for each statistic may yield improved results. Neverthe-
less, the use of conventional cutoff values (e.g., 1.96 for
RZ at a = .05) is not likely to increase Type I error.

CAT item usage was found to be the single best pre-
dictor of detecting simulated mode effects, followed by
absolute item difficulty. In fact, the multivariate model
performed only slightly better than when CAT item
usage was the only predictor. For items with DIF, those
items administered most often by CAT were more likely
to be detected than items administered less frequently.
This is not surprising given the wide variability in the
frequency that various items were administered during
the CAT simulations. The frequency an item is adminis-
tered by CAT could therefore form the basis of power
analysis conducted prior to DIF analysis for a given item.
This would be particularly useful in the context of on-
going data collection, potentially improving power and
minimizing analysis time.

There are two likely explanations for the observed re-
lationship between absolute item difficulty and power in
DIF detection. First, items with difficulty parameters
closest to the mean theta values will be more likely to be
administered by CAT. Since measures with mean trait
levels of 0 or 1 logit were simulated, items in this range
of difficulty would be most frequently administered. Sec-
ond, items towards the extremes of the measurement
continuum are less precisely estimated (i.e., have larger
standard errors). Thus, power to detect DIF in items that
are very easy or difficult to endorse is lower than that
for items of average difficulty. This would likely explain
why absolute item difficulty was a significant predictor
of power even after controlling for CAT item usage.
These findings may in part reflect the use of a fixed-
length CAT during the simulation. In the case of a
variable-length CAT, more items would likely be admi-
nistered to simulees at the extremes of the trait
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continuum in order to achieve sufficient measurement
precision, including items that are very easy or difficult
to endorse. Conversely, we would expect fewer items to
be administered to simulees who are in the center of the
trait distribution under a variable-length CAT.

With respect to incorrect DIF decisions, easier-to-
endorse items were more likely to be erroneously flagged
than more difficult items. This finding is in contrast to
Wang, Bradlow, Wainer and Muller [31] who found that
unlike the standard Mantel-Haenszel test , a Bayesian
approach did not result in elevated false positive errors
for easy items. There are a number of differences be-
tween the Wang, Bradlow, Wainer and Muller study and
the present investigation that may account for the differ-
ential findings. The former study did not examine DIF
in CAT-administered items, employed a testlet model,
and analyzed DIF using posterior p values. Further, in
Wang, Bradlow, Wainer and Muller, Type I error was
examined in the absence of DIF items. Conversely, the
present study assessed Type I error (false positive DIF
results) in which some DIF items were present, thus
contaminating the estimated measures used in group
matching. Research is clearly needed to determine the
causes of elevated false positive rate for easy-to-endorse
items. Two possible avenues of research in this area in-
clude: (1) further examination of different priors for item
parameters and their effect on DIF detection for easy-to-
endorse items, and (2) an iterative process of identifying
DIF items and then removing or appropriately weighting
them in the estimation of person measures.

As might be expected, DIF magnitude (i.e., the differ-
ence between CAT and P&P item parameters for a given

item) was significantly and positively related to power.
The same was not true for the percentage of items with
DIF in the item bank. The latter result suggests that the
power to detect a single DIF item is not significantly
affected by the presence of other DIF items in the bank
which may "contaminate" the person measures.

The results of this study revealed a positive relation-
ship between item discrimination and power to identify
items with mode DIF. One possible explanation for this
finding is that CAT using a 2PL model and maximum
information item selection will tend to select items with
higher discrimination parameters for administration. In
other words, DIF in high discriminating items may be
easier to detect because these items are administered
more frequently in CAT. Yet the results of the multivari-
ate logistic regression analysis failed to support this con-
clusion. Item discrimination remained statistically
significant even when controlling for CAT item usage.
High item discrimination therefore appears to enhance
power in mode-effect detection. This finding is corrobo-
rated by previous DIF research examining the relation-
ship of item discrimination to power using several
analytic procedures [48,49]. Using the RZ procedure,
item discrimination was positively associated with false
DIF results at the univariate level, though this effect was
no longer significant at the multivariate level. The latter
findings partially confirmed previous studies that
reported a positive relationship between item discrimin-
ation and Type I error rate for uniform DIF [50,51].

For both RZ and Crl, power to detect DIF was lower
in the 2PL condition. This appears to be related to some
extent to CAT item usage. Though the number of items
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administered to each simulee was the same across the
two conditions, median CAT item usage was lower
(Med=504) in the 2PL than in the 1PL (Med=586) con-
dition. However, the logistic regression results indicate
that IRT model remained significant even when CAT
item usage was included in the model. Thus, CAT item
usage may not completely explain why power was lower
in the 2PL condition. Though these findings are based
on a small number of replications per condition and
need to be interpreted cautiously, the observed relation-
ship between measurement model and power to detect
mode effects warrants further exploration.

In addition to the effect of item parameters, false posi-
tive DIF results were significantly associated with DIF
size and mean difference in trait level between CAT and
P&P administration modes. These effects likely reflect
problems with the trait estimate used as the matching
variable in the DIF analysis. Items with large DIF effects
and mean differences in trait level between groups limit
the effectiveness of matching, as has been observed in
previous DIF studies [50-53]. These results highlight the
need for careful sampling of respondents who complete
each form of the instrument and assessment of trait-
level differences prior to assessment of mode effects.
The percentage of DIF items in the item bank was not
associated with false DIF results. Though false positive
rates were smaller in the 10% compared to the 30% DIF
conditions, DIF percentage was not found to be signifi-
cantly predictive of false positive DIF in either the uni-
variate or multivariate logistic regression models for
either RZ or Crl. Note that due to the computational
demands involved in estimating posterior distributions
of parameters, we decided not to perform item purifica-
tion in this simulation.

The strength of Monte Carlo simulation lies in its abil-
ity to systematically vary several factors thought to affect
identification of simulated effects. In this study, several
factors were directly examined with respect to detection
of mode-of-administration DIF, including DIF size, per-
centage of DIF items, and mean difference in trait level
between modes, item response model, and analytic pro-
cedure. We also examined the effects of variables not
part of the research design, including CAT item usage,
item discrimination, and item difficulty parameters. A
particular strength of the study is the examination of
CAT item usage rather than sample size as a factor
related to identification of DIF.

Nevertheless, our study has several limits. For ex-
ample, several other factors were not considered in the
simulation. Of particular importance is the degree to
which the mean, variance, and shape of distributions of
parameters are consistent with specified priors in the
Bayesian estimation model. Though differences in mean
trait levels were examined, deviations from prior
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assumptions concerning parameter variances or distribu-
tion types were not examined. For instance, there is a
need to conduct further studies examining the potential
effect of skewed theta and item parameter distributions
on the performance of DIF procedures [24]. Methods of
CAT item selection and stopping rules also deserve fur-
ther attention. There is also a need to assess the RZ and
Crl procedures in identifying items exhibiting non-
uniform mode DIF. Additional limitations of the present
study include the small number of replications per ex-
perimental condition, the use of a fixed-length CAT and
fixed item bank size.

Also, we intentionally did not address non-uniform
DIF. Thus limits our study to conclusions about uniform
DIF only. Importantly, though, no theoretical reasons
exist to preclude conducting similar analyses on non-
uniform DIF. However, given the nascent status of re-
search in this field, we choose to focus on a single type
of DIF. Our future research will hopefully address non-
uniform DIF in one study and both simultaneously in a
final study. By addressing each in a stepwise and piece-
meal fashion, we hope to avoid spurious conclusions
that could arise by addressing all simultaneously in the
initial study. For example, we did not want to the pres-
ence of non-uniform to influence the detection of uni-
form DIF using these methods we developed here. Final,
we only used simulated data. Future studies employing
these procedures with real data are also needed.

Conclusions

This study yielded mixed results concerning the meth-
ods for assessing mode effects. Whereas Type I error
was well controlled, power to detect DIF was subopti-
mal, though the present findings were consistent with
those reported in similar studies [25-27]. The modified
robust Z test provided better control of the Type I error
rate compared to Crl. True positive rates were primarily
predicted by CAT item usage, absolute item difficulty
and item discrimination. Further research is needed to
examine the robustness of the method under varying
prior assumptions concerning the distribution of item
and person parameters and when data fail to conform to
these prior assumptions. False identification of DIF when
items were very easy to endorse is a problem requiring
additional investigation.

Additional files

Additional file 1: Appendix A. Generating and Estimated Item
Parameters for the Two Simulated Item Banks (Validation data) Based on
the One-and Two-Parameter IRT Models, Respectively.

1PL = one-parameter item response model; 2PL = two-parameter item
response model; a = simulated discrimination parameter; 8 = simulated
difficulty parameter; = estimated discrimination parameter; 8 = estimated
difficulty parameter.
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