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Using a generalized additive model with
autoregressive terms to study the effects of daily
temperature on mortality
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Abstract

Background: Generalized Additive Model (GAM) provides a flexible and effective technique for modelling nonlinear
time-series in studies of the health effects of environmental factors. However, GAM assumes that errors are mutually
independent, while time series can be correlated in adjacent time points. Here, a GAM with Autoregressive terms
(GAMAR) is introduced to fill this gap.

Methods: Parameters in GAMAR are estimated by maximum partial likelihood using modified Newton’s method,
and the difference between GAM and GAMAR is demonstrated using two simulation studies and a real data
example. GAMM is also compared to GAMAR in simulation study 1.

Results: In the simulation studies, the bias of the mean estimates from GAM and GAMAR are similar but GAMAR
has better coverage and smaller relative error. While the results from GAMM are similar to GAMAR, the estimation
procedure of GAMM is much slower than GAMAR. In the case study, the Pearson residuals from the GAM are
correlated, while those from GAMAR are quite close to white noise. In addition, the estimates of the temperature
effects are different between GAM and GAMAR.

Conclusions: GAMAR incorporates both explanatory variables and AR terms so it can quantify the nonlinear impact
of environmental factors on health outcome as well as the serial correlation between the observations. It can be a
useful tool in environmental epidemiological studies.
Background
People have long been interested in potential impacts of
temperature on human health [1-3]. Recently, many
studies have been done to analyse the way and the ex-
tent temperature influences health outcomes [4-6]. Such
studies have practical value for the following reasons:
knowing the association between environmental factors
and health outcomes will help to identify at-risk popula-
tions, benefit health department in resource allocation,
and provide support for stake holders in prevention [7].
Environmental epidemiology, the investigation of

the health risks related to environmental exposures,
becomes the main research approach [8]. There are vari-
ous study designs in environmental epidemiology for es-
timating health effects of temperature. One of them is
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model evaluation of time series data to quantify the
association between temperature (or other weather/
environmental factors etc.) and daily mortality (or
hospitalization etc.). These are a type of ecologic study
because they analyse daily population-averaged health
outcomes and exposure levels [9]. This approach is suit-
able to study transient acute effects which are due to
time-varying exposures [10-14], and the choice of model
can have a large influence on the interpretation of envir-
onmental effects.
Generalized Linear Model (GLM) [15] and General-

ized Additive Model (GAM) [16] are the main models
used in environmental epidemiology. When the response
variable represents counts (e.g. number of deaths), the
model often takes the form of a Poisson regression/addi-
tive model with a log link function. The outcome Yt is
assumed to follow a Poisson distribution with mean μt
which is linked either to a linear combination (in this
case, the model is a GLM) or smoothed functions (in
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this case, the model is a GAM) of environmental ex-
planatory variables via a log function.
Many studies have identified the nonlinear relations

(U, J, or V shaped) of daily mortality on temperature
[17-24], which are mainly represented by piecewise lin-
ear terms [18-20] or natural cubic splines [21-24]. An
assumption is often made that temperature only affects
the mortality of the same day or on a single day of lag l
[18,20-22], and denoted by the term tempt-l in the
model. When l=0, it represents the effect on the same
day [18,20-23], when l>0, it represents a lagged effect
[18,20,21,23]. An alternative to single lag models is a dis-
tributed lag model [25]. It includes multiple lags of
temperature over a period of time based on the assump-
tion that the effect of time is distributed over several
days into the future. In all the above models, a spline
function of time is often used to explain the long time
trend, and confounding effects like humidity and air pol-
lution are also controlled by splines.
However, a thorough time series analysis should con-

sider the order of data points and correlation of adjacent
points in time [26]. In environmental epidemiological
studies, the response variable may also be correlated and
it is necessary to embody autocorrelation of the response
variable when modelling. But all the above models are
standard GLM/GAM that describes how the response
variable is stochastically related to explanatory variables
without considering how the response can be dependent
also on its past values.
In addition, autocorrelation causes trouble in estima-

tion of GLM/GAM, since GLM/GAM essentially
requires each observation to be independently distribu-
ted. Violation of this assumption can lead to problematic
estimates even in very simple cases. For example, if the
error terms in a linear regression model are in reality
positively autocorrelated, failure to account for this may
underestimate the standard errors of the estimated re-
gression coefficients [27].
Another statistical issue often encountered is overdis-

persion, and many sources of autocorrelation are related
to sources of overdispersion [28]. One usual approach to
adjust for overdispersion is to specify a dispersion par-
ameter φ for estimation [15]. However, if autocorrelation
exists, this approach only inflates the variance of the es-
timate by φ but leaves the estimate unchanged, which is
an inadequate solution to our issue.
Generalized Estimating Equations (GEE) [29,30] and

Generalized Linear Mixed Model (GLMM)/Generalized
Additive Mixed Model (GAMM) [31,32], are two exten-
sions from GLM/GAM for grouped or clustered data.
GEE and GLMM/GAMM can be implemented in popu-
lar software like SAS and R [31-34]. For all these models,
a within-group variance-covariance structure can be
used to account for the corresponding within-group
autocorrelation [31,34]. Time series data, treated as sin-
gle cluster data, can also be modelled by GAMM. Per-
formance of this degenerative GAMM will be studied in
simulation.
In this article, we introduced GAM with Autoregres-

sive terms (GAMAR), which is derived from Generalized
Autoregressive Moving Average (GARMA) models [35].
ARMA is a family of models for analysing time series.
The notation ARMA(p,q) refers to a model with p auto-
regressive terms and q moving-average terms [26].
GARMA belongs to the class observation driven models
[36] for extending Gaussian ARMA to non-Gaussian set-
tings. GAMAR differs from GARMA in that the linear
components in GARMA are generalized to natural splines
and MA terms are omitted. The generalization is motivated
by modelling nonlinear relationships, while the simplifica-
tion is justified because AR can be used to approximate
MA or ARMA. Additionally, larger AR order in GAMAR
will not compromise the estimation of the effects of ex-
planatory variables.
In all, GAMAR has two advantages over GAM: 1) it is a

model for generalized time series analysis rather than a
probabilistic model like GAM; 2) the AR part of GAMAR
can explain the autocorrelation structure of observations.
So the Pearson residuals of GAMAR can be closer to
white noise than those from GAM, yielding more reliable
estimation.

Methods
GARMA
In GARMA, the conditional distribution of each obser-
vation yt, for t=1,. . .,n, given the previous information
set Ht={X1,. . .,Xt,y1,. . .,yt-1} containing past observations
yt and covariate vectors Xt = (Xt1,. . .,Xtm), is assumed to
follow the same exponential family distribution [35]. As
with the standard GLM, the conditional mean μt is
related to the variables by a twice-differentiable one-
to-one monotonic function g, which is called the link
function. However, unlike the standard GLM, the for-
mula here allows autoregressive moving average terms
to be included additively [35]:

g μtð Þ ¼
Xm
i¼1

Xtiβi þ
Xp
j¼1

cj g yt�j
� ��Xm

i¼1

Xt�j;iβi

 !

þ
Xq
j¼1

dj g yt�j
� �� g μt�j

� �� �
;

where
Xp
j¼1

cj g yt�j
� ��Xm

i¼1

Xt�j;iβi

 !
are autoregressive

terms and
Xq
j¼1

dj g yt�j
� �� g μt�j

� �� �
are moving aver-

age terms.
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Count data are often assumed to follow Poisson distri-
bution. And the Poisson GARMA submodel is:

ln E ytð Þð Þ ¼ ln μtð Þ ¼
Xm
i¼1

Xtiβi

þ
Xp
j¼1

cj ln y�t�j

� �
�
Xm
i¼1

Xt�j;iβi

 !

þ
Xq
j¼1

dj ln y�t�j=μt�j

� �� �
;

where yt
* = max(yt,τ), τ is a positive threshold parameter.

Any 0 or negative values of y are replaced by τ, because
ln() is not defined for 0 or negative values.

GAMAR
GAMAR is derived from GARMA with linear terms
replaced by smoothers and MA terms omitted:

g E ytð Þð Þ ¼g μtð Þ ¼
Xm
i¼1

si Xtið Þ

þ
Xp
j¼1

cj g yt�j
� ��Xm

i¼1

si Xt�j;i
� � !

; ð1Þ

where
Xm
i¼1

si Xtið Þ are smoothers of covariates,

Xp
j¼1

cj g yt�j
� ��Xm

i¼1

si Xt�j;i
� � !

are autoregressive terms.

Compared to GAM, (1) allows autoregressive terms to
be included additively in the link predictor.
For count data y, we use the Poisson submodel:

ln E ytð Þð Þ ¼ ln μtð Þ ¼
Xm
i¼1

si Xtið Þ

þ
Xp
j¼1

cj ln y�t�j

� �
�
Xm
i¼1

si Xt�j;i
� � !

; ð2Þ

here yt
* = max(yt,τ), τ is a positive threshold parameter.

In our study, we use natural cubic spline (ns) as
smoother. ns is a piecewise-cubic real function on an
interval [a,b], where [a,b] is separated by a sequence
of k ordered knots: α = ξ0 < ξ1 < ⋯ < ξk-1 < ξk = b.
ns is continuous at interior knots and linear beyond
the boundary [16]. Degrees of freedom (df ) for ns
equals to the number of subintervals separated by
these knots, thus df satisfies: df = k. ns is often
represented by linear combination of its B-spline
basis [16]. When df is specified, the standard practice
is to place df-1 interior knots at evenly spaced inter-
vals in the data to generate the B-spline basis. By
using ns as smoother in (2), the Poisson GAMAR
becomes:

ln E ytð Þð Þ ¼ ln μtð Þ ¼
Xm
i¼1

ns Xit ; dfið Þ

þ
Xp
j¼1

cj ln y�t�j

� �
�
Xm
i¼1

ns Xi�j;t ; dfi
� � !

:

Algorithm
Maximum partial likelihood estimator (MPLE)
For the jointly distributed time series {Xt,yt}, t = 1,. . .n,
the parameters of GAMAR can be estimated by max-
imum partial likelihood. The partial likelihood based on
yt for {Xt,yt}, t = 1,. . .n can be expressed as the product
of a sequence of conditional likelihoods f(yt | X

(t),y(t-1);θ),
t = 1,. . .n, where X(t) = X1,. . .Xt, y

(t-1) = y1,. . .yt-1, that is:

PL ¼
Yn
t¼1

f yt X
tð Þ; y t�1ð Þ; θ

�� �
:

�

This function is referred to as a partial likelihood in-
stead of likelihood because Xt are stochastic [35]. For a
Poisson GAMAR, the partial likelihood is:

PL ¼
Yn
t¼1

μytt
yt !

e�μt ;

and μt can be expanded as ln μtð Þ ¼
Xm
i¼1

ns Xti; dfið Þ þ

Xp
j¼1

cj ln y�t�j

� �
�
Xm
i¼1

ns Xt�j;i; dfi
� � !

. Since a natural

cubic spline is a linear combination of its B-spline basis,
it is linear with respect to its parameters, so natural
cubic spline functions are like linear terms from the per-
spective of computation. Therefore,

ln μtð Þ ¼ηt ¼
Xm
i¼1

βiXti

þ
Xp
j¼1

cj ln y�t�j

� �
�
Xm
i¼1

βiXt�j;i

 !
ð3Þ

where θ = (β1⋯,βm,c1,⋯,cp)
T is the model parameter

vector.

Modified Newton’s method
Maximum partial likelihood estimators are solved by
modified Newton’s method. This procedure is described
in detail in Appendix.

Evaluation of GAMAR by simulation
We conducted two simulation studies, each with 1000 sam-
ples, to compare the performance of GAM and GAMAR
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for estimation. In simulation study 1, the performance of
GAMM is also studied. The R code for simulations and
simulation output is included in Additional file 1.

Simulation study 1
The first model:

Yt ∼ PoissonðμtÞ
lnðμtÞ ¼ nsðxt ; 5Þ þ at

nsðxt ; 5Þ ¼
X5
i¼1

βisi5 xtð Þ

at ¼
X3
i¼1

ci ln y∗t�ið Þ � ns xt�i; 5ð Þð Þ
y�t ¼ maxðy; τÞ; τ ¼ 0:5:

ð4Þ

Here xt represents a daily averaged temperature series
from year 2000–2008 obtained from Shanghai's Me-
teorological Bureau, and the terms si5(xt), i = 1, 2, 3, 4, 5
form the B-spline basis for the natural cubic spline. The
parameters are:

β0 ¼ 5:02; β1 ¼ �0:35; β2 ¼ �0:36; β3 ¼ �0:38; β4
¼ �0:33; β5 ¼ �0:15 and c1 ¼ 0:5; c2 ¼ 0:25; c3
¼ 0:12:

We used data ranging over time points 1828–3288
(year 2005–2008) to eliminate the impact of the starting
value, where the time points stand for the days since Jan
1st 2000.
For two models on Sample 1, the Autocorrelation

Function (ACF) and Partial Autocorrelation Function
(PACF) [26] of the Pearson residuals [15] are plotted
against different lag periods to examine the presence of
residual autocorrelation. Estimates of temperature effects
from the two models and the true effect were plotted
against temperature to show which model provided a
better fit.
Besides showing the analysis for a single sample, the

averaged results from GAM, GAMM and GAMAR
were given, and the statistics calculated were mean
estimates, bias, relative error and coverage, short for
“coverage rate of confidence interval (CI) on true
value”. The confidence level was chosen to be 95%, so
the coverage of a correct model should be around
95%.
In addition, GAMAR with various AR orders were

studied to explore the effects of AR order on estimation.
Finally, to verify the consistency of partial maximum
likelihood estimation, 1000 samples in the time range of
2558–3288 (2 years), 1828–3288 (4 years), 1097–3288
(6 years) were used for calculation.
Simulation study 2
A second simulation study was performed to study
whether the proposed method could approximate a non-
linear curve. We simulated 1000 samples from a model
where the covariate is a cosine function of temperature
and nonlinear with respect to the parameters.

Yt ∼ PoissonðμtÞ
lnðμtÞ ¼ 4:8þ 0:2 cosðπðxt þ 3Þ=28Þ þ at

at ¼
X3
i¼1

ci ln y�t�i

� �� 4:8þ 0:2 cos π xt þ 3ð Þ=28ð Þð Þ� �
y�t ¼ maxðy; τÞ; τ ¼ 0:5

ð5Þ
Here, the AR terms parameters are identical to (4): c1 =

0.5, c2 = 0.25, c3 = 0.12.
As in simulation study 1, sample statistics were cal-

culated over the time points 1828–3288 (year 2005–
2008) for each of the 1000 realizations by GAM and
GAMAR. The first sample was analysed just the same
way as in simulation study 1, but here the mean and
standard deviation of the parameter estimates from the
two models for the 1000 samples are presented. To
compensate for the absence of true parameters, we
compared the two models visually, plotting the mean
predicted values from the two models and the true ef-
fect. Moreover, the Pearson correlation coefficients of
the fitted linear predictors from the two models and
true effect were also calculated.

Application to temperature-mortality research
The real example came from three sources: daily mortal-
ity of Shanghai in 2001–2004 from Shanghai Municipal
Center for Disease Control & Prevention; daily average
temperature and humidity in 2001–2004 from Shanghai's
Meteorological Bureau; and air pollution data (NO2,
SO2, PM10) in 2001–2004 from (http://www.envir.gov.
cn/airnews/), which was announced by the Shanghai En-
vironmental Monitoring Centre.
Autocorrelation of the Pearson residuals from the

two models are compared via figure. We also com-
pared their parameter estimates, and their estimated
temperature effects via figures. The R code for real
example modelling and its outputs is included in
Additional file 1.

Results
Simulation results
Simulation study 1
The ACF and PACF plot of the GAM Pearson residuals
from the first sample indicate obvious autocorrelation
(Figure 1). The Pearson estimate of the dispersion par-
ameter [37] is φ̂ ¼ 2:675 > 1, indicating data overdisper-
sion. Since the ACF tails off and PACF cuts off after lag

http://www.envir.gov.cn/airnews/
http://www.envir.gov.cn/airnews/


Figure 1 ACF and PACF of GAM and GAMAR(3) for Sample 1 from simulation study 1. These statistics are calculated on Pearson residuals

zt ¼ ŷ t�ytffiffiffi
ŷ t

p from both models.

Figure 2 The temperature effects in link scale for Sample 1

from simulation study 1. Black: the true effect, Red:

= =

nsðx; 5Þ from
GAM, Blue:

= =

nsðx; 5Þ from GAMAR(3).
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3, it is natural to use GAMAR(3) instead. The model is
given below:

lnðEðytÞÞ ¼ nsðxt ; 5Þ þ
X3
i¼1

ci ln y∗t�ið Þ � ns xt�i; 5ð Þð Þ
y�t ¼ maxðy; τÞ; τ ¼ 0:5

ð6Þ

The ACF and PACF plot of the GAMAR(3) Pearson
residuals suggest no autocorrelation, and the dispersion
parameter estimate is now φ̂ ¼ 1:0219≈1, indicating
no overdispersion. Apparently, GAMAR(3) controls
autocorrelation and overdispersion simultaneously,
and Figure 2 indicates that the predicted spline

function

= =

nsðx; 5Þ from GAMAR(3) is much closer to
the real model than that from GAM.

Concerning the general performance of GAM and
GAMAR, Table 1 shows that the biases of the mean par-
ameter estimates from GAM are almost the same as
GAMAR. However, the coverages of the 95% confidence
intervals from GAM are far less than 95%, while those
from GAMAR are very close to 95%. Also, relative errors
of the parameter estimates from GAM are larger than
that of GAMAR.
Coverages for GAM corrected for overdispersion [15] are

also shown in Table 1 as coverage2. This approach is the
same as a standard GAM except that its standard error has
been expanded by the dispersion parameter φ. As a result,
the bias and relative errors remain unchanged, while the



Table 1 Results from GAM, GAMM, GAMAR(3) in simulation study 1

GAM GAMM (AR(3) correlation structure) GAMAR(3)

TruPar MeaEst Bias RelErr Coverage Coverage2 MeaEst Bias RelErr Coverage MeaEst Bias RelErr Coverage

β0 5.02 4.9991 −0.0209 0.0127 38 58.8 5.0065 −0.0135 0.0049 92 5.0182 −0.0018 0.0055 94.8

β1 −0.35 −0.3574 −0.0074 0.1922 33.5 52.4 −0.3576 −0.0076 0.0757 88 −0.3561 −0.0061 0.0686 93.9

β2 −0.36 −0.3672 −0.0072 0.229 35.3 56.4 −0.3662 −0.0062 0.0843 96 −0.362 −0.002 0.0885 94.6

β3 −0.38 −0.382 −0.002 0.1531 34.2 55.3 −0.3787 0.0013 0.0608 96 −0.3757 0.0043 0.0733 93.8

β4 −0.33 −0.3281 0.0019 0.428 38.6 62.6 −0.3418 −0.0118 0.1329 98 −0.3262 0.0038 0.1604 95.5

β5 −0.15 −0.1495 0.0005 0.4924 35.4 55.0 −0.1581 −0.0081 0.202 92 −0.1472 0.0028 0.2201 93.8

Mea_co 0.0067 0.2512 35.8 56.8 –0.0077 0.0934 93.7 0.0035 0.1027 94.4

c1 0.5 0.4982 −0.0018 0.0422 95.3

c2 0.25 0.2477 −0.0023 0.0947 93.4

c1 0.12 0.1197 −0.0003 0.1737 94.7

Mea_ar 0.0015 0.1035 94.5

TruPar=True Parameters= βi or ci.
MeaEst=Mean estimates=

―̂
β or

―
ĉ i .

Bias=
―̂
β i―β i or

―
ĉ i ―c i .

RelErr=Relative Error=
�����������

β̂ i � βi
� �

=βi
��� ��� or ���������ĉ i � cið Þ=cij j.

Coverage: the percentage ofestimated 95%CI whichcovers true coefficient in all estimated 95%CI.
Coverage2: coverage from GAM which accounts for overdispersion.
Mea_co: Mean absolute Bias, RelErr, Coverage for parameters of covariates.
Mea_ar: Mean absolute Bias, RelErr, Coverage for parameters of AR terms.

Table 2 Results from GAM and GAMAR(3) in simulation
study 2

GAM GAMAR(3)

TruPar MeaEst Sd MeaEst Sd2 DifEst DifSd

5.006 0.0842 5.0246 0.0371 −0.0186 0.0471

−0.2812 0.0864 −0.2806 0.0307 −0.0006 0.0557

−0.3894 0.1074 −0.3859 0.0412 −0.0035 0.0662
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confidence interval is broadened, coverage improved. How-
ever, the coverage is still far less than 95%.
The results of GAMM with AR(3) correlation struc-

ture and GAMAR(3) are very similar, but the former
model is much more time consuming. This disparity will
be described in discussion. Hence results from only 50
samples fitted by GAMM are summarized in Table 1.
To examine how the AR order in GAMAR influences

the results, we also fitted the GAMAR(1), GAMAR(2),
GAMAR(4), and GAMAR(5). As Table 1 in Additional
file 2 shows, the coverage grows and relative error drops
as the AR order increases from 1 to 3. For models with
AR order larger than 3, there is little difference in cover-
age, relative error and bias among them.
The results for different time ranges are listed in

Table 2 in Additional file 2, from which we can see that
the larger the number of time-points, the lower the bias
and relative errors, and the higher the coverage. This
illustrates the asymptotic unbiased (consistency) prop-
erty of MPLE.
−0.4379 0.1011 −0.4321 0.0399 −0.0058 0.0612

−0.3975 0.0825 −0.3888 0.0407 −0.0087 0.0418

−0.4536 0.1886 −0.4442 0.0754 −0.0094 0.1132

−0.2757 0.1001 −0.2646 0.0448 −0.0111 0.0553

c1 0.5 0.4978 0.0260

c2 0.25 0.2482 0.0287

c3 0.12 0.1196 0.0261

TruPar=True Parameters= ci.
MeaEst=Mean estimates=

―̂
β or

―
ĉ i .

Sd= Standard deviation of 1000 β̂ and ĉ i .
DifEst=MeaEst of GAM- MeaEst of GAMAR(3).
DifSe=Sd of GAM-Sd of GAMAR(3).
Simulation study 2
In this simulation study, The ACF and PACF plot of the
GAM Pearson residuals from the first sample also reveal
obvious autocorrelation (Figure 3). Just as in simulation
study 1, we can see that ACF tails off and PACF cuts off
after lag 3 for GAM, suggesting AR(3) would be suitable.
In contrast, the ACF and PACF of GAMAR(3) on the

same data are both very close to 0. And Figure 4 indi-

cates that the predicted spline function

= =

nsðx; 5Þ from
GAMAR(3) is much closer to the real model than that
from GAM.
In Figure 5, we can see the mean estimated temperature

effects from GAMAR(3) is closer to the true effect than
that from GAM. Meanwhile, the Pearson correlation coef-
ficients between estimated temperature effect and true ef-
fect are also different (GAM: 0.9341; GAMAR(3): 0.9980),
which means GAMAR(3) provides a better fit. Also, the
standard deviations of estimates from GAM are larger
than those from GAMAR (Table 2).



Figure 3 ACF and PACF of GAM and GAMAR(3) for Sample 1 from simulation study 2. These statistics are calculated on Pearson residuals

zt ¼ ŷ t�ytffiffiffi
ŷ t

p from both models.

Figure 4 The temperature effects in link scale for Sample 1

from simulation study 2. Black: the true effect, Red:

= =

nsðx; 6Þ from
GAM, Blue:

= =

nsðx; 6Þ from GAMAR(3).
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Application to temperature-mortality research
In the real case analysis, GAM is first used. The long
time trend of original observations is unobvious as
shown in the left side of Figure 6. So a rather small df: 2,
is used to control this secular trend. The daily mortality
after adjustment is in the right side of Figure 6.
And the complete GAM is given below:

EðytÞ ¼ μt ¼ expðηtÞ
ηt ¼ β0 þ nsðtÞ þ nsðtempt�lag1Þ
þ nsðtempt�lag2Þ þ nsðprestÞ þ nsðhumitÞ
þ nsðno2tÞ þ nsðso2tÞ þ nsðpm10tÞ
þ wtðweektÞ ð7Þ

Lagged days of two temperature terms and df of all
remaining natural spline functions are first determined
in a sequence to minimize AIC. Then this set of para-
meters is used as starting value to find the final para-
meters which minimize AIC locally. The final parameters
are: lag1 = 4, lag2 = 10, dftempt − lag1 = 5, dftempt − lag2 = 4,
dfpres = 2, dfhumi = 2, dfno2 = 3, dfso2 = 2, dfpm10 = 3
The two lagged temperature terms separately repre-

sent short term temperature effect and long term

temperature effect. The term wt weektð Þ ¼
X6
i¼1

βiIi weektð Þ
stands for week effect, where weekt represents corresponding
day in a week for date t, and Ii (weekt), i = 1,2,3,4,5,6 are in-
dicator functions for the number of a day in a week. For
each function, if weekt = i, Ii (weekt) = 1; if weekt ≠ i, Ii
(weekt) = 0.
Figure 7 shows that PACF all exceed 95% CI bounds

for the autocorrelations (blue dashed line) [38] lags less
than 5, and are contained within the bounds for lags lar-
ger than 4. So GAMAR(4) is then chosen to fit the data



Figure 5 The averaged temperature effects in link scale from Simulation study 2. Black: the true effect, Red:

= =

nsðx; 6Þ from GAM, Blue:

= =

nsðx; 6Þ from GAMAR(3).
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as described below:

EðytÞ ¼ μt ¼ expðηtÞ
ηt ¼ f ðxtÞ þ

X4
i¼1

ci ln y�t�i

� �� ηt�i

� �
f ðxtÞ ¼ βt þ nsðtÞ þ nsðtempt�4Þ þ nsðtempt�10Þ
þ nsðprestÞ þ nsðhumitÞ þ nsðno2tÞ
þ nsðso2tÞ þ nsðpm10tÞ þ wtðweektÞ

ð8Þ

All ACF and PACF of Pearson residuals from (8) are
now below 0.1, thus Pearson residuals from GAMAR(4)
are close to white noise. The estimated coefficients of
two lagged temperature terms and AR terms are given
in Table 3. In Figure 8 and Figure 9, we can see that the
estimated effects of tempt-4, tempt-10 from two models
are different.

Discussion
In environmental epidemiological studies, the meteoro-
logical/environmental influences on human health indi-
cators are often explained in a modelling framework.
And the predominately used models are GLM/GAM. In
our research, the drawbacks of GLM/GAM are studied,
and their melioration: GAMAR, is given. Simulation
studies reveal that GAMAR is more suitable when
observations are autocorrelated.
While the true AR order is known in simulation studies,

AR order needs to be determined in real case. Three
enlightening perspectives into this issue are given below:

1. In time series analysis, ACF and PACF are good
indicators of the order of process. CIs of an
uncorrelated series are often treated as criterion for
selecting orders [38]. For example, when PACF
exceed the limit of CI at certain lag, autoregressive
term at that lag needs to be modelled. This approach
is used to preliminarily determine the AR order in
the real case study.

2. Significance of AR terms can also be considered in
modelling. If p-value of AR(n0+1) from GAMAR
(n0+1) is larger than 0.05, while p-value of AR(n0)
from GAMAR(n0) is less than 0.05, then GAMAR
(n0+1) is unnecessary and GAMAR(n0) is a
favorable model. To illustrate it, we also use
GAMAR(5) to the real data, and find p-value of
AR(5) to be 0.1460>0.05.

3. The goal of introducing AR terms is to control
autocorrelation. So if Pearson residuals of GAMAR
(n0) show little sign of autocorrelation, or the PACF
is within the CI for all lags, then the AR terms are
adequate. In real data case, this requirement is
justified.

In application, the first and second advices are prac-
tical methods to determine AR order preliminarily, and
the third can be used to finally justify the choice. There
have been extensive discussions about choosing AR
orders [39].
We also want the covariate parameter estimation to be

robust with respect to different AR orders. Simulation
study provides some information for this issue: while the
real model is GAMAR(3) in simulation study 1.
GAMAR(1), GAMAR(2), GAMAR(4), GAMAR(5) are
also used for estimation. From Table 1 in Additional file
we can see that GAMAR(1), GAMAR(2) fit data much
better than GAM; while they differ little from GAMAR
(3). Since the true AR(3) parameter is rather small
(0.12), probably when the effect of neglected AR term is
small, covariate parameter estimation won’t differ much.
When the AR order is larger than the real, the estima-
tion results are almost the same as GAMAR(3). In all,



Figure 7 ACF and PACF of GAM and GAMAR(4) for real case. These statistics are calculated on Pearson residuals zt ¼ ŷ t�ytffiffiffi
ŷ t

p from both models.

Figure 6 Mortality before and after adjustment for secular trend. Left: the original mortality, Right: the mortality adjusted for secular trend.
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Table 3 temperature effects and AR estimates from GAM and GAMAR(4)

GAM GAMAR(4)

Estimate Se Z Pr(>|z|) Estimate Se Z Pr(>|z|)

ns(temp1,5)1 0.2443 0.0212 −11.5349 0.0000 −0.1947 0.0254 −7.6621 0.0000

ns(temp1,5)2 0.2668 0.0281 −9.4929 0.0000 −0.2290 0.0322 −7.1108 0.0000

ns(temp1,5)3 0.3278 0.0258 −12.6878 0.0000 −0.2989 0.0290 −10.3113 0.0000

ns(temp1,5)4 0.3422 0.0495 −6.9160 0.0000 −0.2898 0.0568 −5.1052 0.0000

ns(temp1,5)5 0.2254 0.0283 −7.9578 0.0000 −0.2569 0.0320 −8.0179 0.0000

ns(temp2,4)1 0.2355 0.0197 −11.9372 0.0000 −0.1833 0.0248 −7.3986 0.0000

ns(temp2,4)2 0.1599 0.0225 −7.1233 0.0000 −0.1430 0.0263 −5.4312 0.0000

ns(temp2,4)3 0.2472 0.0443 −5.5748 0.0000 −0.1978 0.0526 −3.7603 0.0002

ns(temp2,4)4 0.0752 0.0251 −3.0007 0.0027 −0.0559 0.0297 −1.8838 0.0596

AR1 0.1426 0.0211 6.7521 0.0000

AR2 0.0773 0.0223 3.4664 0.0005

AR3 0.1179 0.0221 5.3466 0.0000

AR4 0.1259 0.0223 5.6398 0.0000

Estimate: estimate for a parameter.
Se: Standard Error for a parameter.
Z=Estimate/Se, which approximately follows N(0,1).
Pr(>|z|): the probability of obtaining Z at least as extreme as the one that was actually observed, assuming that the true value is 0. This time P value is derived
from N(0,1).
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covariate parameter estimation is robust with respect to
disturbance of AR order.
GAMM can also give good estimates as shown in

Table 1. However, while the speed of GAMM in fitting
short time series is acceptable, say 2.05 seconds for sam-
ple with 100 observations and 10.17 seconds for sample
with 200 observations (both executed in server), the
time grows nonlinearly with respect to the length of
time series and thus GAMM would become computa-
tionally formidable when time series data is long. For ex-
ample, one sample of 1461 observations in simulation
study 1 would take about 1 hour and 7 minutes for
GAMM, while only 0.02 seconds for GAMAR (both exe-
cuted in server): the former is 2×105 times the latter.
Thus GAMM is much more computing intensive than
Figure 8 Effects of tempt − 4. Black:

= = = =

nsðtempt�4; 6Þ from GAM, Red:

= = = =

nsðtempt�4; 6Þ from GAMAR(4).
GAMAR when sample size is large. Therefore, we only
calculated 50 samples for GAMM in simulation study 1.
While we use natural cubic spline as smoother in the

model, penalized spline and smoothing spline can also
be implemented. With natural splines, one constructs a
spline basis with knots at fixed locations throughout the
range of the data. Smoothing splines and penalized
splines have circumvented the problem of choosing the
knot locations by constructing a very large spline basis
and then penalizing the spline coefficients to reduce the
effective number of df [40]. Despite the flexibility the
penalized way provided, [40] identified both fully para-
metric and nonparametric methods can perform well in
similar studies. Thus natural spline smoother can still
address many practical problems. In addition, our model
Figure 9 Effects of tempt − 10. Black:

= = = =

nsðtempt�10; 6Þ from GAM,

Red:

= = = =

nsðtempt�10; 6Þ from GAMAR(4).



Yang et al. BMC Medical Research Methodology 2012, 12:165 Page 11 of 13
http://www.biomedcentral.com/1471-2288/12/165
can be straightforwardly extended to the nonparametric
way by including the penalty.
For natural spline with B-spline basis, selecting the df

is of essential importance for application. A general ap-
proach is to use a data-driven method and to select the
number of df which optimizes a particular criterion [40],
like AIC. We used AIC to determine df of all splines ex-
cept that of time in the real case. Another strategy is to
use a df based on background knowledge or previous
studies. For example, natural spline of time is chosen to
represent the long term trend among different years,
and itself shouldn’t contain any yearly fluctuation.
Whether df meets the requirement is judged by compar-
ing the trend of observations before and after adjust-
ment, as well as the shape of the spline function visually
in Figure 6. Section 2.1 of [40] gives a full treatment of
this issue.
Besides including lagged temperature effects addi-

tively in the model, [41,42] have developed a family of
distributed lag non-linear models (DLNM), which can
simultaneously represent non-linear exposure-response
dependencies and delayed effects. Still, AR terms can
be aptly added to DLNM just as what we’ve done to
GAM.
Finally, the model can also be applied in other areas.

Researchers can use GAMAR for their specific research
purposes. The most immediate extensions are other en-
vironmental epidemiological studies, specifically studies
quantifying relationships between air pollution and mor-
tality. Air pollution functions in a different way from
temperature to impact human health, and there are also
some differences between their modelling: 1) the air
pollution-mortality relation is often simplified as linear,
for such simplicity facilitates parameter estimation and
interpretation; 2) distributed lag model is often used,
since the effects of air pollution can last for many days;
3) cumulative effect: the total impact of pollution of a
certain day over a period of following days, represented
by the sum of parameters at all lags, is of great interest
[9]. Such differences pose new questions for further
study, like assessing the impact of AR terms on esti-
mated cumulative effect rather than a single parameter.
Conclusions
This article proposes GAMAR for fitting time series data
with explanatory variables and autoregressive terms.
Two simulation studies with functions that approximate
the response from the real example showed that
GAMAR performed better than GAM. In the real ex-
ample, there was residual autocorrelation with GAM,
but little sign of autocorrelation with GAMAR. Also, dif-
ferent estimates of the temperature effects were obtained
with GAMAR and GAM.
Appendix
Modified Newton’s method
Given partial likelihood, maximum partial likelihood
estimators are solved by a modified Newton’s method.
For Newton’s method, the iteration goes:

θmþ1 ¼ θm � ∂2 ln PLð Þ
∂θi∂θj

� 	�1 ∂ ln PLð Þ
∂θ θ¼θm ;j

until convergence.
For a modified Newton’s method, the iteration goes:

θmþ1 ¼ θm þ Γ�1
� θmð Þ ∂ ln PLð Þ

∂θ θ¼θm ;j ð9Þ
until it convergence.

Here Γ θð Þ ¼ � ∂2 ln PLð Þ
∂θ∂θT

, which is the information

matrix, and Γ*
− 1(θm) is a modified version of Γ− 1(θm).

In (9):

∂ ln PLð Þ
∂θi

¼
∂
Xn
t¼1

ðyt ln μtð Þ � μt � ln yt !ð ÞÞ

∂θi

¼
Xn
t¼1

yt � μtð Þ ∂ηt
∂θi

;

Γ θð Þ ¼ �
∂
Xn
t¼1

yt � μtð Þ ∂ηt
∂θi

∂θj
¼ A B

BT C

� 	
:

Since ln μtð Þ ¼ ηt ¼
Xm
i¼1

βiXti þ
Xp
j¼1

cj ln y�t�j

� ��

�
Xm
i¼1

βiXt�j;i

�
, then:

∂ηt
∂βi

¼ Xti �
Xp
r¼1

crXt�r;i;
∂ηt
∂ci

¼ ln y�t�i

� ��Xm
k¼1

βkXt�i;k ;

∂2ηt
∂βi∂βj

¼ 0;
∂2ηt
∂ci∂cj

¼ 0;
∂2ηt
∂βi∂cj

¼ �Xt�j;i:

So

A ¼
Xn
t¼1

μtðXti �
Xp
r¼1

crXt�r;iÞðXtj �
Xp
r¼1

crXt�r;jÞ
 !

mm

;

B ¼
Xn
t¼1

μtðXti �
Xp
r¼1

crXt�r;iÞ ln y�t�j

� ��  

�
Xm

β X
�
þ y � μð ÞX

!!

k¼1

k t�j;k t t t�j;i

mp;

C ¼
Xn
t¼1

ln y�t�i

� ��Xm
k¼1

βkXt�i;k

 ! 

ln y�t�j

� �
�
Xm
k¼1

βkXt�j;k

! !
pp

:
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And the modified inverse matrix Γ*
− 1(θm) is defined as:

if Γ(θ) is reversible, then Γ*
− 1(θ) = Γ− 1(θ);

If Γ(θ) is irreversible. And its eigenvalue are λ1,
λ2,. . .,λmp, then we can find orthogonal matrix P, which
satisfies:

PTΓ θð ÞP ¼ diag λ1; . . . ; λmp
� �

:

Let λi
* = max(λi, δ), δ = 0.01, i = 1, 2,⋯,mp, then:

Γ�1
� θð Þ ¼ Pdiag λ�1

�1; . . . ; λ�mp
�1

� �
PT :

Such procedure ensures Γ*
− 1(θm) to be positive

definite.

Additional files

Additional file 1: R code for this study. This file contains core R codes
for this study, including the function of GAMAR, data generation in
simulation studies, data fitting in simulation studies, real case analysis
(including the procedure to choose the parameters) and generation of
tables and figures. This file also contains a brief description of every R
program.

Additional file 2: Additional Tables. This file contains 2 tables related
to simulation study 1.
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