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Abstract

Background: Genotyping has become more cost-effective and less invasive with the use of buccal cell sampling.
However, low or fragmented DNA yields from buccal cells collected using FTA cards often requires additional
whole genome amplification to produce sufficient DNA for genotyping. In our case–control study of childhood
leukaemia, discordance was found between genotypes derived from blood and whole genome amplified FTA
buccal DNA samples. We aimed to develop a user-friendly method to correct for this genotype misclassification, as
existing methods were not suitable for use in our study.

Methods: Discordance between the results of blood and buccal-derived DNA was assessed in childhood leukaemia
cases who had both blood and FTA buccal samples. A method based on applying misclassification probabilities to
measured data and combining results using multiple imputations, was devised to correct for error in the genotypes
of control subjects, for whom only buccal samples were available, to minimize bias in the odds ratios in the
case–control analysis.

Results: Application of the correction method to synthetic datasets showed it was effective in producing correct
odds ratios from data with known misclassification. Moreover, when applied to each of six bi-allelic loci, correction
altered the odds ratios in the logically anticipated manner given the degree and direction of the misclassification
revealed by the investigations in cases. The precision of the effect estimates decreased with decreasing size of the
misclassification data set.

Conclusions: Bias arising from differential genotype misclassification can be reduced by correcting results using
this method whenever data on concordance of genotyping results with those from a different and probably better
DNA source are available.
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Background
The Australian Study of causes of Acute Lymphoblastic
Leukaemia in Children (Aus-ALL) was a population-
based case–control study, conducted between 2003 and
2007, designed to investigate environmental and genetic
risk factors for childhood ALL as well as their interac-
tions. The study has been described in detail elsewhere
[1]. Briefly, 415 case children provided blood samples for
genetic analysis during a routine visit to the treating
hospital after initial remission was achieved. Buccal cell
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samples were collected from 536 control children at
home using Whatman FTA Indicating Micro Cards (Cat.
No.WB120211) (hereafter referred to as ‘FTA cards’) to
maximize participation and minimize costs [2,3]. Whole
genome amplification (WGA) from 1.2 mm diameter
trephine punched discs were used to increase and pre-
serve the finite amount of DNA available from the FTA
card samples. Case children were also asked to provide a
buccal sample using an FTA card so that concordance
between genotypes measured using blood and FTA card
buccal samples could be examined.
In this paper, we briefly present the concordance

results for a set of six polymorphisms and describe the
performance of a method we developed to correct
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genetic association analyses for the unexpected mis-
classification we observed. Because of the differential na-
ture of the misclassification (all controls provided buccal
DNA while most cases provided a blood sample) and the
large number of covariates required and analyses
planned, particularly all those requiring more than one
gene in a model or examination of gene-environment or
gene-gene interactions, we needed a comparatively sim-
ple and easy-to-use method for addressing this issue.
While there is a considerable literature on methods for
correction of measurement error or misclassification (for
example, Guolo 2008 [4], and Thurigen et al., 2000 [5]),
there appeared to be none that met our requirements
with easily useable software. For example, the seismic
program from Fox et al. [6] only handled one binary
misclassified variable, and the Mime approach of Cole
et al. [7] handled only one binary misclassified variable
and required some of the validation sample to also in-
clude controls. The more flexible MC-SIMEX method of
Kuchenhoff et al. [8], available in the R-library, was also
not considered to be suitable, as the corrected results
took no account of the size of the validation sample and
was highly dependent on the choice of the extrapolation
function. Clayton et al. have described an ingenious
method for adjusting for a similar problem of differential
bias [9], which uses statistical properties of the observed
data and requires no validation data; however, it requires
large samples so could not be used in our study. Thus it
was necessary to develop a novel correction method, as
described below.

Methods
Laboratory methods
The blood samples from case children were couriered to
the processing laboratory overnight following collection.
Whole blood was refrigerated at 4°C for a maximum of
7 days prior to DNA extraction using the Wizard Gen-
omic DNA Purification Kit (Promega, Madison WI cat
#1620) in accordance with the manufacturer’s instruc-
tions. DNA concentrations were quantified using a
ND-1000 spectrophotometer (Nanodrop Technologies,
Wilmington DE). FTA cards were stored at room
temperature with desiccant until processing. Four discs
of 1.2 mm diameter were trephine punched from the
sampling area and placed collectively into a single tube
and amplified using the GenomiPhi DNA Amplification
Kit (GE Healthcare, Buckinghamshire UK). Briefly, 9μL
of sample buffer, 9μL of reaction buffer and 1μL of en-
zyme mix were added to the punches with thermo cyc-
ling conditions according to the manufacturer’s
instructions. DNA concentrations were quantified using
a ND-3300 fluorospectrometer. The quantified DNA ali-
quots were then frozen at minus 30 degrees and thawed
when required for genotyping.
Genotyping for single nucleotide polymorphisms
(SNPs) involved in folate-metabolism, xenobiotic bio-
transformation and DNA repair pathways was performed
using either restriction fragment length polymorphism
analysis or TaqManW SNP Genotyping Assays (Applied
Bios stems, Foster City USA) with allele calling was
performed by two independent researchers. For quality
assurance purposes, 10% of samples were selected at ran-
dom for repeat analysis, performed by laboratory staff
blinded to sample identity. The specific SNPs genotyped
in Aus-ALL are not identified in this methodological
paper, as they are used for illustration purposes only. Full
analyses of their associations with childhood ALL will be
published elsewhere.
Genotyping performance
All Aus-ALL SNPs
Across all 26 genotyped SNPs, the overall concordance
within runs (repeat analyses of same sample) was
99.7% for blood samples (genomic DNA, hereafter re-
ferred to as gDNA) and 99.6% for WGA’d buccal DNA
from the FTA cards (hereafter referred to as wgaDNA).
The overall genotype failure rates for these SNPs were
0.16% and 1.68% for the gDNA and wgaDNA genotyp-
ing respectively. There were no departures from
Hardy-Weinberg predictions observed in either the
gDNA or wgaDNA genotype results. Among pairs of
gDNA and wgaDNA samples collected from 249 case
children, the average genotype discordance across all
26 diallelic SNPs (excluding discordance due to geno-
typing failure of one of the samples) was 3.48%, with a
range of 0.40% to 12.96%. This discordance was the
reason we developed the adjustment method described
in this paper.
It appeared that the most likely source of error was

preferential amplification from one chromosome of a
pair, leading to loss of heterozygosis or “allelic drop-out”
during WGA of frozen-thawed buccal DNA samples
extracted from the FTA cards. Only WGA’d buccal DNA
was available for control subjects; thus allelic drop-out
in control subjects’ genotypes could bias associations be-
tween genotypes (and genotype-exposure interactions)
and risk of disease. A modified unconditional logistic re-
gression modeling technique was therefore developed to
correct for this bias.
We assumed the genotype from the gDNA sample was

the ‘true’ genotype (gold standard). 92.2% of the geno-
typing error in the wgaDNA samples involved a change
from heterozygous in the gDNA to homozygous wild
type (Aa!AA) or homozygous mutant in the wgaDNA
(Aa!aa) (Table 1). Only 7.8% of discordant pairs
involved a gDNA homozygous result (AA or aa) and a
wgaDNA heterozygous result (Aa).



Table 1 Discordance in Genotyping Results Derived From gDNA and wgaDNA Samples From Case Children (excluding
discordance due to failure of one sample)

ID N pairs N Discordant % Discordance Aa to AA Aa to aa AA to Aa AA to aa aa to Aa aa to AA

A 213 5 2.35 1 3 1

B 247 32 12.96 15 14 2 1

C 246 12 4.88 4 7 1

D 249 9 3.61 2 7

E 243 18 7.41 7 10 1

F 248 1 0.40 1

All SNPs 1446 77 5.3% 30 (39.0%) 41 (53.2%) 4 (5.2%) 0 2 (2.6%) 0

Total from Aa: 71 (92.2) Total from AA: 4 (5.2) Total from aa: 2 (2.6)

N pairs: number of cases that had gDNA and wgaDNA sample to compare. N discordant: total number of discordant results. Aa to AA: discordance defined as
heterozygous in gDNA sample but homozygous wildtype in wgaDNA sample. Aa to aa: discordance defined as heterozygous in gDNA sample but homozygous
mutant in wgaDNA sample etc.

Table 2 Discordance Between Genotyping Results in
gDNA-wgaDNA Pairs observed in SNP A and B

Blood result

AA Aa aa Total

SNP A AA 95 1 0 96

Buccal result Aa 1 90 0 91

aa 0 3 23 26

Total 96 94 23 213

SNP B AA 96 15 0 111

Buccal result Aa 2 87 1 90

aa 0 14 32 46

Total 98 116 33 247

AA: Homozygous wildtype, Aa: heterozygous; aa: homozygous mutant
genotype.
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Algorithm testing subset
A subset of 6 SNPs from the Aus-ALL study was
selected for use in the testing of the devised algorithm.
These SNPs were selected as they covered the full
spectrum of gDNA-wgaDNA genotype discordance seen.
The mean level of discordance (excluding discordance
due to genotyping failure of one of the samples) for
these SNPs was 5.3% (range 0.40% to 12.96%).

Statistical correction method
In brief, a discordance table is created by comparing the
genotyping method that has error with a gold standard
method. If discordance is present, then a proportion
(calculated from the discordance table) of the records
with genotypes containing error are randomly selected,
their genotypes are corrected and a logistic regression
model is computed. This process is repeated multiple
times, ensuring a different set of records is randomly
selected each time, and controlling for the fact that the
proportion is an estimate. Results from the multiple
iterations of the model are then compiled and imputed
effect estimates are calculated. SNP A from Table 1 is re-
ferred to throughout the description of this algorithm as
an example

Stage 1: Establish discordance tables The proportions
of discordant results for each SNP in the paired
gDNA-wgaDNA samples are shown in Table 1. We cal-
culated the proportions of homozygous wild type
(AA), heterozygous (Aa) and homozygous mutant (aa)
results from the wgaDNA samples that differed from
the paired gDNA sample results, and used these to es-
timate the true misclassification proportion in Stage 2
(see below).
Table 2 shows the number of wgaDNA samples within

each genotype category that were misclassified (assum-
ing the paired gDNA sample gave the true result). For
example, for SNP A there was 1 (of 96) incorrect AA
result (should have been Aa), 1 (of 91) incorrect Aa re-
sult (should have been AA) and 3 (of 26) incorrect aa
results (should have been Aa).

Stage 2: Correct the genotypes for analysis The dis-
cordance tables prepared in Stage 1 are only an estimate,
from one sample, of the true misclassification proportion
p. Therefore, the proportion of records to be corrected
can be sampled from a binomial distribution with prob-
ability of success parameter p, which is automatically
calculated from the discordance table. To make this cor-
rection within control subjects, the genotyping results
were treated as follows:

1. The SNP genotype variable was re-assigned to a
temporary new genotype variable.

2. A single value (p̂i) was sampled from a binomial
distribution with probability of success parameter p
(e.g. 1/96 for AA to Aa).

3. Using this sampled proportion, the number of
required changes (cT) was determined by multiplying
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this proportion (p̂i) by the total number of controls
with the genotype (AA).

4. From the control subjects with genotype (AA), the
calculated number (cT) of subjects which required
genotype reclassification were randomly sampled
(equal likelihood of selection, without replacement).

5. In the temporary new genotype variable, those
subjects’ genotypes were then reclassified (from AA
to Aa).

6. Steps 2 through 5 were repeated for each instance of
misclassification (e.g. each non diagonal cell of the
discordance table with a value other than 0)

Where two changes were required within one geno-
type for a SNP (for example SNP B, where some Aa
values require reclassification to AA while others require
reclassification to aa), the following 6 steps replaced
steps 2 through 6 in the above process.

2. A single value (p̂i) was sampled from a binomial
distribution with probability of success parameter p
(e.g. (2 + 1)/90 [2/90 for Aa to AA+ 1/90 for Aa to aa]).

3. Using this sampled proportion, the total number of
required changes (cT) was determined by multiplying
this proportion (p̂i) by the total number of controls
with genotype (Aa)

4. From the control subjects with genotype (Aa), the
number (cT) of subjects requiring genotype
reclassification were randomly sampled (equal
likelihood of selection, without replacement).

5. Then p1 and p2 were temporarily assigned as the
proportions of cT that were required for each change.
Here p1 = 2/(2 + 1) for the reclassification of Aa to AA
and p2 = 1/(2 + 1) for the reclassification of Aa to aa.

6. Temporary scalars c1 and c2 were then calculated
(c1 = p1*cT and c2 = p2*cT)

7. In the new genotype variable, c1 and c2 of the
randomly selected subjects’ genotypes from step 4
were reclassified (c1 from Aa to AA and c2 Aa to aa).

8. Steps 2 through 7 were repeated for each instance of
this type of misclassification (e.g. where a single row
or column of the misclassification table had more
than one non diagonal cell with a value other than 0)

Stage 3: Run model to generate ‘corrected’ odds
ratios for the association between each SNP and ALL
risk Correction of the misclassified genotypes, as out-
lined in Stage 2, was then done in each run of an uncon-
ditional logistic regression model that was repeated 50
times. Relevant covariates were included in the model.
For each variable in the model, the mean ß coefficient
from the 50 iterations was used as the best estimate of
the true coefficient. These estimates were used to calcu-
late Wald Test p-values [10] and to generate 95%
confidence intervals (CI) using Rubin’s estimate of vari-
ance for multiple imputation [7]. Odds ratios were
obtained by exponentiation of the estimates.

Implementation
The algorithm outlined in this paper was implemented
in the statistical package R. For the R code to implement
the outlined method, see our institutes website [11] or
Additional file 1. The functions that make up the imple-
mentation of this algorithm are written so that they can
be applied to any type of problem with a dichotomous
outcome (e.g case/control analysis), a two or three level
categorical predictor variable (e.g. a genotype) and dis-
cordance data (e.g. from a subset of the records with
data from a gold standard measure, as here, or from
other reference sources). The functions also allow for
the inclusion of covariates in the model.

Testing the efficacy of the algorithm
To test the efficacy of the correction method, we created
a series of hypothetical datasets that reflected our
complete study dataset. These datasets were based on
the genotype frequencies of two artificial SNPs: ‘SNP 1’
with an approximate dominant risk model (ORs fixed at:
AA= 1.0, Aa = 1.01, aa = 2.04) and ‘SNP 2’ with an ap-
proximate log additive risk model (ORs fixed at: AA=
1.0, Aa = 1.30, aa = 1.68). The proportional amounts of
misclassification shown in Aus-ALL SNPs A and B (the
latter representing the SNP with the most discordance)
among gDNA-wgaDNA pairs (Table 2) were then ap-
plied to artificial SNPs 1 and 2, resulting in six separate
datasets (SNPs 1 and 2 with no error, with SNP A-type
error, and with SNP B-type error). Odds ratios estimated
from these data sets are shown in Table 3. We also
simulated the effect of increasing the number of sample
pairs available for assessing gDNA-wgaDNA misclassifi-
cation. In this simulation, we used the SNP B-type mis-
classification figures seen in Table 2 and multiplied the
observed numbers, in turn, by 0.5 and 5.
Using our case–control data, we then estimated odds

ratios, with and without correction, for the associations
between each SNP in Table 1 and risk of ALL adjusting
for study matching variables (child’s age, sex, and state
of residence) and ethnicity.

Results
As expected, the results of the uncorrected (‘true’) and
corrected analyses were identical (Table 3) when no
error was present in the hypothetical data for artificial
SNPs 1 and 2. When error was present, the estimated
ORs deviated from the ‘true’ result, and did so to a
greater extent when SNP B-type error was applied. For
both artificial SNPs 1 and 2, the correction procedure
adjusted the estimates in the direction of – and close to



Table 3 Results of Correction Procedure on Hypothetical Datasets for Two Types of Misclassification (observed in SNPs
A and B)

Misclassification applied to data ‘Recessive’ artificial SNP 1 ‘Log additive’ artificial SNP 2

OR 95% CIa OR 95% CIa

Noneb Uncorrected Aa 1.01 0.73, 1.41 1.30 0.94, 1.80

aa 2.04 1.29, 3.21 1.67 1.03, 2.71

None Corrected Aa 1.01 0.73, 1.41 1.30 0.94, 1.80

aa 2.04 1.29, 3.21 1.67 1.03, 2.71

SNP A-type Uncorrected Aa 1.07 0.77, 1.49 1.37 0.99, 1.91

aa 1.82 1.17, 2.84 1.50 0.93, 2.40

Corrected Aa 1.03 0.73, 1.45 1.32 0.95, 1.85

aa 2.11 1.29, 3.45 1.74 1.04, 2.91

SNP B-type Uncorrected Aa 1.49 1.06, 2.09 1.92 1.37, 2.68

aa 1.66 1.08, 2.54 1.36 0.86, 2.15

Corrected Aa 1.01 0.70, 1.45 1.30 0.91, 1.85

aa 1.99 1.21, 3.26 1.63 0.97, 2.75

OR = Odds ratio; CI = confidence interval; Aa = Heterozygous genotype; aa = Homozygous mutant genotype.
a Confidence intervals based on Wald method for uncorrected estimates and percentile-based for corrected estimates.
bFree of genotyping error.
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– the ‘true’ result. For example, the ‘true’ OR for the
SNP 1 aa genotype was 2.04 (95% CI: 1.29, 3.21). With
SNP A-type error introduced into the data, the uncor-
rected OR was 1.82 (95% CI: 1.17, 2.84) while the cor-
rected OR was 2.11 (95% CI: 1.29, 3.45), close to the
‘true’ result. When SNP B-type error was introduced,
the uncorrected odds ratio was even further from the
‘true’ estimate – 1.49 (95% CI: 1.06, 2.09); however, the
corrected odds ratio was 1.99 (95% CI: 1.21, 3.26), close
to the ‘true’ result.
As seen in Table 4, the odds ratios remained very simi-

lar, but the confidence intervals were somewhat wider or
narrower when we simulated the effect of decreasing or
increasing (respectively) the number of sample pairs
available for assessing gDNA-wgaDNA misclassification.

Iterations
To verify the optimal number of iterations provided, we
used the highest level of discordance (SNP-B type error)
on the artificial SNP 1, and completed 1000 repeats of
Table 4 Results of Correction Procedure for Hypothetical Data
Misclassification Sample

‘Recessive’ artificial

Aa

Size increase of misclassification sample OR 95% CIa OR

0.5 x size 1.01 0.66, 1.55 1.98

1 x 1.01 0.70, 1.45 1.99

5x size 1.00 0.71, 1.41 2.00

OR = Odds ratio; CI = confidence interval; Aa = Heterozygous genotype; aa = Homo
aConfidence intervals based on Wald method for uncorrected estimates and percen
25, 50 and 100 iterations to examine the distribution of
the resulting imputed OR for the aa genotype. 95% con-
fidence intervals for the spread of this imputed OR were
(1.96 – 2.10), (2.01 – 2.11) and (2.02 – 2.09) respectively.
We felt the precision gained in 50 iterations compared
to 25 was of value, and that the extra precision gained in
100 iterations compared to 50 was insufficient to war-
rant the observed modest increase in computation time.
It should be noted that increasing the number of itera-
tions would further increase the precision of the esti-
mate, with the only expense being in added computation
time.

Correction of case–control study data
The uncorrected and corrected odds ratios and 95%
confidence intervals for risk of ALL associated with each
genotype are shown in Table 5.
Almost 40% of the discordance in the gDNA-wgaDNA

sample pairs was in the Aa!AA direction (Table 1).
The effect of our correction was to reduce the odds ratio
on SNP B-type Error after Increasing Size of

SNP 1 ‘Log additive’ artificial SNP 2

aa Aa aa

95% CIa OR 95% CIa OR 95% CIa

1.15, 3.38 1.30 0.85, 1.99 1.63 0.93, 2.84

1.21, 3.26 1.30 0.91, 1.85 1.63 0.97, 2.75

1.26, 3.19 1.29 0.92, 1.80 1.65 1.01, 2.69

zygous mutant genotype.
tile-based for corrected estimates.
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for the Aa genotype in all six SNPs (Table 5). Over 50%
of the discordance seen in the gDNA-wgaDNA sample
pairs was in the Aa!aa direction (Table 1). Correction
increased the ORs for aa genotypes in four out of six
SNPs, while the other two remained the same (Table 5).

Discussion
We aimed to correct for bias introduced by differential
error in the genotyping results for control subjects com-
pared with case subjects in our case–control study of
childhood ALL. Over 90% of discordance observed in
the case gDNA-wgaDNA sample pairs involved a loss of
the Aa genotype in the wgaDNA samples (Table 1), con-
sistent with allelic drop out during the WGA process.
Croft and colleagues reported loss of the heterozygote
genotype in 60 to 91% of discordant gDNA and
wgaDNA sample pairs [12]. If the wgaDNA samples of
control subjects were affected in a similar way to, and to
a similar extent as, those of the cases – as is probable
since DNA from case children was taken at remission –
the most likely effect of the presumed allelic dropout
would be to produce a spuriously lower proportion of
Aa calls among controls than among cases for particu-
lar SNPs. The effect of this would be to artificially in-
flate the OR associated with the Aa genotype relative
to the AA.
Table 5 Results of Analysis of Genotype Associated with Risk

ID Geno-type n cases/controls (uncorrected) Uncorrected OR

Max 276/420

A AA 116/186 1.0

Aa 129/184 1.16

aa 30/41 1.19

B AA 122/170 1.0

Aa 119/154 1.13

aa 31/52 0.82

C AA 87/119 1.0

Aa 122/193 0.85

aa 64/82 1.05

D AA 174/262 1.0

Aa 95/126 1.15

aa 6/13 0.73

E AA 62/78 1.0

Aa 146/176 1.11

aa 62/143 0.58

F AA 204/315 1.0

Aa 68/82 1.30

aa 2/13 0.23

CI: Confidence interval; OR: odds ratio.
a Mean number of controls with each genotype, after correction, based on one sim
Our method for correcting logistic regression results
for genotyping error can be applied to any study where
misclassification is known to be present in genotypes (or
other types two or three level categorical data), and
where validation data are available, or where informed
estimates of probable misclassification can be made. The
method can also be adapted to allow associations be-
tween gene-environment interactions and risk of disease
to be investigated.
Our correction technique involved using the empiric-

ally observed patterns of discordance in matched gDNA
and wgaDNA samples from cases to adjust the estimated
ORs for the associations between each of these SNPs
and the risk of ALL. As expected, the primary effect of
the correction on real data was to reduce the ORs asso-
ciated with the Aa genotype. It also tended, less predict-
ably, to increase the ORs for aa genotypes. There are
two likely explanations for this less predictable effect.
First, the aa genotype is generally the rarest so that even
small adjustments in frequency can produce relatively
large proportional changes in the OR. Second, for most
SNPs, the correction method involved simultaneous ad-
justment to the frequency of the AA genotype relative to
the Aa genotype, so the reference category for the aa OR
was also adjusted.
Applying the discordance seen in our quality control

sample pairs to two artificial SNPs showed that the
of ALL: Uncorrected and Corrected Case–control Analyses

95% CI Mean n controls (corrected)a Corrected OR 95% CI

referent 186 1.0 referent

0.83, 1.61 189 1.13 0.81, 1.57

0.70, 2.03 36 1.35 0.76, 2.39

referent 151 1.0 referent

0.80, 1.58 186 0.81 0.56, 1.56

0.49, 1.37 39 0.95 0.53, 1.70

referent 116 1.0 referent

0.59, 1.23 208 0.76 0.52, 1.10

0.68, 1.63 71 1.16 0.73, 1.83

referent 259 1.0 referent

0.83, 1.61 136 1.04 0.74, 1.45

0.27, 1.97 6 1.74 0.44, 6.94

referent 70 1.0 referent

0.73, 1.68 205 0.84 0.54, 1.29

0.37, 0.92 122 0.59 0.37, 0.97

referent 314 1.0 referent

0.89, 1.89 83 1.26 0.87, 1.84

0.05, 1.06 13 0.23 0.05, 1.05

ulation of 50 iterations.
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method was successful: when the correction was applied
to hypothetical data with a known degree of misclassifi-
cation, estimates were more similar to those of the
error-free hypothetical data. This was the case whether
the degree of misclassification was relatively small (SNP
A-type) or relatively large (SNP B-type). Although the
effect of the correction method on the ORs for the aa
genotype tended to be less predictable than for the Aa
genotype when the ‘true’ result was unknown, our simu-
lations showed that the corrections made to the aa geno-
types were as appropriate and effective as for the Aa
genotypes. These results give us confidence that the cor-
rection method we devised can adjust appropriately for
the genotyping error and, therefore, should reduce bias
in our estimated ORs. However, since the adjustment is
probabilistic, there is likely to be a reduction in preci-
sion. Simulating an increase or decrease in the size of
the misclassification data set narrowed or widened (re-
spectively) the confidence intervals (Table 4).

Conclusions
The statistical method we have described in this paper
provides a novel and user-friendly method of correcting
for differential genotyping error. Unlike previously
described approaches, it can be used with modest sam-
ple sizes, allows correction of multiple misclassified vari-
ables, takes account of the size of the validation sample,
and does not require the validation sample to include
controls. Other genetic association studies based on
cases and controls with samples derived from different
sources or treatments of DNA should seek to investigate
concordance between genotypes measured in DNA from
both sources and, if found to be materially discordant,
consider applying this adjustment procedure.

Additional file

Additional file 1: R functions for misclassification correction
method. A text file containing the R functions required to run the
logistic regression corrected for known misclassification, as outlined
within this manuscript.
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