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regression model: relation to the variance and
odds ratio of a continuous explanatory variable
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Abstract

Background: When outcomes are binary, the c-statistic (equivalent to the area under the Receiver Operating
Characteristic curve) is a standard measure of the predictive accuracy of a logistic regression model.

Methods: An analytical expression was derived under the assumption that a continuous explanatory variable
follows a normal distribution in those with and without the condition. We then conducted an extensive set of
Monte Carlo simulations to examine whether the expressions derived under the assumption of binormality allowed
for accurate prediction of the empirical c-statistic when the explanatory variable followed a normal distribution in
the combined sample of those with and without the condition. We also examine the accuracy of the predicted c-
statistic when the explanatory variable followed a gamma, log-normal or uniform distribution in combined sample
of those with and without the condition.

Results: Under the assumption of binormality with equality of variances, the c-statistic follows a standard
normal cumulative distribution function with dependence on the product of the standard deviation of the
normal components (reflecting more heterogeneity) and the log-odds ratio (reflecting larger effects). Under
the assumption of binormality with unequal variances, the c-statistic follows a standard normal cumulative
distribution function with dependence on the standardized difference of the explanatory variable in those
with and without the condition. In our Monte Carlo simulations, we found that these expressions allowed
for reasonably accurate prediction of the empirical c-statistic when the distribution of the explanatory
variable was normal, gamma, log-normal, and uniform in the entire sample of those with and without the
condition.

Conclusions: The discriminative ability of a continuous explanatory variable cannot be judged by its odds
ratio alone, but always needs to be considered in relation to the heterogeneity of the population.

Keywords: Logistic regression, c-statistic, Area under the receiver operating characteristic curve, ROC curve,
Discrimination, Regression model, Prediction, Predictive model, Predictive accuracy
Background
Logistic regression models are frequently used to deter-
mine the association between a set of explanatory vari-
ables and a binary or dichotomous outcome variable.
There are three primary reasons for fitting a logistic re-
gression model: i) to determine the independent
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predictors of a binary outcome; ii) to determine the as-
sociation between a specific variable and the probability
of the occurrence of an outcome after adjusting for a set
of other covariates; and iii) to predict the probability of
the occurrence of a binary outcome given a specific vec-
tor of covariates. The third reason for fitting a logistic
regression model occurs frequently in biomedical re-
search, where researchers are interested in predicting
the prognosis of individual patients [1].
Two key elements in assessing the performance of a

fitted logistic regression model are the assessment of
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model calibration and model discrimination. Calibration
refers to the agreement between observed outcomes and
predictions, while discrimination refers to the ability of
model predictions to discriminate between those with and
those without the outcome [1,2]. The discriminative-
ability of a logistic regression model is frequently
assessed using the concordance (or c) statistic, a unit-
less index denoting the probability that a randomly
selected subject who experienced the outcome will
have a higher predicted probability of having the out-
come occur compared to a randomly selected subject
who did not experience the event. One can calculate
the c-statistic by taking all possible pairs of subjects
consisting of one subject who experienced the event
of interest and one subject who did not experience
the event of interest. The c-statistic is the proportion
of such pairs in which the subject who experienced
the event had a higher predicted probability of experi-
encing the event than the subject who did not experi-
ence the event [3]. The c-statistic can also be
interpreted as the rank correlation between predicted
probabilities of the outcome occurring and the
observed response: it is equal to the Wilcoxon rank
sum statistic for measuring the rank correlation be-
tween observed and predicted outcomes divided by
the product of the number of subjects with the out-
come or condition and the number of subjects with-
out the outcome or condition [4,5]. It is also related
to Somer’s Dxy rank correlation between the predicted
probability of the occurrence of the outcome and the
observed outcome: Dxy ¼ 2 c� 0:5ð Þ [3].
The discrimination of a logistic regression model

can also be described by the area under the receiver
operating characteristic (ROC) curve, often denoted
by AUC [3]. Each value of the predicted probability
of the occurrence of the outcome allows one to deter-
mine a threshold. For each possible threshold, one
can dichotomize the predicted probabilities into those
above and below the threshold. Subjects with a pre-
dicted probability below the threshold are classified as
low risk, while those above the threshold are classi-
fied as high risk. One can then estimate the sensitiv-
ity and specificity of these classifications. The ROC
curve is the plot of sensitivity vs. one minus specifi-
city over all possible thresholds. The area under the
ROC curve is equivalent to the c-statistic [4,5].
The relationship between the c-statistic of a logistic re-

gression model and the regression coefficients and the
variance-covariance of the explanatory variables has not
been fully explored. The objective of the current paper
was to examine the relationship between the c-statistic
and the regression parameters and the variance of the ex-
planatory variable in the case of a univariate logistic
regression model. We first use mathematical derivations
to explicitly derive the relationship between the c-statistic
and the outcome odds ratio and the variance of the con-
tinuous explanatory variable under the assumption that
the continuous explanatory variable follows a normal dis-
tribution in subjects with and without the outcome. Sec-
ond, we use Monte Carlo simulations to examine this
relationship in a more general setting.

Mathematical derivation of the c-statistic under the
assumption of binormality
Many derivations concerning the discrimination of dif-
ferent procedures require the assumption that the distri-
bution of a continuous explanatory variable is normally
distributed in those with the condition or outcome and
also in those without the condition or outcome [4,6-9].
Thus, in each of the two populations (those with the
condition or outcome and those without the outcome or
condition), the explanatory variable is assumed to be
normally distributed. Therefore there are two normal
distributions: a normal distribution in those subjects
with the condition or outcome and a normal distribution
in those subjects without the condition or outcome. In
the literature on statistical methods for diagnostic medi-
cine, this assumption has been referred to as the
binormality assumption [10].
Let Y denote the dichotomous response variable indi-

cating the presence or absence of the outcome or condi-
tion of interest. Let X denote the continuous
explanatory variable. We assume that X has means μA
and μU and variances σ2A and σ2

U in the affected (Y = 1)
and unaffected (Y = 0) populations, respectively. Finally,
we assume that β is the log-odds ratio relating X to the
dichotomous outcome Y: a one-unit increase in X results
in a relative increase of the odds of the event occurring
by exp(β). Finally, let ΦðÞ denote the standard normal
cumulative distribution function. We let AUC denote
the area under the ROC curve, which is equivalent to
the c-statistic.

General derivation: no restrictions on σ2A and σ2U
We begin our derivation using a result derived by Zhou

et al. [10]. Using the notation from Zhou et al., let a¼μ̂A�μ̂U
σ̂A2

and b¼σ̂U
σ̂ A

. Then,AUC ¼ Φ affiffiffiffiffiffiffiffi
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, where Ф() denotes the cumulative normal

distribution function. Thus, with no restrictions on
the variances in the two groups, the c-statistic is a
function of only the means and variances of the
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continuous explanatory variable in those affected and
unaffected by the condition. The above expression
can be rewritten as:

AUC ¼ Φ
μ̂A � μ̂Uffiffiffî
σ

p 2
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where d denotes the standardized difference or
Cohen’s effect size [11-14]. The standardized differ-
ence is the difference in means in units of pooled
standard deviation. Thus, the c-statistic is a function
only of the difference in means between those affected
and unaffected by the condition, in units of standard
deviation. Since the standard normal distribution
function is an increasing function, the c-statistic
increases as the difference in the mean of the explana-
tory variable between those with and without the con-
dition increases.

Special case: σ2A = σ2U
In the special case when the explanatory variable has the
same variance in those affected and unaffected by the
condition, one can simplify the above result using a re-
sult from discriminant analysis. Let σ2 denote the com-
mon variance of explanatory variable in the two groups.
Then, the log-odds ratio relating the explanatory variable
X to the log-odds of the occurrence of the condition has
the following property: β ¼ μA�μU

σ2 [15] (page 19). We
then have that

AUC ¼ Φ
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Thus, when the explanatory variable is normally distrib-
uted in both those affected and unaffected by the condi-
tion, and furthermore has the same variance in both
groups, then the c-statistic is a function of only the log-
odds ratio relating the explanatory variable to the occur-
rence of the condition and the variance of the explana-
tory variable in each of the two groups. Since the
standard normal distribution function is an increasing
function, the c-statistic increases with increasing log-odds
ratio relating the explanatory variable to the outcome and
the standard deviation of the explanatory variable. Finally,
the c-statistic is independent of the proportion of subjects
with the condition.
Accuracy of predicted c-statistic when the distribution of
the explanatory variable is normal in the combined
population of those with and without the condition
The analytic derivations in the previous section assumed
that the explanatory variable is normally distributed in
those with and without the condition. A potentially
more realistic scenario is when the explanatory variable
is normally distributed in the overall sample, rather than
in those with and without the condition. In many such
instances, it would be reasonable to expect the distribu-
tion of the explanatory variable to be approximately nor-
mally distributed in those with and without the
condition. In this section we describe an extensive set of
Monte Carlo simulations conducted to examine the ac-
curacy of the predicted c-statistic derived under the as-
sumption of binormality in the setting when the
explanatory variable is normally distributed in the over-
all population.
Monte Carlo simulations-methods
We simulated a continuous explanatory variable for each
of 1,000 subjects from a normal distribution with mean
0 and standard deviation σmc: xieN 0; σmcð Þ for i =1, . . .,
1,000. We determined a linear predictor as follows:
logit pið Þ ¼ β0 þ β1xi , where pi denotes the probability of
a binary condition occurring. For each subject, we then
randomly generated a binary condition from a Bernoulli
distribution with subject-specific parameter pi . We then
fit a univariate logistic regression model (in which the
binary condition was regressed on the continuous ex-
planatory variable X) in the simulated dataset and esti-
mated the c-statistic of the fitted model, which we refer
to as the empirical c-statistic. We also determined the
predicted c-statistic using the formulas (1) and (2) from
Sections 2.1 and 2.2, respectively. To apply formula (1)
from Section 2.1, we determined the mean and variance
of the explanatory variable in those with and without the
condition. To apply formula (2) from Section 2.2, we
used the estimated regression coefficient (log-odds ratio)
from the logistic regression model relating the explana-
tory variable to the presence of the condition and an es-
timate of the common variance of the explanatory
variable in those with and without the condition. This
estimate of the common variance was obtained as the
variance in the combined sample of those with and with-
out the condition. We repeated the above process 500
times. The mean empirical c-statistic along with the
mean of the predicted c-statistics was determined across
the 500 simulated datasets.
These Monte Carlo simulations used a full factorial

design in which the following factors were allowed to
vary: β0 (which will influence the overall probability of
the condition occurring), exp β1ð Þ, and σmc. We allowed
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β0 to take on the values −2, −1, 0, 1, and 2; exp β1ð Þ to
vary from 1 to 4 in increments of 0.2; and σmc to vary
from 0.2 to 4 in increments of 0.2. In each of the 1,600
(5 × 16 × 20) different scenarios, we computed: the mean
of the empirical and predicted c-statistics and the mean
of the skewness of the explanatory variable in those with
and without the condition across the 500 simulated
datasets that were generated under each scenario.
Data were simulated using the R statistical program-

ming language [16]. The logistic regression models were
fit using the lrm function in the Design package. The
skewness of the explanatory variable was estimated using
the skewness function in the e1071 package.
Monte Carlo simulations – results
The relationship between the predicted c-statistics and the
empirical c-statistics across the scenarios is described in
Figure 1. The left panel reports the predicted c-statistics
when formula (1), which does not make the assumption of
the equality of the variance of the explanatory variable in
those with and without the condition, was used to predict
the c-statistic. The right panel reports the predicted c-
statistic when formula (2), which assumes that the variance
of the explanatory variable was the same in those with and
without the condition, was used. Both formulas provided
very accurate prediction of the c-statistic when the pre-
dicted c-statistic was less than 0.80 to 0.90. Modestly more
accurate predictions were obtained in the higher range of
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Figure 1 Comparison of empirical and predicted c-statistics: normal d
predicted c-statistics under the assumption of equality of
variance.
The relationships between the difference between the

empirical and predicted c-statistics and the skewness of the
distribution of the explanatory variable in those with and
without the condition are reported in Figure 2. In general,
one observes a pattern in which the difference between
empirical and predicted c-statistics increased as the skew-
ness of the distribution of the explanatory variable
increased.

Accuracy of predictions under non-normal distributions
of the explanatory variable
The analytic derivations in Section 2 required the assump-
tion of binormality. In Section 3, using an extensive set of
Monte Carlo simulations, we found that the formulas
derived under the assumption of binormality allowed for
relatively accurate prediction of the empirical c-statistic
when the distribution of the explanatory variable was nor-
mally distributed in the entire sample of those with and
without the condition. In this section, we examine the ac-
curacy of these predictions when the distribution of the ex-
planatory variable was non-normal in the combined
sample. We considered the following three distributions:
gamma, log-normal, and uniform.

Methods
We used Monte Carlo simulations similar to those
described in Section 3. For each of the three non-normal
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Figure 2 Difference between empirical and predicted c-statistic and skewness.
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distributions, we used a full factorial design. When the ex-
planatory variable followed a gamma distribution, we
allowed β0 to take on the values −1, 0, and 1 and exp β1ð Þ
to vary from 1 to 4 in increments of 0.25. The gamma dis-
tribution had the scale parameter fixed at 1, and the shape
parameter was allow to vary from 0.25 to 4 in increments
of 0.25. We thus considered 624 (3×13×16) different sce-
narios. When the explanatory variable followed a uniform
distribution, we allowed β0 to take on the values −2, −1, 0,
1, and 2, exp β1ð Þ to vary from 1 to 4 in increments of 0.2,
and the parameter of the uniform distribution to vary from
0.2 to 4 in increments of 0.2 (the uniform distribution U(a)
was parameterized so that its range was from –a to + a).
We thus considered 1,600 (5× 16× 20) different scenarios.
When the explanatory variable followed a log-normal dis-
tribution, we allowed β0 to take on the values −1, 0, and 1,
exp β1ð Þ to vary from 1 to 4 in increments of 0.25. The
logarithm of the log-normal distribution had mean zero
and its standard deviation varied from 0.1 to 2 in incre-
ments of 0.1. We thus considered 780 (3×13×20) differ-
ent scenarios.
Results
The relationship between the empirical and predicted c-
statistics is described in Figure 3. The top three panels
describe the relationship when binormality with unequal
variances (formula (1)) was used to predict the c-statis-
tic. The lower three panels describe the relationship
when binormality with equal variances (formula (2)) was
used to predict the c-statistic. In general, better predic-
tions were obtained using formula (2) compared to for-
mula (1). Prediction was most accurate when the
distribution of the explanatory variable was uniform, and
was the least accurate when the distribution was log-
normal. Prediction was relatively good when the ex-
planatory variable followed a gamma distribution.
Case study
We examined the ability of our derived formulas to pre-
dict the c-statistic for two logistic regression models in a
sample of subjects hospitalized with acute myocardial in-
farction (AMI).
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Figure 3 Comparison of empirical and predicted c-statistics: non-normal distributions.
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Data sources
We used patients from the first phase of Enhanced Feed-
back for Effective Cardiac Treatment (EFFECT) Study,
an initiative to improve the quality of care for patients
with cardiovascular disease in Ontario [17,18]. Detailed
clinical data were collected on patients hospitalized with
AMI between April 1, 1999 and March 31, 2001 at 86
hospital corporations in Ontario, Canada, by retrospect-
ive chart review. Data on patient demographics, vital
signs at presentation, medical history, and results of la-
boratory tests were collected for these patients. After ex-
cluding subjects with missing data on key variables,
9,298 subjects were available for use in this case study.

Methods
The outcome of interest for the current example was
whether the patient died within 30 days of hospitalization.
We fit two different logistic regression models. The first
was a univariate logistic regression model in which we
regressed 30-day mortality on patient age. In the second
model, we regressed mortality on the following baseline
covariates: age, sex, cardiogenic shock, acute congestive
heart failure/pulmonary edema, systolic blood pressure,
diastolic blood pressure, heart rate, respiratory rate, dia-
betes, hypertension, current smoking status, dyslipidemia,
family history of coronary artery disease, cerebrovascular
disease/transient ischemic attack, angina, cancer, dementia,
peptic ulcer disease, previous AMI, asthma, depression,
peripheral vascular disease, previous revascularization, con-
gestive heart failure, hyperthyroidism, aortic stenosis,
haemoglobin, white blood count, sodium, potassium, glu-
cose, urea, and creatinine.
We determined the empirical c-statistic for each of the

two logistic regression models. We estimated the com-
ponents of the distribution of age and of the linear pre-
dictor from the second logistic regression model that
were necessary to predict the c-statistic using formu-
las (1) and (2). When using formula (2) with the
multivariable model, we used β= 1, since the regres-
sion coefficient for the linear predictor would be one
if the outcome were regressed on the linear predictor
alone.
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Results
The empirical c-statistic of the univariate logistic regres-
sion model that regressed 30-day mortality on age was
0.759. The corresponding predicted c-statistics were
0.760 and 0.790 when formulas (1) and (2) were used,
respectively. The empirical c-statistic of the multivari-
able model was 0.853. The corresponding predicted c-
statistics were 0.849 and 0.855 when formulas (1) and
(2) were used, respectively. The improved accuracy of
prediction of the c-statistic for the multivariable model
is likely due to the distribution of the linear predictor
having a distribution that is closer to a normal distribu-
tion compared to the distribution of age.

Discussion
Under the assumption that the explanatory variable was
normally distributed in those with and without the con-
dition, we derived an explicit expression for the c-statis-
tic. We demonstrated that the c-statistic is a function of
only the mean and variance of the explanatory variable
in those with and without the condition. In particular,
the c-statistic is a function of the standardized difference
comparing the mean of the explanatory variable between
those with and without the covariate. When the explana-
tory variable had the same variance in those with and
without the condition, we demonstrated that the model
c-statistic is an increasing function of the standard devi-
ation of the normal distributions and of the log-odds
ratio. The primary novelty of our findings is that the
functional relationship of the c-statistic of a logistic re-
gression model has now been described. Using an exten-
sive set of Monte Carlo simulations, we found that our
formulas provided reasonably accurate prediction when
the distribution of the explanatory variable was normal
in the entire sample of those with and without the con-
dition. Some of our findings corroborate previous obser-
vations based on Monte Carlo simulations on how the
c-statistic improved with increases in the odds ratio [19].
While our derivations are based on a single explanatory
variable that is normally distributed in those with and
without the condition, our results will generalize to any
setting in which there is a real valued transformation of
a set of explanatory variables, f(X), such that the distri-
bution of f(X) is normal in those with and without the
condition.
There are two implications of these findings for

researchers constructing and interpreting predictive
models for binary outcomes. First, it is widely known
that greater discrimination is possible when the regres-
sion model contains independent explanatory variables
that are strongly associated with the outcome [20]. How-
ever, we have demonstrated that when comparing the
performance of the same regression model in different
populations, a higher c-statistic is to be expected for the
model fit in the population in which there is greater
variation in the explanatory variable. Conversely, dimin-
ished predictive accuracy is to be expected in more
homogeneous populations and samples, even if the odds
ratio is transportable across populations. In a multivari-
able model, the linear predictor was recently suggested
as the summary continuous variable to indicate popula-
tion heterogeneity, with direct impact on the magnitude
of the c-statistic [21]. In our case-study, we found that
accurate prediction of the c-statistic was obtained from
the distribution of the linear predictor. As noted above,
the linear predictor is a real-valued function of the set of
explanatory variables. Furthermore, the central limit the-
orem suggests that the distribution of the linear pre-
dictor will tend to be approximately normally distributed
as both the sample size and the number of explanatory
variables increases.
Conclusions
In conclusion, when a continuous explanatory variable is
normally distributed both in those with and without the
outcome or condition, and these two normal distribu-
tions have equal variances, then the c-statistic follows a
standard normal cumulative distribution function with
dependence on the product of the standard deviation of
the normal components (reflecting more heterogeneity)
and the log-odds ratio (reflecting larger effects). When
the explanatory variable is normally distributed in the
combined population of subjects, then the formulas that
we derived provide a reasonably accurate prediction of
the empirical c-statistic. We conclude that discriminative
ability of an explanatory variable cannot be judged by its
odds ratio alone, but always needs to be considered in
relation to the heterogeneity of the population.
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