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The ARIC predictive model reliably predicted risk
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Abstract

Background: Identification of high-risk individuals is crucial for effective implementation of type 2 diabetes
mellitus prevention programs. Several studies have shown that multivariable predictive functions perform as well as
the 2-hour post-challenge glucose in identifying these high-risk individuals. The performance of these functions in
Asian populations, where the rise in prevalence of type 2 diabetes mellitus is expected to be the greatest in the
next several decades, is relatively unknown.

Methods: Using data from three Asian populations in Singapore, we compared the performance of three
multivariate predictive models in terms of their discriminatory power and calibration quality: the San Antonio
Health Study model, Atherosclerosis Risk in Communities model and the Framingham model.

Results: The San Antonio Health Study and Atherosclerosis Risk in Communities models had better discriminative
powers than using only fasting plasma glucose or the 2-hour post-challenge glucose. However, the Framingham
model did not perform significantly better than fasting glucose or the 2-hour post-challenge glucose. All published
models suffered from poor calibration. After recalibration, the Atherosclerosis Risk in Communities model achieved
good calibration, the San Antonio Health Study model showed a significant lack of fit in females and the
Framingham model showed a significant lack of fit in both females and males.

Conclusions: We conclude that adoption of the ARIC model for Asian populations is feasible and highly
recommended when local prospective data is unavailable.

Background
Type 2 diabetes mellitus (T2DM) and its associated
complications have imposed a massive burden on public
health care systems. Intensive lifestyle modification has
been shown to effectively prevent or delay the develop-
ment of T2DM [1-3]. Although effective, these interven-
tional programs do incur some health care costs. In the
Diabetes Prevention Program in the United States, the
societal cost of lifestyle intervention was $3,540 more
per individual than the placebo group over 3 years [4].
This cost would prevent one case of diabetes for every
6.9 persons treated with lifestyle modification programs
over 3 years [1]. The number of persons that needs to
be treated to prevent one case of T2DM–and thus the
cost-effectiveness of the program–is highly dependent

on the absolute risk of developing T2DM in the popula-
tion undergoing the intervention. Thus, some form of
risk assessment, with intervention targeted at those at
highest risk, is critical to ensure the cost-effectiveness of
such programs.
To date, randomized clinical trials have been relying on

the diagnosis of impaired glucose tolerance (IGT) to selec-
tively identify a population at high risk of T2DM. This
diagnosis requires the administration of an oral glucose
tolerance test (OGTT), which is inconvenient to both the
clinician administering the test and the patient, leading to
some reluctance in using it. Recognizing this reluctance,
the American Diabetic Association (ADA), in 1997,
encouraged the use of fasting plasma glucose (FPG) rather
than the OGTT for the diagnosis of T2DM [5]. Levels of
FPG between ‘normal’ and ‘diabetic’ were classified as
impaired fasting glucose (IFG), a category analogous to
IGT. However, IFG may not identify all individuals with
the same degree of risk as those with IGT [6,7].
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Several studies have shown that multivariable predic-
tive functions using variables collected by medical history
and fasting blood tests perform as well, if not better, than
the 2-hour post-challenge glucose (2hPG) in identifying
individuals at high or low risk of developing T2DM
[8-10], thereby obviating the need for an OGTT. How-
ever, the broad utility of these functions is limited by the
relative lack of studies that have assessed the ability of
these functions to accurately predict the absolute risk of
developing T2DM, which is important for the planning
of interventional strategies for the prevention of T2DM.
Ideally, a population-specific predictive function should
be used for risk prediction [8,10,11]. However, suitable
prospective data that would facilitate the development of
these predictive functions is not always available, particu-
larly in developing countries in the Asia-Pacific region,
where the rise in the prevalence of T2DM is expected to
be the greatest in the next several decades [12]. In this
situation, applying predictive functions developed in an
external population seems to be a reasonable alternative.
However, differences in the average levels of risk factors
and their effect sizes, length of follow-up and baseline
incidence rates will likely complicate the evaluation. In
particular, it is quite possible to underestimate or overes-
timate the actual risk due to these differences. Further-
more, there are several risk functions available [8,13,14]
and it is not clear which risk function would perform
best when applied to the Asian populations.
In order to determine the viability of adopting an exter-

nally-developed predictive function for T2DM to the
Asian populations, we evaluated the performance of three
multivariate predictive functions for T2DM risk: the San
Antonio Health Study (SAHS) model [8], the Athero-
sclerosis Risk in Communities Study (ARIC) model [13]
and the Framingham Offspring Study (FRAM) model [14].
These three models were chosen because a recent study
had shown that they had excellent discriminative and cali-
bration qualities when applied to multiethnic cohorts in
the United States [15]. However, in order to use these
functions in Asian populations, further evaluation of these
functions is needed. The functions were evaluated using
data from Singaporean Chinese, Malay and Asian Indians
who were followed up as part of the Singapore Prospective
Study Program (SP2) in the 1992 National Health Survey
(NHS-92).

Methods
The 1992 Singapore National Health Survey (NHS-92)
Cohort
The 1992 Singapore National Health Survey (NHS-92)
was a cross sectional study carried out between Septem-
ber and November 1992 to determine the risk factors
for major non-communicable diseases in Singapore. The
results and methodology have been previously reported

[16]. Systematic sampling from a national household
database, followed by disproportionate stratified sam-
pling by ethnic groups, was used to select the sample
for the survey. The two minority ethnic groups, Malays
and Asian Indians, were over-sampled to obtain an eth-
nic distribution of approximately 60% Chinese, 20%
Malays and 20% Asian Indians to ensure sufficient num-
bers for statistical analysis. A total of 4,915 individuals
were invited to join the study. Out of this, 3,568 indivi-
duals (response rate = 72.6%) agreed to enrol in the cur-
rent study (Figure 1). Response rates were significantly
different across ethnic groups, with the Chinese having
a significantly higher response rate compared to other
ethnic groups [16].
The individuals who agreed to participate in NHS-92 sur-

vey completed an interviewer-administered questionnaire
and underwent a baseline physical examination, which
included anthropometric measurements (including height,
weight and waist circumference), blood pressure, and mea-
surements of fasting plasma glucose and lipids. Height (to
the nearest millimeter) was recorded in all subjects without
shoes, and weight (in kilograms) was measured, with sub-
jects in light clothing, using electronic weighing scales
(SECA model 220). Waist (defined as the narrowest part of
the body below the costal margin) and hip (defined as the
widest part of the body below the waist) measurements
were also taken; fasting blood samples including serum
lipids (10 ml plain tubes) and glucose (2 ml fluoride oxalate
tubes) were taken from 3,566 out of 3,568 subjects after an
overnight fast of 10 hours (two subjects failed or refused
venesection, and were thus excluded). OGTT was given to
3,435 subjects who were not on oral hypoglycemic medica-
tions or insulin (a completion rate of 96.3%). Plasma glu-
cose and lipid measurements were performed on the same
day as blood collection.

Follow-up of NHS-92 participants
At baseline, there were 156 subjects with a previous diag-
nosis of T2DM. A further 214 of the NHS-92 subjects
were diagnosed with diabetes mellitus at baseline, which
was defined as FPG ≥ 7.0 mmol/L or 2hPG ≥ 11.1 mmol/L.
These subjects were excluded, leaving 3,196 individuals in
the NHS-92 cohort. Between 2004 and 2007, we conducted
a study to follow up these individuals. The follow-up study
consisted of an interviewer-administered questionnaire and
a health screening, which included physical examination
and blood tests. Ethics approval was obtained from the two
Institutional Review Boards (National University of Singa-
pore and Singapore General Hospital) prior to commence-
ment of the study. Informed consent was obtained from
the participants. The participants who were deceased at the
time of follow-up (as shown by data-linkage with the Regis-
try of Births and Deaths) were excluded from the study.
The participants, whose contact details were provided by
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the Ministry of Home Affairs using their unique National
Registration Identification Card number, were contacted
first by mail, then by phone. Trained field interviewers con-
ducted a home visit if there was no response or no avail-
able phone number. A minimum of three home visits at
different times of the day (including a weekday and a

weekend) were attempted before a participant was deemed
unreachable.
Out of 3,196 individuals at baseline, 123 individuals

had died, one emigrated and 729 individuals were not
contactable at follow-up (Figure 1). The remaining 2,343
individuals were surveyed using interviewer-administered

Figure 1 Flowchart of NHS-92 subjects.
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questionnaires to gather information on demographics
and medical history during the home visits. Participants
who returned were older, slightly more obese and less
likely to be Chinese (Table 1). Those who did not return
had lower baseline FPG and higher serum high density
lipoprotein (HDL), and were less likely to have a family
history of T2DM (Table 1). Subsequently, all the partici-
pants were invited to attend a health examination follow-
ing a 10-hour overnight fast. A total of 1,410 individuals
agreed to attend the health examination (Figure 1). Fasting
blood specimens of these individuals were collected in
fluoride oxalate tubes and sent in containers maintained at
a temperature of 4°C for same-day analysis at the Referral
Laboratory of the National University Hospital, Singapore,
an American College of Pathologists-accredited laboratory.
FPG was measured by enzymatic methods (ADVIA 2400,
Bayer Diagnostics), with the blood collected in fluoride
oxalate tubes. No OGTT was administered at follow-up.
The outcome of interest was incident T2DM at follow-up,
defined as having a FPG ≥ 7.0 mmol/L at follow-up or a
physician diagnosis of T2DM.

Statistical approaches
Model development
We excluded 370 individuals who had been previously
diagnosed with T2DM by a physician or were diagnosed
with T2DM (FPG ≥ 7.0 mmol/L or 2hPG ≥ 11.1 mmol/
L) at baseline. A further 853 individuals who had died,
emigrated or were unreachable at follow-up were also
excluded. This left us with 2,343 participants who
returned for follow-up, out of which 1,410 individuals
attended the health examination (Figure 1) and therefore
had their FPG measured at follow-up. However, nine
individuals with FPG measurement at follow-up did not
have complete baseline information needed to build and
evaluate the predictive functions. Hence, the final num-
ber of subjects included for statistical analysis was 1401.
For each published multivariate function, logistic

regression was used to estimate the local version of the
function. By local version of the function, we mean a
model that used the same set of predictors as the corre-
sponding published model, but whose coefficients were
estimated using data from the NHS-92 cohort. In addi-
tion to the local version of the published multivariate
models, two local models that used only FPG and 2hPG
as predictors were estimated. In the SAHS and ARIC
models, a dichotomous ethnicity variable was used as
part of the predictive function. To enable application of
these two models to the Singaporean population, indivi-
duals in the NHS-92 cohort were categorized into two
categories, with Chinese ethnicity as the reference cate-
gory, and non-Chinese ethnicity to include Malays and
Asian Indians. The choice of Chinese as the reference
category was motivated by the fact that prior research

had found that the Chinese population in Singapore had
lower incidence rates of T2DM than the Malays and
Asian Indians. This choice is comparable to the choice
in ARIC and SAHS models, where ethnic groups with
lower incidence rates were chosen as the reference
group for the studies. For the local version of the ARIC
and SAHS models, we initially had two separate dummy
variables for Malays and Asian Indians, but these two
dummy variables were combined when the goodness of
fit for model with one combined race variable is better
than using two separate race variables.
For all multivariate models, between-population het-

erogeneity was investigated by examining the interaction
terms between covariates in the model and ethnicity.
Interaction terms found to be statistically significant
using likelihood ratio test (P < 0.05) were subsequently
added to the local models.
Since the local models were estimated using only

1,401 out of 2,343 subjects who returned for follow-up,
we assessed the impact of excluding nine individuals
with incomplete baseline information and 933 indivi-
duals with missing FPG measurements at follow-up. We
did this by performing multiple imputation on the
incomplete observations. For each of the 942 subjects
with missing baseline information or FPG at follow-up,
20 imputed values are generated for the missing infor-
mation using fully conditional specification (FCS) impu-
tation [17,18]. The following baseline variables are used
in the regression model for predicting FPG levels at fol-
low-up (imputer model): age, gender, race, systolic
blood pressure, body mass index (BMI), high density
lipoprotein (HDL), low density lipoprotein (LDL), FPG
at baseline, family history of T2DM, hip circumference,
waist circumference, waist-hip ratio, creatinine levels,
triglyceride and insulin resistance. To obtain the esti-
mates under multiple imputation, logistic regression was
fitted to each of the 20 imputed datasets separately. The
multiple imputation estimates were obtained as the
average estimates across the imputed datasets and the
standard errors of the estimates were computed using
Rubin’s formula by taking into account both within and
between imputation variance.
The probability that an individual developed T2DM

during the follow-up period was estimated using the fol-
lowing formula: p = 1/(1 + e-y), where p is probability of
incident diabetes y is the logistic regression function.

Model comparisons
Discrimination power
The predictive functions were compared in terms of the
discriminative power and calibration quality. To assess
the discrimination power of a predictive function, we
used the area under the receiver operating characteristic
curves (AUC). The AUC represents an estimate of the
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Table 1 Baseline characteristics of participants without diabetes in the National Health Survey 1992

Baseline Characteristics National Health Survey 1992
Total number of participants without diabetes at baseline, N = 3,196

A.
Participants who did the survey and FPG during follow-up and

have complete baseline information
n = 1,401

B.
Participants who did only the

survey during follow-up
n = 942

C.
Participants who did not

return for follow-up
n = 729*

P value

A
vs. B

A
vs. C

(A+B)
vs. C

Age, years 36.14 ± 10.84 36.59 ± 13.00 34.01 ± 12.32 0.36 <
0.001

< 0.001

Males, n (%) 669 (47.8) 450 (47.6) 333 (45.7) 0.93 0.36 0.34

Females, n (%) 732 (52.2) 496 (52.4) 396 (54.3) 0.93 0.36 0.34

Chinese, n (%) 924 (66.0) 592 (62.6) 517 (70.9) 0.09 0.02 0.002

Malay, n (%) 245 (17.5) 206 (21.8) 121 (16.6) 0.01 0.61 0.11

Asian Indian, n (%) 232 (16.5) 148 (15.6) 91 (12.5) 0.55 0.01 0.01

BMI (kg/m2) 22.80 ± 3.85 22.92 ± 4.11 22.41 ± 4.07 0.47 0.03 0.009

FPG (mmol/L) 5.35 ± 0.44 5.38 ± 0.49 5.27 ± 0.43 0.12 <
0.001

< 0.001

HDL (mmol/L) 1.26 ± 0.31 1.27 ± 0.31 1.31 ± 0.31 0.44 <
0.001

0.002

SBP (mmHg) 114.45 ± 14.58 117.15 ± 17.30 114.89 ± 16.13 <
0.001

0.52 0.34

Positive family history of
T2DM, n (%)

497 (35.5) 237 (25.1) 175 (24.0) <
0.001

<
0.001

< 0.001

* Excluded deceased individuals and individuals who moved out of the country
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probability that a model assigns a higher risk to those
who develop T2DM during the follow-up period than to
those who do not. When comparing the AUC of two
different models, we used the method by DeLong et al.
[19], with P < 0.05 to indicate statistical significance.
We also used a more sensitive method called Net

Reclassification Index (NRI) [20] for comparing the discri-
mination power of the published models. For NRI calcula-
tion, the predicted probabilities from each model were
classified into 0-10%, 10.1-20%, 20.1-30%, 30.1-40%, 40.1-
50% and > 50% risk categories. A better reclassification for
a case takes place whenever a case is placed at a higher
risk category, while for non-cases, the opposite is true.
As we were interested in the applicability of the pub-

lished model where local prospective data was not avail-
able, we compared the performance of the predictive
models in the following manner: for each multivariate
model, the discriminative ability of the published model
was compared to the local model. The objective here
was to assess the ‘gap’ between the published model and
the best model developed from local data, had the data
been available. The published models were also com-
pared to the local models that used only 2hPG or FPG
as a predictor. The objective of this last comparison was
to assess the potential for using externally-developed
predictive model as an alternative to the 2hPG or FPG
for identifying high-risk individuals. Finally, comparisons
between the published models were made to examine
which published model had the best performance and
thus could potentially be recommended for use in Asian
populations.

Calibration quality
The Hosmer-Lemeshow goodness of fit test was used to
assess the calibration quality of the various predictive
models. For all models, the predicted and observed
number of events in each quintile of estimated probabil-
ity were calculated and the test statistic was compared
to the c2 statistic with 3 degrees of freedom. Values of
the test statistic exceeding 11.5 (P < 0.01) implied a sig-
nificant lack of calibration [21]. For the published mod-
els, we also performed the recalibration step (see
Appendix A) to assess the extent to which the lack of
calibration was caused simply by differences in baseline
incidence rates and average risk factors between the two
populations. To perform the recalibration, we needed to
estimate from the local population the average values
for each risk factor and the probability that a subject
with the average risk factors survived the study period
without being diagnosed with T2DM. The Hosmer-
Lemeshow statistics were computed both before and
after recalibration to assess the effect of recalibration on
the performance of the externally derived predictive
function.

All statistical analyses were carried out using R 2.9.0
http://www.r-project.org and STATA version 10 (Stata
Corporation, College Station, TX).

Results
For all local predictive models, no interactions between
ethnicity and other covariates were found to be signifi-
cant, so no interaction term was added to any of the local
predictive models. local ARIC and SAHS models with
one combined race variable for Malays and Asian Indians
had better model fit than their counterparts with two
separate race variables. For local SAHS models, the
Akaike Information Criterion (AIC) for models with one
and two race variables were 588.6 and 590.6, respectively.
For local ARIC models, the AIC were 587.9 and 589.8,
respectively.
Table 2 shows comparisons of the coefficients of the

three multivariate predictive functions that were esti-
mated using the NHS-92 cohort with the published
coefficients from the SAHS, ARIC and Framingham
models.
For the ARIC model, the 95% confidence intervals of

the following risk factors did not include the published
effect size from the original study: age, fasting FPG at
baseline, waist circumference and triglyceride.
For the Framingham model, all locally-estimated effect

size agreed well with the published ones, except for the
effect of overweight, which was found to be significantly
higher in our local model.
However, at this stage, we did not know to what

extent the estimates from the local models had been
influenced by the exclusion of 942 subjects without FPG
measurement at follow-up or due to incomplete baseline
information.
Table 3 shows the multiple imputation estimates for

the three local models. Interestingly, after taking into
account the dropout effects, the discrepancies between
the local and published models were less startling. In par-
ticular, for the SAHS and ARIC models, the discrepancies
in terms of FPG and measures of adiposity (BMI or waist
circumference) were no longer statistically significant.
There were, however, significantly smaller age and gen-
der effect sizes when compared to the published models.
With the Framingham model, we found a significantly
larger effect of overweight, quite possibly because a Cau-
casian definition of overweight (BMI ≥ 25) had been used
instead of the WHO recommendation for Singapore,
which used a cut-off of BMI ≥ 23 to define overweight
individuals [22].

Discrimination power
Table 4 compares AUC for the various predictive func-
tions. Although the AUC for all three locally-estimated
multivariate models were slightly higher than the
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corresponding statistic for their published counterpart,
only in the case of SAHS model did this difference achieve
statistical significance. All locally-estimated multivariate
models achieved better discrimination power when

compared to model that used FPG only (all P < 0.001,
Table 4), while the locally-estimated Framingham model is
the only one that was not statistically better than model
that used only 2hPG (P = 0.110).

Table 3 Comparisons of published and locally-estimated multivariate predictive functions after inclusion of 942
subjects with incomplete baseline and follow-up measurements using multiple imputations

SAHS ARIC Framingham*

Risk factor at baseline Locally-estimated
(95% CI)

Published Locally-estimated
(95% CI)

Published Locally-estimated
(95% CI)

Published

Age (years) -0.002 (-0.018; 0.014) 0.028 -0.014 (-0.031; 0.003) 0.0173 NA NA

Gender 0.182 (-0.207; 0.570) 0.661 NA NA NA NA

Ethnicity 0.371 (0.024; 0.719) 0.412 0.412 (0.064; 0.759) 0.4433 NA NA

FPG (mg/dl) 0.094 (0.055; 0.134) 0.079 0.080 (0.056; 0.104) 0.0880 NA NA

IFG NA NA NA NA 1.693 (1.276; 2.110) 1.98

SBP (mm Hg) 0.012 (0.001; 0.023) 0.018 0.011 (0.000; 0.022) 0.0111 0.584 (0.215; 0.953) 0.50

Triglyceride(mg/dl) NA NA 0.000 (-0.001;0.001) 0.0027 0.577 (0.179; 0.976) 0.58

HDL (mg/dl) -0.021 (-0.039;-0.004) -0.039 -0.012 (-0.029; 0.005) -0.0122 0.303 (-0.051; 0.656) 0.94

BMI (kg/m2) 0.080 (0.057; 0.104) 0.070 NA NA NA NA

BMI (overweight) NA NA NA NA 0.755 (0.389;1.12) 0.30

BMI (obese) NA NA NA NA 1.209 (0.689;1.729) 0.92

Waist (cm) NA NA 0.045 (0.026; 0.063) 0.0273 NA NA

Height (cm) NA NA -0.030 (-0.050;-0.011) -0.0326 NA NA

Family history of T2DM 0.513 (0.190; 0.837) 0.481 0.541 (0.215; 0.866) 0.4981 0.625 (0.300; 0.949) 0.57

Bold and italicized fonts: Estimates from local models whose 95% confidence intervals do not overlap with the published estimates, i.e., we assumed that the
published estimates were the true values in the hypothesis testing)

*Categorical variables are used for the Framingham model with the following rule: fasting glucose level: (1 = 100 - 125 mg/dL, 0 ≤ 100 mg/dL), overweight (1 =
BMI ≥ 25 & BMI < 30, 0 = otherwise), obese (1 = BMI ≥ 30, 0 = otherwise), low high density lipoprotein (HDL) (1 = HDL < 40 mg/dL in men or < 50 mg/dL in
women, 0 = otherwise), high triglyceride level (1 ≥ 150 mg/dL, 0 = otherwise), elevated blood pressure (systolic blood pressure ≥ 130 or diastolic blood pressure
≥ 85 mm Hg, 0 = otherwise)

Table 2 Comparison of published and locally-estimated multivariate predictive functions

SAHS Model ARIC Model Framingham Model*

Risk factor at baseline locally-estimated (95% CI) Published locally-estimated
(95% CI)

Published locally-estimated (95%CI) Published

Age (years) -0.004 (-0.026; 0.018) 0.028 -0.023 (-0.047; 0.000) 0.0173 NA NA

Gender 0.098 (-0.391; 0.588) 0.661 NA NA NA NA

Ethnicity 0.646 (0.186; 1.107) 0.412 0.677 (0.214; 1.140) 0.4433 NA NA

FPG (mg/dl) 0.119 (0.090; 0.148) 0.079 0.120 (0.090; 0.149) 0.0880 NA NA

IFG NA NA NA NA 1.795 (1.259;2.331) 1.98

SBP (mmHg) 0.015 (0.000; 0.030) 0.018 0.015 (0.000; 0.029) 0.0111 0.843 (0.372;1.315) 0.50

Triglyceride(mg) NA NA 0.000 (-0.001;0.001) 0.0027 0.695 (0.232;1.158) 0.58

HDL (mg/dl) -0.033 (-0.058;-0.008) -0.039 -0.027 (-0.053;-0.001) -0.0122 0.498 (0.032;0.965) 0.94

BMI (kg/m2) 0.154 (0.097; 0.212) 0.070 NA NA NA NA

BMI (overweight) NA NA NA NA 1.206 (0.728;1.683) 0.30

BMI (obese) NA NA NA NA 1.574 (0.881;2.267) 0.92

Waist (cm) NA NA 0.071 (0.046; 0.096) 0.0273 NA

Height (cm) NA NA -0.044 (-0.072;-0.016) -0.0326 NA

Family history of T2DM 0.447 (-0.008;0.903) 0.481 0.473 (0.018; 0.928) 0.4981 0.548 (0.111;0.986) 0.57

Bold and italicized fonts: Estimates from local models whose 95% confidence intervals do not overlap with the published estimates, i.e. we assumed that the
published estimates were the true values in the hypothesis testing

*Categorical variables are used for the Framingham model with the following rule: fasting glucose level: (1 = 100 - 125 mg/dL, 0 ≤ 100 mg/dL), overweight (1 =
BMI ≥ 25 & BMI < 30, 0 = otherwise), obese (1 = BMI ≥ 30, 0 = otherwise), low high density lipoprotein (HDL) (1 = HDL < 40 mg/dL in men or < 50 mg/dL in
women, 0 = otherwise), high triglyceride level (1 ≥ 150 mg/dL, 0 = otherwise), elevated blood pressure (systolic blood pressure ≥ 130 or diastolic blood pressure
≥ 85 mm Hg, 0 = otherwise)For the SAHS model, the 95% confidence intervals of the coefficients estimated from the NHS-92 cohort included the published SAHS
coefficient for all but four risk factors: age, gender, FPG at baseline and BMI; the coefficients for age and gender were greater for the published SAHS model than
the locally-estimated coefficients. In contrast, the locally estimated coefficients for FPG and BMI were larger than the published coefficients.
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Out of the three published functions, the ARIC model
had the highest discrimination power (AUC = 0.847),
followed by the SAHS model (AUC = 0.839) and the
Framingham model (AUC = 0.805). The performance of
the published SAHS and ARIC models were not statisti-
cally different (P = 0.230), but both models had signifi-
cantly higher discrimination power than the Framingham
model (P = 0.028 and 0.007, respectively). More impor-
tantly, the published SAHS and ARIC models were statis-
tically better at discriminating T2DM cases from non-
cases when compared to the local model that used FPG

only (P < 0.001) or 2hPG only (P = 0.021 and 0.011,
respectively).
The NRI statistic revealed that overall, the published

ARIC model was only marginally better than the published
SAHS model (NRI = 0.127, P = 0.060). When we looked at
cases and non-cases separately, the ARIC model was not
significantly better than the SAHS model in terms of
reclassifying cases (Figure 2). Specifically, compared to the
SAHS model, 32 cases were appropriately reclassified by
the ARIC model at a cost of 21 cases being reclassified
inappropriately (NRI = 0.100, P = 0.131). However, the

Table 4 Comparisons of area under the Receiver Operating Characteristic curve (AUC) for various predictive models
evaluated using NHS-92 Cohort

Model 1 AUC
(95% C.I)

Model 2 AUC
(95% C.I)

P value for comparison

SAHS-local 0.857 (0.821;0.894) SAHS-published 0.839 (0.803;0.874) 0.028

ARIC-local 0.864 (0.829;0.899) ARIC-published 0.847 (0.812;0.883) 0.065

FRAM-local 0.826 (0.784;0.867) FRAM-published 0.805 (0.762;0.849) 0.076

SAHS-published 0.839 (0.803;0.874) ARIC-published 0.847 (0.812;0.883) 0.230

SAHS-published 0.839 (0.803;0.874) FRAM-published 0.805 (0.762;0.849) 0.028

ARIC-published 0.847 (0.812;0.883) FRAM-published 0.805 (0.762;0.849) 0.007

FPG-local 0.782 (0.736;0.828) SAHS-local 0.857 (0.821;0.894) < 0.001

ARIC-local 0.864 (0.829;0.899) < 0.001

FRAM-local 0.826 (0.784;0.867) 0.047

OGTT-local 0.778 (0.727;0.828) SAHS-local 0.857 (0.821;0.894) 0.004

ARIC-local 0.864 (0.829;0.899) 0.002

FRAM-local 0.826 (0.784;0.867) 0.110

FPG-local 0.782 (0.736;0.828) SAHS-published 0.839 (0.803;0.874) < 0.001

ARIC-published 0.847 (0.812;0.883) < 0.001

FRAM-published 0.805 (0.762;0.849) 0.323

OGTT-local 0.778 (0.727;0.828) SAHS-published 0.839 (0.803;0.874) 0.021

ARIC-published 0.847 (0.812;0.883) 0.011

FRAM-published 0.805 (0.762;0.849) 0.371

(b) non-cases (a) cases 

8 3 0 1 0 0 > 50% 

3 1 2 1 0 0 40-50% 

0 4 5 2 0 0 30-40% 

0 1 7 8 4 1 20-30% 

0 1 6 11 7 0 10-20% 

0 0 0 0 10 23 0-10% 

> 50% 40-50% 30-40% 20-30% 10-20% 0-10% M1 
M2 

6 2 0 0 0 0 > 50% 

2 3 1 6 0 0 40-50% 

5 2 7 13 5 0 30-40% 

1 1 10 15 20 1 20-30% 

2 0 4 19 91 62 10-20% 

0 0 0 0 30 984 0-10% 

> 50% 40-50% 30-40% 20-30% 10-20% 0-10% M1 

M2 

Figure 2 Comparisons of risk classifications for subjects in NHS-92 cohort using recalibrated ARIC (M1) and SAHS (M2) models.
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ARIC model was better at reclassifying non-cases. In total,
110 non-cases were appropriately reclassified using the
ARIC model, at a cost of 76 non-cases being reclassified
inappropriately (NRI = 0.026, P = 0.013).

Calibration
The calibration inspections revealed that the local models
showed good calibration properties (Table 5). In particu-
lar, the H-L statistics for local models are all less than
11.5 and the predicted incidence rates under all local
models agree well with observed incidence rates over the
13-year period in the NHS-92 cohort, which was 7.8%.
However, the three published models showed poor cali-
bration, with the Framingham model being the worst. In
particular, the SAHS and ARIC published models overes-
timated the incidence rates, while the Framingham
model underestimated the incidence rates. Specifically,
the estimated incidence rates from the SAHS and ARIC

models were 13.5% and 9.8%, respectively. Meanwhile,
estimated incidence rates from the Framingham model is
2.0%.
Recalibration improved the calibration quality of ARIC

model (Figure 3), but the same cannot be said for the
Framingham model. The recalibration procedure seemed
to work reasonably well for the SAHS model for subjects
in the lowest three quintiles (Figure 3); however, the
SAHS model still overestimated the number of cases in
the two highest quintiles even after recalibration. The
poor performance of the Framingham model could be
due to the fact that the Framingham cohort used to
derive the model consists almost exclusively of one race
while the Singapore population consists of three races
with Chinese being different from Malays and Indians.
To investigate this possibility, we performed local fitting
and recalibration of the three published models sepa-
rately in the Chinese and non-Chinese populations, with
the race terms removed from the ARIC and SAHS mod-
els. In the Chinese population, the H-L statistic for
locally-fitted ARIC, Framingham and SAHS models is
4.22, 3.43 and 1.38 respectively, indicating good calibra-
tion properties. However, only recalibrated ARIC and
SAHS models show acceptable calibration quality with
H-L statistic of 7.31 and 2.23 respectively. The recali-
brated Framingham model still shows poor calibration
quality (H-L statistic = 26.12). Among non-Chinese
population the story is very similar. The H-L statistic for
locally-fitted ARIC, Framingham and SAHS models is
1.53, 2.74 and 3.34 respectively. Among the recalibrated
published models, only ARIC shows acceptable calibra-
tion quality with H-L statistic of 6.87. The recalibrated
Framingham and SAHS have poor calibration quality
with H-L statistic of 19.29 and 140.17, respectively. Thus,

Table 5 Calibration quality of various predictive models
evaluated using NHS-92 Cohort (N = 1,401)

Model HL-statistic Predicted incidence (%)

SAHS-local 3.52 7.8

ARIC-local 2.28 7.8

FRAM-local 1.45 7.8

FPG-local 3.08 7.8

OGTT-local 3.90 7.8

SAHS-published 48.33 13.5

ARIC-published 14.71 9.8

FRAM-published 264.89 2.0

Recalibrated SAHS-published 23.19 11.2

Recalibrated ARIC-published 10.31 8.5

Recalibrated FRAM-published 103.15 16.9

Figure 3 Observed and predicted number of cases in the different risk quintiles.
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the poorer performance of the Framingham model is
unlikely only due to differences in race effects between
the Framingham cohort and Singapore population. It is
more likely that differences in the effect sizes of some of
the risk factors also contribute to the poor performance.

Discussion
Studies in the United States [8,9] and Asia [10] have
shown that a multivariable predictive model that incor-
porated clinical risk factors and fasting blood tests per-
formed better than 2hPG in predicting the risk of
T2DM and could replace the OGTT in identifying indi-
viduals at increased risk of T2DM that would be suita-
ble candidates for a diabetes prevention program. Our
study confirms these findings.
We also found that externally-developed predictive

models showed good discriminative power, even when
applied to Asian ethnic groups. However, we noted that
this did not apply equally to all predictive models. In our
population, the discriminatory power of the published
Framingham model [14] was not statistically better than
risk prediction using FPG or 2hPG. Using a multiethnic
US cohort, Mann et al. [15] also found that the perfor-
mance of the Framingham model was significantly worse
than ARIC and SAHS models. This may relate to the use
of categorical variables in the Framingham model, com-
pared to the use of continuous variables in the other
models. Using NRI statistic, we also found that the pub-
lished ARIC model was significantly better than the
SAHS model in classifying subjects with low risk of
developing T2DM. This was in contrast to the findings of
Mann et al., who found the SAHS and ARIC models to
be equivalent in terms of discriminative power. The rea-
son that recalibration did not work very well for the
SAHS model here was because the published model
included gender effect, while, in our local population, we
did not find differences between gender. The fact that
discrepancy in gender effect was causing unsatisfactory
recalibration performance was more apparent when we
evaluated the calibration quality separately for females
and males (Table 6). The recalibration worked well for
the SAHS model among males where gender effects did

not exist (i.e. male being the reference category in the
model), while recalibration did not work well for females.
The validity of externally-developed predictive models

depends on the homogeneity of effect size, risk factors
distribution and length of follow-up between the two
populations. Differences in terms of the last two factors
can be remedied using recalibration. Heterogeneity of
effect sizes, however, is harder to remedy, and, when it
exists, it tends to downgrade the performance of the
externally-developed functions. In our case, we initially
found a greater effect of baseline FPG and obesity
(whether assessed using BMI or waist circumference) in
our Asian cohort when compared to the US cohorts that
were used to develop the various predictive functions.
Other authors have previously reported findings that
BMI underestimated the degree of adiposity in Asians as
compared to Caucasian populations [23,24]. While we
cannot exclude this possibility, our data suggests that
these discrepancies may also be caused, to some extent,
by the failure of our initial analyses to include those sub-
jects without complete baseline data or FPG at follow-up.
After the inclusion of these subjects via multiple imputa-
tion, the differences in the parameter estimates were no
longer statistically significant. This highlights the impor-
tance of assessing dropout effects and avoiding the sole
use of subjects with complete measurements when devel-
oping and comparing predictive functions. This is
because subjects excluded from complete-case analysis
often have very different characteristics from those
included. Using multiple imputation is a reasonable
approach for including individuals with incomplete data.
However, multiple imputation does implicitly assume
that the probability of individuals having incomplete data
does not depend on the missing variable itself (in this
case, FPG at follow-up), but, rather, it depends on a set
of other variables that are observed. This mechanism of
‘missingness’ is called missing at random (MAR). The
assumption is not testable, but it can be made more plau-
sible by using a more inclusive strategy in which more
variables are included in the imputer model for predic-
tion of missing values. In our analysis, we used this strat-
egy by including as many baseline variables that we
thought may be good predictors of FPG at follow-up as
possible. This strategy seems to work reasonably well,
since the coefficients in the local models were more com-
parable to the published estimates, after multiple imputa-
tion. However, given that the amount of imputed data is
substantial, we can never completely rule out the possibi-
lity of remaining bias caused by differences in the unob-
served/unmeasured characteristics that are also
associated with FPG at follow-up.
The published ARIC and SAHS models included bin-

ary ‘race’ variables in their models. The ‘race’ coefficient
likely represents unique contributions from genetics and

Table 6 Hosmer-Lemeshow (HL) statistics for various
published predictive models evaluated using Female and
Male subsets of NHS-92 cohort

Model Female (N = 732) Male (N = 669)

SAHS-published 37.31 16.25

ARIC-published 7.41 14.17

FRAM-published 112.90 157.66

Recalibrated SAHS-published 23.06 7.11

Recalibrated ARIC-published 5.43 12.25

Recalibrated FRAM-published 53.35 51.22
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socio-economic factors in the external populations used
to build the models, and, generally speaking, its validity
needs to be examined carefully when it is applied to
completely different populations. The assumption of
having exactly two race groups in the models is also
potentially problematic when the models are to be
applied into different populations. Even when the exter-
nal population has exactly two major race groups, with-
out local fitting of the models, it is not necessarily
obvious which group should be regarded as the lower
risk group. If more than two race groups (such as in
this manuscript), without local fitting it is not necessa-
rily clear which groups to merge to get down to exactly
two groups. We propose that when sufficient local data
are available the coefficients for ‘race’ terms need to be
re-estimated using local data. This will avoid assump-
tions that there are exactly two race groups in the local
population and the magnitudes of the race terms and
the difference between the races are similar in this popu-
lation as in the populations used to derive the ARIC and
SAHS models. When there are not enough local data, we
suggest a two-step approach for risk prediction is used:
at the first step, the risks prediction is done by removing
the race terms in the models, followed by the second step
where the predicted risks are recalibrated within each
race (ethnic group). By removing the race terms the rela-
tive ordering of risks should be reasonable but the abso-
lute risks are unlikely to be predicted accurately. The
recalibration step is needed to ensure that the discre-
pancy in the absolute risks due to differences in race
coefficients is minimized.
The use of ‘age’ coefficient should also be considered

carefully when the age distribution in the population to
which the models were to be applied is very different from
the population in which the model was built. In our case,
the average age of our subjects is significantly younger
than the ARIC and SAHS cohorts. If there is a birth
cohort effect or nonlinear age effect, this may explain why
we failed to discover significant age effects in our local
models. Indeed, when sufficient local data is available, per-
forming recalibration for different age groups separately in
a similar manner to the ethnic-specific recalibration above
is arguably better than blindly extrapolating the age effects.
In addition, we also would like to draw attention to the

heterogeneity in the T2DM definition employed by the
different models. Ideally, T2DM is defined based on out-
comes of both FPG and OGTT. However, due to lack of
measurements, only the SAHS study used this definition
consistently to derive its model. The Framingham model
used FPG/OGTT to define T2DM at baseline; however,
it relied only on FPG to identify incident T2DM at fol-
low-up, while the ARIC model failed to incorporate
OGTT when identifying T2DM cases at baseline. In our

dataset, we used FPG/OGTT at baseline, but only FPG
measurements were available to define incident T2DM at
follow-up. While investigations using our FPG and
OGTT data at baseline showed that the misclassification
rates were not statistically related to ethnicity or gender
(data not shown), the possibility of differential misclassifi-
cation in which subjects with certain profiles is more
likely than others to be diagnosed with T2DM using
OGTT only, is real. Differential misclassification will
likely affect the recalibration performance and thus
potentially make prediction of absolute risk less reliable.
However, we believe that predictive risk would still work
adequately well for the purpose of classifying individuals
into high-risk and low-risk groups.

Conclusions
In summary, we have confirmed that multivariate pre-
dictive functions based on clinical and biochemical mea-
surements made in the fasting state outperform an
OGTT for predicting future T2DM. In addition, we
have shown that the effects of risk factors on the risk of
incident T2DM are broadly similar in Asians as they are
in other ethnic groups. This means that in populations
where data from relatively large and well-documented
prospective cohort needed for developing local predic-
tive function is not available, the use of a predictive
function derived in another population is feasible, and,
arguably preferable, to using FPG or OGTT alone. The
only requirement for the function to be applicable in
another population would be the availability of a small,
pilot cohort in the order of several hundred subjects,
from which survival rates and average risk factors can
be estimated and used for recalibration. Our data
further suggests that if one were to choose from the
three predictive functions tested, the ARIC predictive
function should be the choice.

Appendix
Appendix A: Recalibration Method
Several authors e.g. [25,26] have suggested the use of the
following formula in order to recalibrate predicted prob-
ability computed using models developed in an external
population,

p
(
x
)
= 1 − S

(
m

)
exp

((
x − m

)′
β
)

(1)

where p(x) is the recalibrated probability of an event
for subjects with risk factors x, S(m) is the survival rates
for subjects with average risk factors m in the local
population (in our case, the NHS-92 cohort) and b the
vector of regression coefficients estimated from the
external population. This recalibration formula can be
expected to work satisfactorily when there are no or
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little differences between the risk factors and their mag-
nitude in the external and local populations.
The recalibration formula was originally suggested to

recalibrate Framingham CHD risk [25], where b is esti-
mated using Cox proportional hazard model; however,
for interval-censored data with relatively low incidence
rates, b from logistic regression can also be used. The
justification for this is because for interval-censored
data, Cox proportional hazard model is the same as spe-
cifying complementary log-log regression model, which,
in turn, is very similar to the logistic regression model
when incidence rates are low.
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