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The effect of changes in intraocular pressure
on the risk of primary open-angle glaucoma
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Abstract

Background: Primary open-angle glaucoma (POAG) is one of the leading causes of blindness in the United States
and worldwide. While lowering intraocular pressure (IOP) has been proven to be effective in delaying or preventing
the onset of POAG in many large-scale prospective studies, one of the recent hot topics in glaucoma research is
the effect of IOP fluctuation (IOP lability) on the risk of developing POAG in treated and untreated subjects.

Method: In this paper, we analyzed data from the Ocular Hypertension Treatment Study (OHTS) and the European
Glaucoma Prevention Study (EGPS) for subjects who had at least 2 IOP measurements after randomization
prior to POAG diagnosis. We assessed the interrelationships among the baseline covariates, the changes of
post-randomization IOP over time, and the risk of developing POAG, using a latent class analysis (LCA) which allows
us to identify distinct patterns (latent classes) of IOP trajectories.

Result: The IOP change in OHTS was best described by 6 latent classes differentiated primarily by the mean IOP
levels during follow-up. Subjects with high post-randomization mean IOP level and/or large variability were more
likely to develop POAG. Five baseline factors were found to be significantly predictive of the IOP classification
in OHTS: treatment assignment, baseline IOP, gender, race, and history of hypertension. In separate analyses of
EGPS, LCA identified different patterns of IOP change from those in OHTS, but confirmed that subjects with high
mean level and large variability were at high risk to develop POAG.

Conclusion: LCA provides a useful tool to assess the impact of post-randomization IOP level and fluctuation on the
risk of developing POAG in patients with ocular hypertension. The incorporation of post-randomization IOP can
improve the overall predictive ability of the original model that included only baseline risk factors.

Keywords: Latent class analysis, Longitudinal data, Time-dependent covariate, Prediction model, Survival data,
Primary open-angle glaucoma, Intraocular pressure fluctuation
Background
Ocular hypertension is a leading risk factor for the de-
velopment of primary open-angle glaucoma (POAG)
which remains one of the major causes of blindness in
the United States and worldwide [1-5]. It is estimated
that approximately 4% - 7% of the population over the
age of 40 years have ocular hypertension without de-
tectable glaucomatous damage using standard clinical
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tests, and thus as many as 3 to 6 million Americans
are at risk for developing glaucoma because of ocular
hypertension [6-8]. Intraocular pressure (IOP) is the
only known modifiable risk factor for POAG. Lowering
the level of IOP has been shown to effectively delay or
prevent glaucomatous visual damage in different
phases of disease progression by many large-scale mul-
ticenter clinical trials, including the Ocular Hyperten-
sion Treatment Study (OHTS) [9], the Early Manifest
Glaucoma Trial [10], and the Advanced Glaucoma
Intervention Study [11].
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In recent years, one of the hot topics in glaucoma
research has been the effect of IOP fluctuation (IOP
lability), both within a single day (short-term fluctu-
ation) and from visit to visit (long-term fluctuation) on
POAG [12,13]. Measures of IOP fluctuation have
included a wide range of quantities - peak, trough,
variance, and range, etc. [13] However, since subjects
with high mean IOP often show large IOP variability
over time, it is challenging to disentangle the effect of
fluctuation from mean IOP. A recently emerged tech-
nique for longitudinal data analysis, latent class analysis
(LCA) [14], provides an appealing approach to this
question. Rather than dealing with individual measures
of fluctuation, LCA identifies distinct patterns of longi-
tudinal profiles based on the combination of summary
statistics (i.e., mean level and variability) and hence
provides information complementary to the conven-
tional methods. LCA uses the patterns of serial bio-
marker readings available for subjects, together with
baseline covariates and disease outcomes, to divide
subjects into a number of mutually exclusive subpopu-
lations (classes). The class membership is unobserved
(latent) and determined by the class-specific parameters
in a data-driven basis.
In this paper, we used LCA to model the post-

randomization IOP in the OHTS. For each class, the
change of IOP was characterized by 4 parameters: the
initial IOP level (I), the linear (L) and quadratic (Q)
trend over time, and the variance of IOP (V). We used
data from the European Glaucoma Prevention Study
(EGPS) [15], another large-scale multicenter rando-
mized clinical trial of patients with ocular hypertension,
for external independent validation. We first fit an un-
conditional (without any covariates) LCA to determine
the optimal number of distinct patterns that best
described the IOP change for each study. Then a condi-
tional model was constructed by adding baseline covari-
ates as the antecedents (predictors) of IOP change and
time to POAG as a consequence (outcome) of IOP
change [16]. This analysis enhanced our understanding
of the interrelationships among the IOP change, the
baseline covariates, and the risk of developing POAG.
This also provided evidence towards our ultimate goal
to improve the prediction of POAG in patients with
ocular hypertension.

Methods
Study cohort
Our study used data from OHTS and EGPS, the two
largest randomized trials to test safety and efficacy of
topical hypotensive medication in preventing the devel-
opment of POAG. In OHTS, 1636 subjects were rando-
mized to either observation or treatment with ocular
hypotensive medication and followed for a median of
78 months [9]. In EGPS, 1077 subjects were randomized
to either placebo or an active treatment (dorzolamide)
and followed for a median of 55 months [15]. The two
studies shared many key similarities in the study proto-
col and generated data of high quality. In both studies,
for example, the outcome ascertainment was performed
by specialized resource centers where readers were
masked as to randomization assignment and informa-
tion about the participant’s clinical status, and the attri-
bution of abnormality due to POAG was performed by
a masked Endpoint Committee. Detailed information on
the similarity and discrepancy between OHTS and
EGPS as described by Gordon et al. [17]. This study
was approved by the Institutional Review Boards of
Washington University in St. Louis and the University
Bicocca of Milan.
In this paper, we excluded IOP values measured after

POAG onset. The primary endpoint was time from
randomization to the development of POAG. Those sub-
jects who did not develop POAG were censored at the
date of study closeout. In addition to the follow-up data,
following 13 demographic and clinical characteristics at
randomization were also included in this paper: treat-
ment assignment (TRT, 0 for observation/placebo and 1
for treatment), male gender (Male), black race (Black),
age at randomization (Age, decade), baseline IOP (IOP0,
mmHg), central corneal thickness (CCT, μm), pattern
standard deviation (PSD, dB), vertical cup/disc ratio
(VCD), the use of systematic beta blocker (BB) or Cal-
cium channel blockers (CHB), and the history of dia-
betes (DM), heart diseases (Heart), or hypertension
(HBP). These baseline factors were identified a priori as
possible predictors for the development of POAG during
the planning phase of the OHTS [18]. We excluded 34
subjects from EGPS with pigment dispersion and exfoli-
ation syndromes (an exclusion criterion in OHTS). We
also excluded subjects without any follow-up data (18 in
OHTS and 47 in EGPS) or those with only 1 follow-up
visit (19 in OHTS and 25 in EGPS). Therefore, these
subjects with at least 2 follow-up visits (1600 from
OHTS and 971 from EGPS) constituted our study co-
hort for the unconditional LCA. In the conditional LCA,
we further excluded subjects without CCT measure-
ments (169 in OHTS and 143 in EGPS) or those with
missing values in any other baseline factors (6 in EGPS).
Table 1 presented the summary statistics of baseline cov-
ariates and post-randomization data for each study,
where the binary data were summarized as counts and
proportions, while the continuous variables were sum-
marized in means and standard deviations (SD). For
consistency with previous analyses [17,18], values for the
baseline eye-specific variables (CCT, PSD, VCD, and
baseline IOP) for each participant were the average
of two eyes (with the exception of the EGPS participants



Table 1 Summary statistics of baseline predictors and
follow-up data for OHTS and EGPS, where categorical
variables are summarized as counts and proportions,
while the continuous variables are summarized in
means and standard deviations (SD)

Variables OHTS (N= 1600) EGPS (N= 971)

Baseline predictors

TRT 795 (49.7%) 487 (50.2%)

Male 687 (42.9%) 445 (45.8%)

Black 396 (24.8%) 1 (0.1%)

AGE (decades) 5.56 (0.96) 5.70 (1.02)

IOP0 (mmHg) 24.9 (2.69) 23.4 (1.62)

CCT (μm) 572.6 (38.5) 573.3 (37.5)

PSD (dB) 1.91 (0.21) 2.00 (0.52)

VCD 0.39 (0.19) 0.32 (0.14)

BB 71 (4.4%) 64 (6.6%)

CHB 190 (11.9%) 66 (6.8%)

DM 188 (11.8%) 55 (5.7%)

Heart 99 (6.2%) 109 (11.2%)

HBP 606 (37.9%) 279 (28.7%)

Post-randomization IOP

Mean (mmHg) 21.44 (3.45) 19.73 (2.57)

SD (mmHg) 2.27 (1.04) 2.22 (1.03)

Median #visits (min-max) 13 (2–16) 9 (2–10)

POAG 146 (9.1%) 107 (11.0%)
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with only one eye eligible for the study). For the
post-randomization IOP, however, only eye-specific data
were used because averaging two eyes could underesti-
mate the true intra-patient IOP variability. We took ad-
vantage of the fact that IOPs between two eyes were
highly correlated (with an intra-class correlation coeffi-
cient of 0.75), and follow-up IOPs were chosen from the
first eye developed POAG or an eye selected randomly in
participants without POAG. Since the continuous baseline
covariates were measured in quite different scales, they
were standardized to have mean 0 and variance 1 through-
out the remainder of this paper. As such, for these vari-
ables the odds ratios (OR) and hazard ratios (HR) from
the regression models represented the effect per 1-SD
change.
Statistical analysis
Unconditional LCA
Suppose there were N subjects and each subject had ni
pre-POAG IOP measures. Let Yi = {Y1, Y2, . . .. . .} denote
the post-randomization IOP and Ci represent the latent
class membership of ith individual, and θg be the vector of
class-specific parameters that differentiate the G
latent classes, with i =1, 2, . . ., N, and g =1, 2, . . ., G, re-
spectively. Then the distribution of Yi was a mixture dis-
tribution defined as [14],

f ðYiÞ ¼
XG
g¼1

fPrðCi ¼ gÞ � f ðYi Ci ¼ g; θg
�� �g ð1Þ

where PrðCi ¼ gÞ represented the size (mixing pro-
portion) of gth latent class in the mixture and
f ðYi Ci ¼ g; θg

�� �
was the class-specific distribution of Yi

as detailed below.

� The mixing probability PrðCi ¼ gÞ was modeled
as a multinomial logistic regression, PrðCi ¼ gÞ ¼

expðα0g ÞXG , where α0g represented the log odds
h¼1

expðα0gÞ
th
of membership in the g class relative to a

reference class (class 1, say), with the parameter
in the reference being 0 for identification.

� The specification of f ðYi Ci ¼ g; θg
�� �

was aided by
our previous experience on the joint modeling of
longitudinal IOP and time to POAG in OHTS [19].
The joint model identified IOP variability as an
independent predictor for POAG and also
revealed that the IOP change can be better fit by
a quadratic functional form. Therefore, we set
f ðYi Ci ¼ g; θg

�� � ¼ Ig þ Lgti þ Qgt2i þ Ei, with
EieNð0; VgÞ and θg ¼ Ig ; Lg ;Qg ;Vg

� �
: Because

high IOP was an eligibility criterion in both
OHTS and EGPS, the estimated initial level
(intercept Ig) may be influenced by “regression to
the mean”. To address this concern, we re-set
the time 0 and the intercept was actually
estimated at 1-year after randomization. We also
assumed that follow-up IOPs were measured
regularly every 6 months according to the
protocol, i.e., with timing ti = {−0.5, 0, 0.5, 1, . . .}.
Figure 1A showed the diagram of an
unconditional LCA for the OHTS data.

� Given the estimated parameters θ
_
g and the

observed IOP, each individual can be assigned to the
most likely class based on the probability of class
membership (often termed as posterior class
probability) [14],

� pig ¼
_
PrðCi ¼ gÞ � f ðYijCi ¼ g;

_
θgÞXG

h¼1

_
PrðCi ¼ hÞ � f ðYi Ci ¼ h;

_
θh

�� �g:�
The best unconditional LCA was selected by enumer-

ating and comparing a set of competing models differing
only in the number of classes. In this paper, the model
comparison was based primarily on the log likelihood



Figure 1 Diagrams for unconditional (1A) and conditional (1B) latent class analysis (LCA) for OHTS data, where C denoted the latent
classes. The trajectory of post-randomization IOP (Y) in each class was described by 4 class-specific parameters: the initial IOP level (I), the
systematic linear (L) and quadratic (Q) trend over time, and the variance of IOP (V).
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values, including the Bayesian Information Criteria (BIC,
with a smaller BIC indicating a better fit) and the Lo-
Mendell-Rubin adjusted likelihood ratio test (LMR-LRT)
[20]. A significant test of LMR-LRT indicated that the
model with G-1 classes should be rejected in favor of
the G-class LCA. In addition to the above statistical cri-
teria, we also specified a minimum size for each class
(with at least 5% participants in OHTS or 10% partici-
pants in EGPS) to ensure reliable within-class estima-
tion. Once an optimal LCA was developed, a bootstrap
method was used to assess whether patients with differ-
ent patterns of IOP change have different susceptibility
to POAG. Specifically, a class membership was gener-
ated for each individual from a multinomial distribution
using the posterior class probability, and then a Cox
model was fit to assess the effects of latent classes on
POAG. Summary statistics such as hazard ratios and
their 95% confidence intervals were estimated by repeat-
ing the above procedure 1,000 times.

Conditional LCA
Since patterns of IOP change were found to be asso-
ciated with the risk of POAG in an unconditional LCA,
a conditional LCA was built by adding baseline covari-
ates as predictors to the IOP change and adding time to
POAG as an outcome due to IOP change (Figure 1B).
Let Xi denote the baseline predictors for ith subject and
Ti =minimum(Di, Ui) be the observed time, where Di

was the time to POAG and Ui represented the censoring
time independent of Di . Let Δi be the corresponding
event indicator, with Δi= 1 if POAG is observed and
Δi= 0 otherwise. Let α and β denote effects of baseline
covariates Xi on the IOP change and time to POAG re-
spectively. Then the joint distribution of (Yi , Ti) was a
mixture distribution defined as [21],

f ðYi;TiÞ ¼
XG
g¼1

fPrðCi ¼ g; αgÞ � f ðYijCi ¼ g; θgÞ

�λðTi Ci ¼ g; βj ÞΔi � S Ti Ci ¼ g; βj Þg ð2Þð
� Similar to Model (1), the term PrðCi ¼ g; αgÞ ¼
expðα0g þ αgXiÞXG represented the size of gth class
h¼1

exp α0h þ αhXið Þ � �

in the mixture distribution and f ðYi Ci ¼ g; θg�
described the within-class IOP change.

� The term λðTi Ci ¼ g; βj Þ ¼ λ0g tÞ � expðβXiÞð
described the risk of developing POAG in gth class
and SðTi Ci ¼ g; βj Þ ¼ expð� R λ0g tÞ � exp βXi dtð Þðð
was the corresponding cumulative POAG-free
probability, where λ0g(t) was the class-specific
baseline hazard with all covariates being 0. In this
paper, λ0g(t) was approximated by a piece-wise
step-function with a 6-month interval. Following the
conventional practice in joint latent class modeling
[21,22], we assumed that the association between
IOP change and time to POAG was introduced
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exclusively via λ0g(t), so that the longitudinal process
and survival process were completely independent
given the class membership. Therefore, neither
time-dependent IOP values nor random effects of
IOP were included in the survival function. We also
assumed that the effects of covariates on POAG
were common across latent classes.

The conditional LCA facilitated a better understanding
of ocular hypotensive treatment on the risk of develop-
ing POAG. This model allowed us to determine whether
the predictive accuracy on POAG can be improved by
adding post-randomization IOP. For example, the sur-
vival probability (cumulative POAG-free rate) at any
time t can be readily calculated as the average of the
class-specific survival weighted by the posterior class
probabilities,

S Ti ¼ tð Þ ¼
XG
g¼1

p̂ig � Ŝ Ti ¼ t Ci ¼ g; β̂
��� ��

ð3Þ

with

p̂ig ¼
_
PrðCi ¼ g; α̂gÞ � f ðYi Ci ¼ g;

_
θg

�� �
XG
h¼1

_
PrðCi ¼ h; α̂h
� � � f ðYi Ci ¼ h;

_
θh

�� �g;
and ŜðTi ¼ tjCi ¼ g; β̂Þ

¼ exp

 
�
Z t
s¼0

λ̂0gðsÞ � expðβ̂XiÞds
!
;

where θ̂g ; α̂g ; β̂; and λ̂0g t ÞÞð
�

were the estimated para-

meters from the conditional LCA. In this paper, the par-
ameter estimation for LCA was implemented using
statistical package Mplus [23], while all the other ana-
lyses were performed using statistical package R [24].
Table 2 Fitting statistics of 7 competing models that are only

# latent classes (G) OHTS

BIC LMR-LRT* Minimal c

2 97097 <0.001 47

3 94219 0.002 24

4 92922 0.609 14

5 92107 0.003 13

6 91644 0.042 10%

7 91289 0.147 7

8 91045 0.406 6

* Lo-Mendell-Rubin likelihood ratio test, with a smaller p-value favoring the G-class
Results
Unconditional LCA
Table 2 showed the fitting statistics of 7 competing
LCAs for the OHTS and EGPS data. Based on the
model-selection criteria, the IOP change in OHTS was
best described by 6 distinct patterns (latent classes),
which included 13%, 28%, 20%, 10%, 18% and 11% of the
OHTS subjects respectively. Figure 2 showed the follow-
up IOPs of 50 randomly selected subjects for each class.
Most classes were distinguished primarily by the mean
IOP levels. The only exceptions were classes 3 and 4.
Classes 3 and 4 had similar average trajectories, but sub-
jects in Class 4 showed a much larger variability. Figure 2
also indicated that the classes with higher mean level
and/or larger variability had a higher risk of developing
POAG. Table 3 reported the observed frequency of
POAG in each class based on the most likely class mem-
bership. The hazard ratio (HR) and its 95% confidence
interval (CI) of developing POAG in each class were also
calculated using 1000 bootstrapping samples to account
for the uncertainty in class membership. The results
showed that the last 3 classes had significantly higher
risk of developing POAG than the first 3 classes. For
reasons that were not clear, however, subjects in Class 2
had the smallest risk though the subjects in Class 1 had
the lowest mean follow-up IOP.
In EGPS, the IOP change was best fit by a 5-class LCA

(Table 2). Figure 3 showed the post-randomization IOPs
of 50 randomly selected subjects from each of the 5
classes, which included 25%, 19%, 28%, 16% and 12% of
EGPS subjects respectively. Subjects in classes 1 and 2
started with similar initial follow-up IOP levels, but
those in Class 2 showed a relatively rapid decrease over
time. Similarly, subjects in classes 3 and 4 had similar
initial levels, but subjects in Class 4 showed a relatively
rapid decrease and subjects in Class 3 did not. All sub-
jects in the first 4 classes presented similar magnitude of
IOP variability. Subjects in Class 5 had the highest mean
level and the largest variability, and they showed a sig-
nificantly higher risk than the other 4 classes (Table 3).
different in the number of latent classes

EGPS

lass size BIC LMR-LRT Minimal class size

% 39235 <0.001 44%

% 38395 0.001 14%

% 38109 0.005 11%

% 37870 0.009 12%

37760 0.452 9%

% 37682 0.060 5%

% 37608 0.011 4%

model over the model with G-1 classes (null hypothesis).
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Figure 2 Post-randomization IOP values for 50 subjects randomly selected from each of the 6 latent classes indentified in OHTS, where
red lines represented subjects who developed POAG and the black lines were for those without POAG. The class membership was based
on the posterior probabilities from the optimal unconditional LCA, and the 4 parameters (I, L, Q, and V) in the plots represented the estimated
initial level, the systematic linear and quadratic trend over time, and the variance of post-randomization IOP respectively.
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Table 4 presented the distribution of treatment groups
across latent classes in the OHTS and EGPS data re-
spectively. In OHTS a great majority of subjects from
treatment group fell into the first 3 classes, while in
EGPS the distributions of treatment groups were rather
similar across all latent classes.

Conditional LCA
A conditional model was constructed for OHTS and
EGPS separately by adding the baseline factors as predic-
tors and the time to POAG as the outcome to the opti-
mal unconditional LCAs (Figure 1B). Since we had an
adequate sample size in both studies, no variable-
selection procedure was performed and all the baseline
covariates (with the exception of dropping the variable
race Black from EGPS because of lack of racial diversity)
were included as predictors for both IOP change and the
risk of developing POAG. Figure 4 presented the model-
based predicted cumulative incidence for an “average”
person with all baseline covariates being zero. After con-
trolling for baseline covariates, different patterns of IOP
change continued to be prognostic of POAG develop-
ment. In both studies, the class with the highest mean
level was most likely to develop POAG after adjusting
for baseline IOP. In OHTS, subjects in Class 4 (with a
moderate mean IOP and the largest variability) had



Table 3 Observed proportions of POAG, as well as
estimated hazard ratios (HR) and 95% confidence
intervals (CI) for POAG development in the unconditional
LCAs for the OHTS and EGPS data, where the HR and
95% CI were based on 1000 bootstrapping samples to
account for the uncertainty in the latent class
membership

Latent class OHTS EGPS

POAG% HR 95% CI POAG% HR 95% CI

1 5.9% 1.00 - 8.3% 1.00 -

2 3.9% 0.59 0.37 - 0.88 10.2% 1.28 0.76 - 2.06

3 4.3% 0.83 0.57 - 1.14 8.7% 1.13 0.73 - 1.65

4 10.1% 1.87 1.32 - 2.57 10.5% 1.40 0.85 - 2.18

5 11.4% 1.93 1.50 - 2.46 19.4% 2.66 1.92 - 3.69

6 31.2% 5.61 4.46 - 7.08
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similar risk as those in Class 5 (with a higher mean IOP
and much less variability), but showed a higher risk than
those in Class 3 (with the mean IOP comparable to
Class 4 but with much less variability). In EGPS, the first
4 classes showed similar risk of developing POAG.
Table 5 presented the estimated parameters for within-

class IOP trajectories, as well as the effects of baseline
covariates on IOP classification and the risk of POAG
development.

Effects of the baseline covariates on IOP classification

� To identify baseline predictors for IOP classification,
we only focused on factors that were significantly
associated with the high risk groups (Classes 4, 5, 6
in OHTS, and Class 5 in EGPS), while treating the
lowest risk group (Class 2 in OHTS and Class 1 in
EGPS) as the reference. In OHTS, treatment
assignment and baseline IOP were two most
important predictors for IOP classification. Subjects
randomized to treatment group had a much lower
chance of inclusion in the high risk groups (with
OR= 0.11, 0.003, and 0.002 for Classes 4, 5, and 6,
respectively), while these with a higher baseline IOP
were more likely to be in the Classes 4, 5, or 6 (with
OR= 2.80, 2.44, and 5.64 respectively). The results
also showed that male subjects were less likely to be
in Class 5 (OR= 0.51), the black subjects were more
likely to be in Class 4 (OR= 2.12) but with a lower
chance in Class 5 (OR= 0.40), and subjects with a
history of hypertension were more likely in Class 6
(OR= 1.93). In EGPS, the results confirmed that
treatment assignment (OR= 0.17) and baseline IOP
level (OR= 5.99) were important predictors for
Class 5. The result also showed that older age
(OR= 1.57) was significantly associated
with Class 5.
Effects of the baseline covariates on the risk of POAG
development

� As expected, the effects of baseline covariates on the
risk of developing POAG from the conditional LCA
reached consistent conclusions as previous analyses
using Cox models [17,25]. In OHTS, subjects with
older age (HR= 1.20), higher PSD (HR= 1.26), large
VCD (HR= 1.82), and history of heart diseases
(HR= 2.03) had a higher risk of developing POAG,
while thicker CCT (HR= 0.53) and history of
diabetes (HR= 0.19) reduced the risk of developing
POAG. Interestingly, despite marked differences
between OHTS and EGPS in the patterns of IOP
change, the EGPS confirmed 4 of the 6 predictors
(except age and history of diabetes) identified in
OHTS. In both studies, baseline IOP and treatment
assignment were not significantly associated with
POAG directly, but appeared to affect the risk
indirectly through their strong influence on the
classification of IOP change.

To explore the effect of follow-up IOP on the overall
predictive accuracy of POAG, the 5-year cumulative
POAG incidence was calculated for each individual
using the formula (3). The overall predictive accuracy
was summarized as C-index and calibration statistics
(Model 1 in Table 6) [26]. For comparison, Table 6 also
presented the C-index and calibration statistics from
Cox models that only incorporated baseline predictors
(Model 0). The results showed that adding post-
randomization IOP considerably improved the predictive
accuracy on POAG. In OHTS, for example, C-index
increased from 0.778 to 0.821 by adding follow-up IOP.
Given the fact that C-index from the baseline model was
already high and there was little room for improvement,
such an increase was substantial. An improvement in
the C-index was also observed in EGPS though in a
much smaller magnitude (from 0.706 to 0.719). The cali-
bration statistics indicated that the model-based and
observed survival probabilities were well agreed in both
OHTS (X2 = 11.3) and EGPS (X2 = 7.0).

Sensitivity analyses
As in all the statistical models, LCAs were inevitably
based on certain assumptions. One assumption of our
LCA was that the trajectories of IOP followed a quad-
ratic functional form. It is known that the parameter
estimates, class sizes, and interpretation of latent classes
could be heavily influenced by the within-class distribu-
tion of longitudinal data [16]. In this section, first we
assessed the sensitivity of risk prediction to different
LCA specifications. Table 6 presented the C-index and
calibration statistics for LCAs after removing the



Table 4 Distribution of the randomization groups across latent classes, where the latent classes were based on the
most likely posterior class probability from the optimal unconditional LCAs for the OHTS and EGPS data

Latent class OHTS EGPS

Observation Treatment Placebo Treatment

1 15 (1.9%) 191 (24.0%) 113 (23.3%) 143 (29.4%)

2 67 (8.3%) 385 (48.4%) 69 (14.3%) 112 (23.0%)

3 226 (28.1%) 106 (13.3%) 162 (33.5%) 136 (27.9%)

4 55 (6.8%) 84 (10.6%) 64 (13.2%) 63 (12.9%)

5 279 (34.7%) 19 (2.4%) 76 (15.7%) 33 (6.8%)

6 163 (20.2%) 10 (1.3%)

Total 805 (100%) 795 (100%) 484 (100%) 487 (100%)
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Figure 3 Post-randomization IOP values for 50 subjects randomly selected from each of the 5 latent classes indentified in EGPS, where
red lines represented subjects who developed POAG and the black lines were for those without POAG. The class membership was based
on the posterior probabilities from the optimal unconditional LCA, and the 4 parameters (I, L, Q, and V) in the plots represented the initial level,
the systematic linear and quadratic trend over time, and the variance of post-randomization IOP respectively.
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Figure 4 Predicted baseline cumulative incidence of POAG for each class, based on the conditional latent class analysis for the OHTS
and EGPS data respectively.
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quadratic term (Model 2) or removing both quadratic
and linear terms (Model 3). The results showed that
LCAs had a robust performance in terms of predictive
accuracy for POAG development.
Next, two additional sensitivity analyses were per-

formed in the OHTS data, one excluding participants
with Black race and the other only using participants
randomized to the observation group. The IOP change in
the non-Black was best described by 6 distinct classes,
while the LCA in the untreated participants identified 5
classes. Figures 5A and 5C showed the observed mean
IOP of latent classes in the non-Black and untreated par-
ticipants, respectively. Although most classes were distin-
guished primarily by the mean IOP, each LCA identified
a subgroup of participants (Class 4) who had a moderate
IOP mean but with the highest IOP variability. More
interestingly, the participants from Class 4 in both LCAs
showed relatively higher risk of POAG development than
those with a comparable mean IOP (Figures 5B and 5D).
Finally, our LCA also made an implicit assumption

that the baseline covariates influenced the IOP change
exclusively through their effects on the class member-
ship (i.e., no direct effects on the within-class growth
parameters). The validity of this assumption can be
checked by comparing the conditional LCAs with the
unconditional models. The assumption violation is often
signified by a dramatic shifting in the meaning and size
of latent classes when the baseline predictors are added
to the unconditional LCA [16]. Based on the estimated
class-specific parameters (Table 5, Figures 2 and 3), this
assumption was well satisfied in both studies.

Discussion
In recent years, one of the hot topics in glaucoma re-
search has been the effect of IOP fluctuation on POAG.
Although more and more studies have confirmed that a
decrease in the mean IOP level can reduce the risk of
developing POAG, the findings from major prospective
clinical trials about the impact of IOP fluctuation on
POAG remain controversial [25,27-30]. In this paper, we
analyzed the post-randomization IOPs from OHTS and
EGPS taking a latent class analysis (LCA) approach. The
LCA allows us to identify distinct patterns of IOP
change over time and then associates the changes in
IOP with the risk of POAG. The results from both stud-
ies showed that different patterns of IOP change could
markedly affect the risk of POAG (irrespective of their
baseline, pre-randomization IOP levels). In OHTS, the



Table 5 Estimated parameters of the conditional LCAs in the OHTS and EGPS data

OHTS

Variables Parameters for IOP change and the effects of covariates on class membership Effects on
POAGClass 1 Class2 (Ref.) Class 3 Class 4 Class 5 Class 6

Class Size
IOP Change

14.2% 27.1% 21.1% 9.1% 17.6% 10.9%

I 17.58(0.20)# 19.83(0.21)# 22.30(0.21)# 22.82(0.79)# 24.74(0.22)# 27.70(0.28)# -

L −0.57(0.08)# −0.53(0.06)# −0.47(0.09)# −0.95(0.30)# −0.20(0.09)* 0.16(0.17) -

Q 0.06(0.01)# 0.05(0.01)# 0.05(0.01)# 0.07(0.04) 0.02(0.02) −0.05(0.03) -

V 4.36(0.27)# 4.30(0.32)# 4.80(0.25)# 16.07(1.46)# 4.66(0.31)# 12.15(1.15)# -

Covariates

Intercept −2.64(0.63)# 2.08(0.47)# −0.06(0.47) 2.35(0.54)# 1.04(0.61) -

TRT 1.60(0.66)* - −3.25(0.35)# −2.19(0.63)# −5.98(0.56)# −6.46(0.70)# 0.16(0.29)

MALE 0.25(0.23) - −0.99(0.24)# 0.24(0.27) −0.68(0.28)* −0.22(0.30) 0.23(0.19)

RACEB −0.10(0.27) - −0.37(0.30) 0.75(0.31)* −0.91(0.34)* 0.05(0.37) −0.05(0.24)

AGE 0.06(0.12) - −0.01(0.12) 0.08(0.16) −0.05(0.14) 0.13(0.15) 0.18(0.09) *

IOP0 −0.79(0.18)# - 0.21(0.22) 1.03(0.36)* 0.89(0.18)# 1.73(0.22)# −0.10(0.11)

CCT −0.35(0.12)* - 0.18(0.11) −0.08(0.17) 0.14(0.13) 0.09(0.16) −0.64(0.13)#

PSD 0.13(0.11) - 0.04(0.11) 0.08(0.13) 0.17(0.13) 0.12(0.15) 0.23(0.10)*

VCD 0.06(0.11) - −0.08(0.12) −0.15(0.17) −0.10(0.13) −0.09(0.15) 0.60(0.10)#

BB −0.60(0.48) - −0.37(0.61) - ** −0.30(0.62) −1.21(0.77) 0.19(0.57)

CHB −0.19(0.37) - −0.32(0.42) 0.47(0.45) −0.42(0.44) −0.50(0.49) 0.09(0.31)

DM −0.23(0.35) - 0.22(0.32) −0.71(0.45) 0.23(0.36) 0.64(0.40) −1.67(0.53)*

HEART 0.70(0.44) - 0.10(0.49) 0.43(0.56) −0.09(0.56) −0.48(0.73) 0.71(0.29)*

HBP 0.47(0.24)* - 0.40(0.27) 0.06(0.34) 0.41(0.30) 0.66(0.33)* 0.08(0.22)

EGPS

Variables Parameters for IOP change and the effects of covariates on class membership Effects on POAG

Class1 (Ref.) Class 2 Class 3 Class 4 Class 5

Class Size
IOP Change

26.3% 20.1% 29.3% 12.9% 11.4%

I 18.66(0.25) # 18.24(0.18)# 21.24(0.20)# 21.85(0.47)# 24.33(0.34)# -

L −0.34(0.14)* −1.29(0.18)# −0.25(0.11)* −1.76(0.28)# 0.06(0.26) -

Q 0.05(0.03) 0.11(0.04)* 0.02(0.03) 0.02(0.07) −0.08(0.07) -

V 3.79(0.23)# 3.75(0.25)# 4.59(0.24)# 7.12(0.85)# 12.17(1.32)# -

Covariates

Intercept - −0.84(0.33)* 0.30(0.28) −0.85(0.58) −0.71(0.34)* -

TRT - 0.36(0.27) −0.65(0.23)* −0.58(0.37) −1.79(0.37)# −0.01(0.21)

MALE - −0.35(0.29) 0.14(0.23) 0.18(0.40) 0.38(0.33) −0.24(0.22)

Black - - - - - -

AGE - −0.09(0.16) 0.01(0.13) 0.40(0.23) 0.45(0.20)* 0.16(0.10)

IOP0 - −0.61(0.24)* 0.82(0.17)# 1.24(0.24)# 1.79(0.23)# 0.11(0.13)

CCT - −0.33(0.13)* −0.14(0.12) −0.43(0.15)* 0.09(0.15) −0.36(0.12)*

PSD - 0.27(0.16) −0.23(0.14) −0.18(0.24) −0.41(0.23) 0.18(0.09)*

VCD - −0.13(0.17) −0.03(0.13) 0.72(0.26)* 0.17(0.16) 0.46(0.12)#

BB - −0.17(0.50) −0.82(0.52) - ** −0.58(0.69) −0.07(0.41)

CHB - −0.10(0.56) −0.97(0.52) 0.89(1.03) −1.22(0.79) −0.28(0.47)

DM - −0.46(0.52) 0.12(0.45) −1.32(1.27) 0.82(0.81) −0.18(0.54)

HEART - 0.78(0.41) 0.11(0.44) −0.83(0.77) −0.79(0.61) 0.74(0.32)*

HBP - 0.02(0.36) 0.53(0.30) −1.27(0.90) 0.11(0.54) 0.24(0.26)

*: p < 0.05; #: p < 0.001; **: Not estimable due to zero count of beta blocker use in the given class.
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Table 6 Sensitivity analysis comparing the overall predictive accuracy (measured as C-index and Calibration Chi-square
statistics) for LCAs with different model specifications

Model Model Features C index Calibration Chi-square

OHTS EGPS OHTS EGPS

0 Cox mode with baseline factors only 0.778 0.706 5.0 2.1

1 LCA with a quadratic within-class functional form 0.821 0.719 11.3 7.0

2 LCA with a linear within-class functional form 0.825 0.720 10.2 4.9

3 LCA with a constant within-class functional form 0.823 0.727 10.5 13.5
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change in IOP was best described by 6 distinct patterns.
The model identified a subset of participants in whom
IOP variability also played an important role in predict-
ing POAG. This subgroup showed the highest IOP
variability and had a higher risk than those with a com-
parable IOP mean. Comparing to the reference class,
these participants were less likely from treatment group
(OR= 0.11), more likely self-classified as being black
(OR= 2.12), and had relatively higher baseline IOP
(OR= 2.80). However, the subgroup only accounted for
about 10% of the OHTS sample, and this may partially
explain our finding that IOP variability was an inde-
pendent risk factor in the OHTS but had little impact
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Figure 5 Sensitivity analyses of latent class models in the OHTS data.
latent classes and the corresponding Kaplan-Meier POAG-free curves in the
follow-up visits of the latent classes and the corresponding Kaplan-Meier P
on the overall predictive accuracy for POAG (manu-
script in progression). In a sensitivity analysis using the
non-Black participants, the LCA identified similar pat-
terns of IOP change as in the whole OHTS dataset. This
result was consistent with a tree-based model in the
OHTS-EGPS meta-analysis which showed that race was
no longer an important predictor for POAG develop-
ment after considering other risk factors [17]. In EGPS,
LCA identified 5 distinct latent classes and confirmed
that those subjects with the highest mean IOP were
most likely to develop POAG. However, it failed to dis-
entangle the effect of fluctuation from mean because
these participants with the highest mean level also had
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non-Black participants; Plots C and D: the observed mean IOP during
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the largest IOP variability. Interestingly, despite the
marked differences between EGPS and OHTS in the
treatment intervention and magnitude of IOP lowering
achieved, both studies showed that adding IOP change
into the baseline model improved the overall predictive
accuracy for POAG development.
Conventionally the change of longitudinal data is

described using linear mixed models with random coeffi-
cients [31]. Though the mixed model recognizes the het-
erogeneous nature of the data by allowing each
individual to have his/her own intercept and slope, it
assumes that all individuals come from a single popula-
tion and uses an average trajectory for the entire popula-
tion. A LCA analyzes data from a rather different
perspective. The model approximates the unknown het-
erogeneity in the distribution of longitudinal outcome
using a finite number of polynomial functions each de-
scribing a unique subpopulation [14,32]. It classifies
individuals into distinct groups based on the patterns of
longitudinal outcome, so that individual within a group
are more similar than those between different groups.
This LCA possesses some unique advantages as compar-
ing to conventional methods. First, the model lends itself
directly to a set of well characterized subpopulations
and also provides a formal statistical procedure to deter-
mine the appropriate number of subpopulations. It thus
enables the discovery of unexpected yet potentially
meaningful subpopulations that may be otherwise
missed with conventional methods. Second, the method
permits one to relate the developmental patterns of lon-
gitudinal data to its antecedents (predictors or covari-
ates) and consequences (clinical outcomes), and thus
allows estimation of both direct and indirect (via longi-
tudinal data) effects of a covariate on the distant out-
come [16,23]. Finally, the recent advances of the dual
trajectory modeling also allow investigators to assess the
joint evolution of multiple longitudinal processes, which
may evolve contemporaneously or over different time
periods [32].
LCA also provides an attractive alternative for making

prediction with time-dependent covariates [21,22]. A
LCA takes a joint modeling approach to assess the asso-
ciation between longitudinal and survival data and thus
uses information more efficiently, resulting less biased
estimates. Unlike the conventional joint models that as-
sess the association via shared random effects [19,33,34],
a LCA relates the longitudinal process to survival
process by latent classes and assumes the two stochastic
processes independent given the class membership [22].
Therefore, neither time-dependent covariates nor ran-
dom effects of the longitudinal data are needed in the
survival sub-model. Such a model specification will
avoid the intensive computation to obtain the random
effects for new subjects and hence facilitates a real-time
individualized prediction [21]. The key to build an accur-
ate prediction in a LCA setting is to have a reliable clas-
sification given the observed data. Generally speaking,
the more the available serial biomarker readings, the
more reliable a classification is. To this consideration,
the impact of follow-up IOP on POAG may be over-
estimated in OHTS because an average length of 6.5-year
IOP readings was used to calculate the 5-year POAG-free
rate. To solve this dilemma, which is rather common in
all predictions involving time-dependent covariates, one
of the most frequently used approaches in medical litera-
ture is a landmark analysis that consists of fitting a serial
of survival models only to the subjects still at risk, that is,
computation of the predictive distribution at a certain
time given the history of event and covariates until that
moment [35]. In a LCA setting, such a dynamic predic-
tion can be conveniently implemented because the con-
ditional survival probability at any time can be calculated
analytically from a single LCA once the parameters are
estimated [21].
Despite its advantages, the LCA has several limita-

tions. First, the computational load of LCA can be high,
especially for models with complexity structures. In
OHTS data (N = 1600), for example, it ran less than
10 minutes for an unconditional 6-class LCA, but it took
more than 30 minutes to develop the full conditional
model. Because of the exploratory nature of data analysis
with LCA, the cumulative time can be substantial. For
this consideration, in practice the best LCA model is
often constructed taking a two-step approach as in this
paper. Another issue in LCA is that the log-likelihood
function may end up at local rather than global maxima.
Fortunately this issue has been taken into consideration
by the statistical package Mplus which automatically
uses 10 sets of randomly generated starting values for
estimation. The program also allows investigators to re-
run and compare the estimates from user specified start-
ing values if necessary [23].

Conclusion
LCA provides a useful alternative to understand the
interrelationship among the baseline covariates, the
change in follow-up IOP, and the risk of developing
POAG. The inclusion of post-randomization IOP can im-
prove the predictive ability of the original prediction
model that only included baseline risk factors.
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