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Abstract

Background: Intraclass correlation coefficients (ICCs) are used in a wide range of applications. However, most
commonly used estimators for the ICC are known to be subject to bias.

Methods: Using second order Taylor series expansion, we propose a new bias-corrected estimator for one type of
intraclass correlation coefficient, for the ICC that arises in the context of the balanced one-way random effects model.
A simulation study is performed to assess the performance of the proposed estimator. Data have been generated
under normal as well as non-normal scenarios.

Results: Our simulation results show that the new estimator has reduced bias compared to the least square
estimator which is often referred to as the conventional or analytical estimator. The results also show marked bias
reduction both in normal and non-normal data scenarios. In particular, our estimator outperforms the analytical
estimator in a non-normal setting producing estimates that are very close to the true ICC values.

Conclusions: The proposed bias-corrected estimator for the ICC from a one-way random effects analysis of variance
model appears to perform well in the scenarios we considered in this paper and can be used as a motivation to
construct bias-corrected estimators for other types of ICCs that arise in more complex scenarios. It would also be
interesting to investigate the bias-variance trade-off.

Background
The intraclass correlation coefficient (ICC), often denoted
by ρ, was first introduced by Fisher [1] to study the familial
resemblance between siblings. Since then it has obtained a
wide range of applications in many areas such as psychol-
ogy, epidemiology, genetics and genomics. See Donner [2]
for an extensive review of inference procedures. In psy-
chology, it plays a fundamental role in studying inter-rater
reliability [3,4]. It is used as a measure of heritability in
classical genetic linkage studies to quantify the propor-
tion of variance in traits of interest explained by genetic
factors [5]. Intraclass correlation obtained from genome-
wide association data has recently been used to provide
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a better estimate of heritability [6] . Sensitivity analysis
is another application where ρ may be used as a means
of investigating the effectiveness of an experimental treat-
ment [7]. The intraclass correlation has also found some
interesting application in genomics where it has been used
to assess methodological and biological variations in DNA
microarray analysis [8].
The intraclass correlation coefficient also plays a key

role in study design such as design of cluster randomized
trials where it is traditionally used to quantify the degree
of similarity between individuals within clusters [9,10].
Over the last decade, ICCs have received more attention

in the literature and there has been an increasing aware-
ness and appreciation of methodological issues related to
these indices [11-13].
The most fundamental interpretation of ICCs is as a

measure of the proportion of variance of a given outcome
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variable explained by a factor of interest in an analysis
of variance model where it measures the relative homo-
geneity within groups [14,15]. The first and essential step,
therefore, is to specify an appropriate analysis of variance
(ANOVA) model that best describes the study. The choice
of themodel is dictated by the specific situation defined by
the experimental design and conceptual intent of the study
[15]. Moreover, various forms of ICCs arise depending on
the chosen model and the nature of the study [16,17].
For reasons mentioned above, inference procedures for

ρ are closely related to the more general statistical prob-
lem of variance components [14,18]. It is well known that
estimation and hypothesis testing procedures for ICCs
are, in general, sensitive to the assumption of normality
and are subject to unstable variance [1,19]. One, therefore,
needs to consider normalizing and variance-stabilizing
transformations on the basis of the rate of convergence to
normality when constructing confidence intervals for the
ICC. One of the well known and most commonly used
normalization technique is Fisher’s Z transformation [1].
Other types of transformations have also been considered
for the intraclass correlation coefficient [19,20].
Another important issue concerning ICCs is bias

[21,22]. The two most commonly used estimators, max-
imum likelihood and least square estimators, are known
to be negatively biased. Although a Minimum Variance
Unbiased (MVU) estimator for the intraclass correlation
coefficient under two normal distributions is derived by
[23], use of this estimator has been hindered because of
absence of a closed form. Consequently, the MVU esti-
mator is less widely recognized while the least square and
maximum likelihood estimators are well-known. A com-
putationally intensive FORTRAN subroutine is provided
by Donoghue and Collins (1990).
The purpose of this paper is, therefore, to provide

a bias-corrected estimator for the intraclass correlation
coefficient which is much simpler to compute and hence
useful in practice. We consider a particular type of ICC in
which we consider the estimation problem for ICC result-
ing from a one-way random effects analysis of variance
model. We approximate the bias using a second-order
Taylor series expansion and adjust the estimator to reduce
the bias.
The paper is organized as follows. We provide a brief

background about the one-way random effects model and
define the particular ICC of interest in Section “Methods ’’.
In Section “Bias-corrected estimator for the intraclass cor
relation coefficient”, we propose a technique for approxi-
mating the bias resulting from the conventional estimator
of ρ and we derive a new bias-corrected estimator for
the parameter. We present simulation results in Section
“Simulation Study ’’ and provide a brief discussion in
Section “Discussion”. Finally an Appendix consisting of
some technical results is given at the end of the paper.

Methods
Consider n targets measured by k raters (instruments,
judges etc.). A commonly used model for inferences con-
cerning the intraclass correlation coefficient is the one-
way random effects analysis of variance model where the
jth target measurement by the ith rater (j= 1, 2, . . . , n ; i =
1, 2, . . . , k) can be described as

Yij = μ + ai + eij (1)

where it is assumed that ai ∼ N(0, σ 2
T ), eij ∼ N(0, σ 2

e ).
The total sum of squares (Total SS) for the above model

can be decomposed into two independent components as
follows

n∑
i=1

k∑
j=1

(Yij − Ȳ ..)2 =
n∑

i=1

k∑
j=1

(Yij − Ȳi.)2 +
n∑

i=1

k∑
j=1

(Ȳi. − Ȳ ..)2

Total SS = SSE + SSB,
(2)

where SSE and SSB represent the within and between
target sum of squares, respectively. The above decom-
position is summarized in the analysis of variance table
provided in Table 1. The table shows the source of varia-
tion, degrees of freedom (df), sums of squares (SS), mean
square (MS), and expected mean square. We refer the
reader to any standard analysis of variance text book [24]
for details about this model.
The intraclass correlation coefficient for themodel in (1)

is defined as

ρ = σ 2
T

σ 2
T + σ 2

e
. (3)

The most commonly used estimator for ρ, which is some-
times referred to as the analytical estimator, is given by

ρ̂ = σ̂ 2
T

σ̂ 2
T + σ̂ 2

e
= BMS − EMS

BMS + (k − 1)∗EMS
. (4)

Note that,

• EMS is an unbiased estimator of σ 2
e• (BMS-EMS)/k is an unbiased estimator of σ 2

T

Although the estimator in (4) is a ratio of unbiased
estimators, it need not necessarily be unbiased itself. We
consider the bias resulting from this estimator in the next
section and provide a new bias-corrected estimator for the
intraclass correlation coefficient.

Table 1 Analysis of variance table for one-way random
effects model

Source of Variation df SS MS=SS/df Expected MS

Between Targets n-1 SSB BMS kσ 2
T + σ 2

e

Within Targets n(k-1) SSE EMS σ 2
e
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Bias-corrected estimator for the intraclass correlation
coefficient

Consider the intraclass correlation coefficient defined in
(3) and re-write it as

ρ =
σ 2
T

σ 2
e

1 + σ 2
T

σ 2
e

= F
1 + F

. (5)

An unbiased estimator for F is provided in the follow-
ing theorem, which is useful in approximating the bias for
estimating intraclass correlation coefficient. The variance
of is also given in the theorem. The theorem has been
considered by [25] in a different context.

Theorem 1. Consider F = σ 2
T

σ 2
e
in equation (5), then

F̂ = [ n(k − 1) − 2] ∗SSB/SSE − (n − 1)
k(n − 1)

is an unbiased estimator for F. Moreover, its variance is
given by

Var(F̂) =
[
n(k − 1) − 2
k2(n − 1)

]
×

[
n + 1

n(k − 1) − 4
− n − 1

n(k − 1) − 2

]
(kF + 1)2

A proof of the theorem is provided in the Appendix.
Let us now consider the following estimator for the

intraclass correlation coefficient which is derived by sub-
stituting the unbiased estimator for F given in Theorem 1.

ρ̃ = F̂
F̂ + 1

, (6)

As mentioned earlier, the estimator, ρ̃, in (6) need not
be unbiased although it is a function of unbiased estima-
tors. In fact, the bias is always negative and depends on the
degree of correlation and the design size and balance [21].
Now consider (5) and apply log transformation on both

sides. The equation reduces to

log ρ = log F − log(F + 1).

An estimator for logρ, which is obtained by substituting F
by its unbiased estimator, can be given as

̂log ρ = log F̂ − log(F̂ + 1).

Note that the above estimator is equivalent to logρ̃. The
bias, in log scale can, therefore, be given as

E[ log ρ̃ − log ρ] = E[ log F̂ − log F]

− E[ log(F̂ + 1) − log(F + 1)] .

Using a second order Taylor series approximation, we have

log F̂ ≈ log F + 1
F

(F̂ − F) − 1
2F2 (F̂ − F)2

log(F̂ + 1) ≈ log(F + 1) + 1
F + 1

(F̂ − F)

− 1
2(F + 1)2

(F̂ − F)2.

Consequently, the bias can be approximated as

E[ log ρ̃ − log ρ]≈ −1
2

[
1
F2 − 1

(F + 1)2

]
Var(F̂) (7)

It is important to note that the above approximation for
the bias is always negative indicating that we are cor-
recting the estimator from the right direction. A bias-
corrected estimator for log ρ is obtained by adjusting for
the bias given in (7) and is given by

l̂ogρbc = log ρ̃ + 1
2

[
1
F̂2

− 1
(F̂ + 1)2

]
V̂ar(F̂),

where the subscript bc indicates that the estimator is
bias corrected. V̂ar(F̂) is an estimator for the Var(F̂)

obtained by substituting F in Var(F̂) by F̂ . We obtain
a bias-corrected estimator for the intraclass correlation
coefficient by transforming the above equation back to the
original scale, and it is given by

ρ̂bc = ρ̃∗ exp
{
1
2

[
1
F̂2

− 1
(F̂ + 1)2

]
V̂arF̂

}
(8)

In situations where F is small, we consider Taylor expan-
sion of 1 − ρ instead. Consequently,

ρ̂bc = 1 − (1 − ρ̃)∗ exp
{
− 1
2(F̂ + 1)2

V̂ar(F̂)

}
.

It can be shown using our approximation that the bias
in general decreases as the degree of correlation moves
away from 0.5. That is, the bias is small for both weak and
strong correlations. Our simulation results confirm that
the bias resulting from the analytical estimator is indeed
small when the true value of ρ is small (weak correlation)
or large (strong correlation) (see Section “Discussion” for
more details). As a result, we expect the performance of
the conventional estimator to improve in such cases. In
fact, previous simulation results have also showed that the
analytical estimator, ρ̂, performs well for small values of
ρ both for normal and non-normal data (e.g., producing
confidence intervals close to the nominal level [10]. Our
simulation results show that the estimators we proposed
in this paper provide a considerable bias reduction even
under such circumstances (see Section “Discussion” for
details).
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Table 2 Simulation results for the non-normal data

Estimate % Bias

Clusters ICC ρ̂ ρ̃ ρ̃bc ρ̂ ρ̃ ρ̃bc

10 0.1 0.0927 0.0891 0.0941 -7.3 -11.0 -5.9

0.2 0.1813 0.1768 0.1911 -9.4 -12.0 -4.5

0.3 0.2678 0.2627 0.2890 -11.0 -12.0 -3.7

0.4 0.3543 0.3488 0.3865 -11.0 -13.0 -3.4

0.5 0.4423 0.4367 0.4830 -12.0 -13.0 -3.4

0.6 0.5337 0.5282 0.5785 -11.0 -12.0 -3.6

0.7 0.6306 0.6256 0.6744 -9.9 -11.0 -3.7

0.8 0.7360 0.7319 0.7743 -8.0 -8.5 -3.2

0.9 0.8552 0.8526 0.8809 -5.0 -5.3 -2.1

30 0.1 0.0977 0.0964 0.0977 -2.3 -3.6 -2.3

0.2 0.1935 0.1919 0.1954 -3.3 -4.1 -2.3

0.3 0.2883 0.2865 0.2954 -3.9 -4.5 -1.5

0.4 0.3830 0.3810 0.3951 -4.3 -4.8 -1.2

0.5 0.4783 0.4763 0.4929 -4.3 -4.7 -1.4

0.6 0.5751 0.5733 0.5899 -4.2 -4.4 -1.7

0.7 0.6745 0.6728 0.6880 -3.6 -3.9 -1.7

0.8 0.7773 0.7760 0.7883 -2.8 -3 .0 -1.5

0.9 0.8851 0.8844 0.8919 -1.7 -1.7 -0.9

50 0.1 0.0984 0.0977 0.0984 -1.6 -2.3 -1.6

0.2 0.1957 0.1947 0.1965 -2.1 -2.6 -1.8

0.3 0.2924 0.2912 0.2966 -2.5 -2.9 -1.1

0.4 0.3890 0.3878 0.3968 -2.8 -3.1 -0.8

0.5 0.4862 0.4850 0.4951 -2.8 -3.0 -1.0

0.6 0.5844 0.5832 0.5931 -2.6 -2.8 -1.2

0.7 0.6842 0.6832 0.6921 -2.3 -2.4 -1.1

0.8 0.7861 0.7854 0.7925 -1.7 -1.8 -0.9

0.9 0.8911 0.8907 0.8949 -1.0 -1.0 -0.6

Simulation Study
We carried out extensive simulations to evaluate the per-
formance of our bias-corrected estimator (ρ̃bc). The bias
resulting from our estimator is compared with bias from
the conventional (analytical) estimator using normal as
well as non-normal data. It is to be recalled that we based
the Taylor expansion around ρ̃ which a variant of the con-
ventional estimator. We have, therefore, provided the bias
resulting from this estimator for comparison purposes.

Simulation Design
Data were simulated as in [10], with slight modifica-
tions to the number of configurations that were allowed
to vary. We used 3x8x2 design instead of their 3x4x2
configuration. That is, we considered 3 cluster sizes
(10,30,50); 8 intraclass correlation coefficients (0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 0.9) instead of only 4 true ICC
values used in [10]; and two types of data distributions
(normal versus non-normal), for a total of 48 simulation
configurations.
For normal outcome, data were simulated according

to the framework of the one-way random effects model
described in Section “Methods ’’. They were generated
as the sum of two independent random variables ai ∼
N(0, σ 2

T ) and eij ∼ N(0, σ 2
e ) . When simulating non-

normal outcome, the eij alone were generated from a
normal distribution with the ai generated from a Gamma
distribution with shape parameter α = 1.67 and scale
parameter β =

√
var
α

so that skewness of the distri-
bution will be 2

α
= 1.2 and a kurtosis coefficient of

6
α

= 4. The skewness and kurtosis coefficients repre-
sent marked deviation from normality. The skewness and
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kurtosis coefficients for a normally distributed random
variable are 0 and 3, respectively.
Without loss of generality, the overall mean was fixed

at 10. Moreover, the sum of the variance components was
constrained to be 1000, for both normal and non-normal
data sets. The two variances, σ 2

T and σ 2
e , were then

systematically manipulated to generate data from a pop-
ulation with the required ICC value using the following
relationship

σ 2
T + σ 2

e = 1000, ρ = σ 2
T

σ 2
T + σ 2

e
⇒ σ 2

T = 1000∗ρ

and σ 2
T = 1000 − σ 2

e

We simulated 5000 replications of data for each of the
48 scenarios. Different seeds were used for the random

number generator at each replication while keeping it the
same across different methods.

Results
Estimates of ICC along with percentage of bias for non-
normal and normal data, averaged over 5000 simulations,
are summarized in Table 2 and Table 3, respectively. As
expected, the bias resulting from the analytical estima-
tor is negative both for normal and non-normal data sets.
Moreover, the bias gets smaller as the true value of ρ

moves further away from 0.5 (see Figure 1). Furthermore,
the biases resulting from the conventional estimator (ρ̂)
and its variant (ρ̃) for the non-normal sample are larger
relative to the normal sample indicating that the estimator
is sensitive to the normality assumption. The difference
is much larger for small cluster sizes. For cluster size
10 from the non-normal data with moderate correlation

Table 3 Simulation results for the normal data

Estimates % Bias

Clusters ICC ρ̂ ρ̃ ρ̃bc ρ̂ ρ̃ ρ̃bc

10 0.1 0.0969 0.0932 0.0979 -3.2 -6.8 -2.1

0.2 0.1905 0.1858 0.2001 -4.8 -7.1 0.1

0.3 0.2832 0.2778 0.3071 -5.6 -7.4 2.4

0.4 0.3759 0.3701 0.4140 -6.0 -7.5 3.5

0.5 0.4696 0.4637 0.5158 -6.1 -7.3 3.2

0.6 0.5652 0.5596 0.6135 -5.8 -6.7 2.3

0.7 0.6641 0.6591 0.7094 -5.1 -5.8 1.3

0.8 0.7677 0.7638 0.8049 -4.0 -4.5 0.6

0.9 0.8784 0.8760 0.9016 -2.4 -2.7 0.2

30 0.1 0.0995 0.0983 0.0995 -0.5 -1.7 -0.5

0.2 0.1976 0.1960 0.1989 -1.2 -2.0 -0.6

0.3 0.2953 0.2934 0.3029 -1.6 -2.2 1.0

0.4 0.3929 0.3909 0.4067 -1.8 -2.3 1.7

0.5 0.4910 0.4889 0.5063 -1.8 -2.2 1.3

0.6 0.5897 0.5878 0.6047 -1.7 -2.0 0.8

0.7 0.6895 0.6878 0.7030 -1.5 -1.7 0.4

0.8 0.7908 0.7895 0.8015 -1.2 -1.3 0.2

0.9 0.8941 0.8934 0.9005 -0.7 -0.7 0.1

50 0.1 0.0990 0.0983 0.0990 -1.0 -1.7 -1.0

0.2 0.1978 0.1969 0.1984 -1.1 -1.6 -0.8

0.3 0.2965 0.2954 0.3009 -1.2 -1.5 0.3

0.4 0.3952 0.3940 0.4037 -1.2 -1.5 0.9

0.5 0.4942 0.4929 0.5033 -1.2 -1.4 0.7

0.6 0.5935 0.5924 0.6024 -1.1 -1.3 0.4

0.7 0.6936 0.6926 0.7015 -0.9 -1.1 0.2

0.8 0.7945 0.7938 0.8008 -0.7 -0.8 0.1

0.9 0.8966 0.8961 0.9002 -0.4 -0.4 0.0
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Cluster size 10

Cluster size 30

Cluster size 50

Cluster size 10

Cluster size 30

Cluster size 50

Figure 1 Plot of the percentage bias against the true value of ICC for the normal (left panel) and non-normal (right panel) data sets,
where solid line and dashed line represent the analytical and bias-corrected estimators, respectively.

(ρ = 0.4, 0.5, 0.6), for example, the analytical estimator
and its variant gave about 12% and 13% bias, respectively.
However, the corresponding biases for normal data with
the same cluster size and similar ρ values are 6% and 7%,
respectively. It is, therefore, not recommended to use the
analytical estimator for non-normal data, especially when
there is moderate correlation. It is also important to note
that the bias resulting from ρ̂ is uniformly smaller than
that of ρ̃ where the difference is much larger for small
cluster sizes.
In general, a considerable bias reduction has been

obtained by using our bias-corrected estimator. This is
true for all values of ρ and all cluster sizes although the
improvement is much larger for moderate correlations
(see Figure 1). Moreover, the improvement obtained
for the non-normal sample is relatively larger than that
obtained for the normal sample. For the non-normal
sample, for instance, using the conventional estimator
resulted in 12% bias whereas only 3.4% bias was obtained
from our estimator for cluster size 10 and moderate
correlations. For the normal sample and the same sce-
nario, biases resulting from the conventional estimator
and the bias-corrected estimator are 6% and 3%, respec-
tively. Improvements are also obtained for small or large
ρ values, that is, in situations where the bias from the

conventional estimator is small. For instance, for cluster
size 10 from the non-normal sample with ρ = 0.2, 9.4%
and 12% biases were obtained using ρ̂ and ρ̃, respectively,
whereas only 4.5% bias was observed for our estimator.
For the normal sample with the same cluster size and
correlation, ρ̂ and ρ̃ resulted in 4.8% and 7.1% biases. In
this situation, the bias reduced to 0.05% when using our
bias corrected estimator. Similar statements can be made
for large ICC values.

Discussion
The intraclass correlation coefficient (ICC) has wide-
spread applications frommeasuring heritability in genetic
studies to measuring reliability, consistency and agree-
ment of measurements in a host of clinical, biomedical
and psychosocial areas. The ICC has important role in
study design and sample size calculations as well. For
instance, designs of family-based genetic studies can be
greatly impacted by the estimated ICC (often referred to
as the coefficient of heritability in the genetics literature).
Similarly, trials involving clustering of some degree (e.g.,
longitudinal study design, multilevel models, cluster ran-
domized trials, etc.) will be influenced to various extent
by the magnitude of the intraclass correlation coefficient.
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Because ICC estimates have great implications to design
considerations, statistical analysis as well as interpretation
of study findings, it is critical to use an estimator with
minimal bias.
In this paper, we proposed a new bias-corrected esti-

mator for one type of intraclass correlation coefficient.
We used a variant of the conventional estimator (ANOVA
estimator) and applied Taylor series expansion to approx-
imate the bias. The approximate bias was then used
and a new adjusted estimator is proposed. The bias-
corrected estimator proposed in this paper is much
simpler to compute than the minimum variance unbiased
(MVU) estimator of Olkin and Pratt [23]. Moreover, our
simulation study shows that our estimator outperforms
the conventional estimator by providing a substantial
decrease in the bias. For small cluster sizes from normal
data, however, a positive bias was introduced although
the percentage bias resulted from our estimator is still
smaller than that of the ANOVA estimator. This might
be improved by using second order Taylor series expan-
sion instead of using only the first order adopted in this
paper.

Conclusion
We considered a particular type of intraclass correlation
coefficient that arises from a one-way random effects
analysis of variance model, although the method can be
extended to provide bias-corrected estimators for other
types of ICCs. Furthermore, the current paper is focused
on bias reduction in a balanced data setting, and we
plan to investigate other optimality measures as well
as the performance of the bias-corrected method for
unbalanced data when the number of observations differ
from cluster to cluster. Finally, we would like to high-
light that ICCs are subject to different interpretations,
so the user should apply the various ICCs with caution
[17,26-28].

Appendix
Recall from the one-way ANOVA model SSB

kσ 2
T+σ 2

e
∼ χ2

(n − 1). Therefore, one can easily show that E[ SSB]=
(n − 1)(kσ 2

T + σ 2
e ) and E[ SSB]2 = (n − 1)(n + 1)

[ kσ 2
T + σ 2

e ]2 Moreover, SSE/σ 2
e ∼ χ2(n(k − 1)) =

Gamma
(
n(k−1)

2 , 2
)
. Consequently,

E

⎡⎣ 1
SSE
σ 2
e

⎤⎦ = E
[

σ 2
e

SSE

]
2−1�(n(k − 1)/2 − 1)

�(n(k − 1)/2)

= 1
n(k − 1) − 2

Which implies that E
[ 1
SSE

] = 1
σ 2
e [n(k−1)−2] .

Moreover,

E
[
SSE
σ 2
e

]−2 2−2�(n(k − 1)/2 − 2)
�(n(k − 1)/2)

= 1
[ n(k − 1) − 2] [ n(k − 1) − 4]

As a result we have,

E
[

1
SSE

]2
= 1

(σ 2
e )2[ n(k − 1) − 2] [ n(k − 1) − 4]

Now applying results from [24], we get

E
[
SSB
SSE

]
= E

[
SSB

(
1

SSE

)]
= E[ SSB] ∗E

[
1

SSE

]
= (n − 1)(kσ 2

T + σ 2
e )

[ n(k − 1) − 2] σ 2
e

= (n − 1)
n(k − 1) − 2

[
k
σ 2
T

σ 2
e

+ 1
]

After a simple algebraic manipulations, we can show that

E[ F̂]= 1
k

[
n(k − 1) − 2

n − 1
E

(
SSB
SSE

)
− 1

]
= σ 2

T
σ 2
e

which proves the first part of the theorem.
Now consider,

E
[
SSB
SSE

]2
= E[ SSB]2 ∗E

[
1

SSE

]2
= (n − 1)(n + 1)

[ n(k − 1) − 2] [ n(k − 1) − 4]

(
kσ 2

T + σ 2
e

σ 2
e

)2

Consequently,

Var
[
SSB
SSE

]
=

[
(n − 1)(n + 1)

[ n(k − 1) − 2] [ n(k − 1) − 4]

−
(

n − 1
n(k − 1) − 2

)2
] (

kσ 2
T + σ 2

e
σ 2
e

)2

Note that kσ 2
T+σ 2

e
σ 2
e

= k
(

σ 2
T

σ 2
e

)
+ 1 = kF + 1 The variance

is given as

Var(F̂) =
[
n(k − 1) − 2
k2(n − 1)

]
×

[
n + 1

n(k − 1) − 4
− n − 1

n(k − 1) − 2

]
(kF + 1)2
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